Carrier Is Organic Patents (Class 436/528)
  • Patent number: 8524504
    Abstract: This invention relates to a method for detecting an analyte in a sample, comprising the steps of exposing the sample to a transducer which is capable of transducing a change in energy to an electrical signal, the transducer having at least one tethered reagent on or proximal thereto, the at least one tethered reagent having a binding site which is capable of binding the analyte; introducing a labelled reagent into the sample, wherein the labelled reagent contains a binding site for the analyte or the tethered reagent and a label which is capable of absorbing electromagneticradiation generated by a radiation source to generate energy; allowing the labelled reagent to bind to the analyte or tethered reagent in a first period in which the transducer is oriented such that the labelled reagent is caused to settle, at least in part, on the transducer; subsequently, in a second period, causing the labelled reagent to become unsettled; irradiating the sample with electromagnetic radiation during the first and second
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: September 3, 2013
    Assignee: Vivacta Limited
    Inventors: Timothy Joseph Nicholas Carter, Steven Andrew Ross
  • Patent number: 8518710
    Abstract: The present invention provides a method for reducing undesirable light emission from a sample using at least one photon producing agent and at least one photon reducing agent (e.g. dye-based photon reducing agents). The present invention further provides a method for reducing undesirable light emission from a sample (e.g., a biochemical or cellular sample) with at least one photon producing agent and at least one collisional quencher. The present invention also provides a method for reducing undesirable light emission from a sample (e.g., a biochemical or cellular sample) with at least one photon producing agent and at least one quencher, such as an electronic quencher. The present invention also provides a system and method of screening test chemicals in fluorescent assays using photon reducing agents. The present invention also provides compositions, pharmaceutical compositions, and kits for practicing these methods.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: August 27, 2013
    Assignee: Life Technologies Corporation
    Inventors: Tom Knapp, Gregory Zlokarnik, Paul Negulescu, Roger Tsien, Timothy Rink
  • Patent number: 8518714
    Abstract: Non-saturated or non-saturated and orientated binding surfaces for an affinity assay are provided, as are methods and compositions for their preparation. The non-saturated or non-saturated and orientated binding surfaces may further comprise paramagnetic microparticles. The methods include methods for making ligand::support coupler-based complexes by a process optionally employing a low input ratio of ligand to support coupler, by dilution, and by methods employing a dispersion and/or coating step using a block copolymer. Specific examples employing biotin-BSA and biotin-ovalbumin binding surfaces are provided, as well as strepavidin-coated microparticles and microparticles coated with capture moieties such as biotinylated immunoglobulins or fragments thereof. Other examples couple a ligand to the solid surface. Further provided are dispersed microparticles and methods for making them.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 27, 2013
    Assignee: Beckman Coulter, Inc.
    Inventors: Joshua C. Soldo, James L. Sackrison
  • Patent number: 8513028
    Abstract: The present invention relates to novel uses of the MLN 51 gene or protein. The MLN 51 gene and protein is closely related to the development of rheumatoid arthritis and serve as biomarker and therapeutic target for rheumatoid arthritis, particularly chronic synovitis.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: August 20, 2013
    Assignee: Creagene Inc.
    Inventors: Jin Ah Jang, Dae Seog Lim, Hyun Soo Lee, Yong Soo Bae
  • Patent number: 8513032
    Abstract: The present invention relates to methods, compositions and kits for affinity isolation, affinity purification and affinity assay based on microbubbles coated with an affinity molecule. Particularly, the invention provides protein microbubbles coated with an affinity molecule. In addition, the invention provides glass microbubbles coated with an affinity molecule. Methods of using the microbubbles of the invention for isolating analytes and cells are specifically provided.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 20, 2013
    Assignee: Iris International, Inc.
    Inventors: Edward Jablonski, Thomas Adams
  • Patent number: 8507212
    Abstract: A process for treating biological targets in a fluid of a biological organism, including introducing a fluid comprising a biological target to an assembly comprising an inlet connected to receive the fluid and an outlet connected to pass the fluid from the assembly, wherein the assembly comprises a flow chamber for conveying a flow of the fluid, and a capture zone comprising a target-specific binding agent, wherein during flow of the fluid through the flow chamber, the biological target undergoes flux rolling along the target-specific binding agent.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: August 13, 2013
    Assignee: Biomed Solutions LLC
    Inventors: Patrick R. Connelly, Jeffrey L. Helfer, Andrew W. Custer, Michael B. Kim
  • Patent number: 8497135
    Abstract: Oral, topical and injectable contraceptives, which are based on sperm protein 22 kDa (SP22) polypeptides and antibodies and infertility diagnostics and kits are provided.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: July 30, 2013
    Assignee: U.S. Environmental Protection Agency
    Inventor: Gary R. Klinefelter
  • Patent number: 8481332
    Abstract: A liposomal composition, preferably a vaccine, comprising liposomes formed of liposome forming compounds, containing coentrapped polysaccharide antigen and T-cell dependent protein carrier, such as tetanus toxoid or diphtheria toxin modified to render it non-toxic. The invention is of use in the production of vaccines against Haemophilus influenzae, Streptococcus pneumoniae or Neisseria meningitidis.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: July 9, 2013
    Assignee: Stichting Voor de Technische Wetenshappen
    Inventors: Waltherus Jacobus Wilhelmus Van Venrooij, Jan Wouter Drijfhout, Martinus Adrianus Maria Van Boekel, Gerardus Jozef Maria Pruijn
  • Patent number: 8470610
    Abstract: Analytes in a sample are resolved by retentate chromatography in a procedure involving adsorbing the analytes on a substrate under a plurality of different selectivity conditions, and detecting the analytes retained on the substrate by desorption spectrometry. The methods are useful in biology and medicine, including clinical diagnostics and drug discovery.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 25, 2013
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 8465968
    Abstract: The present invention relates to a label-free biosensor system, a method for manufacturing said label-free biosensor system, its use for detecting biochemical reactions and/or bindings, enzymatic reactions, nucleic acid hybridizations, protein-protein interactions and protein-ligand interactions, as well as an assay method for detecting and/or quantifying an analyte of interest in a biological sample which comprises detecting the Recognition Induced Birefringence (RIB) generated in the presence as opposed to the absence of said analyte by bringing said sample into contact with said label-free biosensor system.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 18, 2013
    Assignee: DWI an der RWTH Aachen e.V.
    Inventors: Jürgen Groll, Martin Möller, Matthias Eberhardt
  • Patent number: 8455265
    Abstract: A surface grafted conjugated polyelectrolyte (CPE) is formed by coupling a CPE by a coupling moiety to the surface of a substrate. The substrate can be of any shape and size, and for many uses of the surface grafted CPE, it is advantageous that the substrate is a nanoparticle or microparticle. Surface grafted CPEs are presented that use silica particles as the substrate, where a modified silane coupling agent connects the surface to the CPE by a series of covalent bonds. Two methods of preparing the surface grafted CPEs are presented. One method involves the inclusion of the surface being modified by the coupling agent and condensed with monomers that form the CPE in a grafted state to the substrate. A second method involves the formation of a CPE with terminal groups that are complimentary to functionality that has been placed on the surface of the substrate by reaction with a coupling agent. The surface grafted CPEs are also described for use as biosensors and biocides.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 4, 2013
    Assignee: STC.UNM
    Inventors: David G. Whitten, Sireesha Chemburu, Thomas Corbitt, Linnea Ista, Gabriel Lopez, Kirk S. Schanze, Motokatsu Ogawa, Eunkyung Ji
  • Patent number: 8431415
    Abstract: The present invention provides a reagent for an immunoassay comprising insoluble carrier particles which can give the values to be determined with high accuracy and reliability, and can be stored for a long time; an immunoassay using the reagent; and a method for keeping the reagent stable.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 30, 2013
    Assignee: TFB, Inc.
    Inventor: Kayoko Shigenobu
  • Patent number: 8415173
    Abstract: A gel microdrop composition is provided. In certain embodiments, the gel microdrop composition contains a polymer matrix, an effector particle that releases an effector molecule into the polymer matrix, a first reporter particle that emits a first optically detectable signal and a second reporter particle that emits a second optically detectable signal that is distinguishable from the first optically detectable signal, where the effector particle and said first and second reporter particles are encapsulated by the polymer matrix. Methods of screening that employ the gel microdrop composition and methods of making the gel microdrop composition are also disclosed.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 9, 2013
    Assignee: Crystal Bioscience Inc.
    Inventor: William Don Harriman
  • Patent number: 8404495
    Abstract: In one aspect, the present invention is a system, a device and a method for sensing the concentration of an analyte in a fluid or matrix. The analyte may be glucose or any other chemical of interest. The fluid or matrix may be, for example, the fluid in a bioreactor, a food or agricultural product, any fluid or matrix in the body of an animal, or any other fluid or matrix whose concentration of an analyte is under investigation. In one embodiment, the analyte sensing device includes a housing having an interior space. Contained within the housing and in the interior space is one or more analyte sensing component(s). The analyte sensing component, in one embodiment, includes one or more radiation converting element(s), for example, converting chromophores. The radiation converting element(s) are capable of converting or modifying radiation of one or more wavelengths into radiation of one or more different wavelengths.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: March 26, 2013
    Assignee: BioTex, Inc.
    Inventors: Ralph Ballerstadt, Roger McNichols, Ashok Gowda
  • Patent number: 8398935
    Abstract: A sheath flow system having a channel with at least one fluid transporting structure located in the top and bottom surfaces situated so as to transport the sheath fluid laterally across the channel to provide sheath fluid fully surrounding the core solution. At the point of introduction into the channel, the sheath fluid and core solutions flow side by side within the channel or the core solution may be bounded on either side by the sheath fluid. The system is functional over a broad channel size range and with liquids of high or low viscosity. A wide variety of shapes of fibers and other materials can be produced from this system through the use of polymerizable material.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 19, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Peter B. Howell, Jr., Frances S. Ligler, Adam R. Shields
  • Patent number: 8399208
    Abstract: The present invention is related to accurate detection methods for the measurement only of myeloperoxidase (MPO) levels or neutrophils, preferably equine neutrophils, in complex biological samples. The present invention is further related to ELISA and SIEFED assays for such detection. SIEFED detection sensitivity of active peroxidase activity was found to be enhanced by the addition of nitrite. Such MPO measurement finds its use in many applications such as the prediction, diagnosis and/or monitoring of pathologies correlated with neutrophil activation and/or destruction; the evaluation of drugs and/or immunomodulators; the assessment of immune responses, either natural and/or after treatment with immunomodulators and/or drugs; and the study of cells and their ability to fight microorganisms and/or to destroy them.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: March 19, 2013
    Assignee: Universite de Liege
    Inventors: Didier Serteyn, Ginette Dupont, Thierry Franck, Stéphane Kohnen
  • Patent number: 8394600
    Abstract: Compositions, methods and devices for the detection of anti-lipoidal antibodies and the diagnosis of disease, for example, syphilis, are described. In particular, a method for immobilizing a lipoidal antigen, comprising cardiolipin, lecithin, and cholesterol, on a solid support (such as a nitrocellulose membrane) is described. The ability to immobilize a lipoidal antigen on a membrane satisfies a long-felt need for a membrane-based assay for the detection of anti-lipoidal antibodies. Also described are immunoassay devices for concurrently performing treponemal and non-treponemal tests for syphilis.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: March 12, 2013
    Assignee: The United States of America as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention
    Inventor: Arnold R. Castro
  • Patent number: 8394626
    Abstract: The present invention includes but is not limited to a specimen collection device that includes a chamber capable of collecting a specimen, a specimen passage slot, a reservoir, a reservoir seal, and a test device. A sample or specimen added to the chamber flows through the specimen passage slot into the reservoir. Flow into the reservoir may be limited by the reservoir seal. The test device positioned within the reservoir detects the presence or concentration of an analyte within the sample or specimen.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 12, 2013
    Assignee: Alere Switzerland GmbH
    Inventors: James T. Ramsey, Larry Hartselle
  • Patent number: 8389229
    Abstract: Compositions, methods and devices for the detection of anti-lipoidal antibodies and the diagnosis of disease, for example, syphilis, are described. In particular, a method for immobilizing a lipoidal antigen, comprising cardiolipin, lecithin, and cholesterol, on a solid support (such as a nitrocellulose membrane) is described. The ability to immobilize a lipoidal antigen on a membrane satisfies a long-felt need for membrane-based assay for the detection of anti-lipoidal antibodies. Also described are immunoassay devices for concurrently performing treponemal and non-treponemal tests for syphilis.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: March 5, 2013
    Assignee: The United States of America as Represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention
    Inventors: Arnold R. Castro, Robert W. George
  • Patent number: 8383410
    Abstract: The invention concerns an internal standard used to quantitative analysis of the risk of humoral (i.e. vascular) transplant rejection. The internal standard consists of a stable composition of the C4d complement bound to a carrier consisting of erythrocytes or microparticles. The invention also concerns a method for analyzing in vitro the risk of humoral organ transplant rejection, which consists in determining the amount of component of C4d component fixed on the erythrocytes contained in a blood sample from a patient.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 26, 2013
    Assignee: Universite de Reims Champagne-Ardenne
    Inventors: Jacques Henri Max Cohen, Brigitte Reveil, Aymric Kisserli, Fadi Haidar, Béatrice Donvito
  • Patent number: 8383782
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 26, 2013
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Patent number: 8372660
    Abstract: This invention discloses an analyzing method for detecting a specific analyte in a fluid sample. The method comprises the following steps. First, a substrate is provided. The substrate has a channel provided concavely on an upper surface thereof. The channel comprises a first area, a second area and a third area, and these three areas are connected sequentially. Each of the second and the third areas comprises a nitrocellulose layers containing a reaction material and formed at the bottom thereof. The nitrocellulose layer of the third area can absorb a fixed volume of the fluid sample. Second, the fluid sample is applied to the first area and delivered by the second area and then to the third area. Finally, the reaction material reacts with the specific analyte in the fluid sample to produce a signal for detection.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: February 12, 2013
    Assignee: Actherm Inc
    Inventors: Wen-Pin Hsieh, Yi-Jen Wu
  • Patent number: 8361810
    Abstract: Methods are disclosed for producing a bioweapon-sensitive fibrous-network product, wherein the subject products exhibit a color change in response to exposure to a biological agent (or portion thereof) as used in a biological weapon. Also disclosed are fibrous-network products that contain units of biopolymeric material that impart a color change to the products in response to exposure to a biological agent (or portion thereof) as used in a biological weapon.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 29, 2013
    Inventors: Dennis Farwell, Keith Baumann
  • Patent number: 8349621
    Abstract: A ligand molecule-immobilized polymer has a structure represented by the following general formula (1). In the general formula (1), R1 represents a ligand molecule-containing group, R2 represents a hydrophobic group, R3 represents a spacer site, R4 represents a hydrophilic group, R5 represents a group having charge, a to d specify a composition ratio and each represent an integer of 1 or more, and n and m specify chain lengths and represent integers satisfying the relationships of 1?n(a+b+c+d)?10,000 and 1?m?350.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: January 8, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kousuke Mukumoto
  • Patent number: 8349618
    Abstract: The present invention relates to analytical methods, platforms, and devices for the rapid and efficient immunochromatic determination of one or more components in fluid samples.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: January 8, 2013
    Assignee: ZBX Corporation
    Inventor: Qinwei Shi
  • Patent number: 8343526
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Patent number: 8334104
    Abstract: Methods and reagents are disclosed for pretreating a sample suspected of containing a hydrophobic drug for conducting an assay method for detecting the hydrophobic drug. A combination is provided in a medium that includes the sample, a releasing agent for releasing the hydrophobic drug and the metabolites from endogenous binding moieties, and a selective solubility agent that provides for substantially equal solubility of the hydrophobic drug and the metabolites in the medium. The selective solubility agent includes a water miscible, non-volatile organic solvent and is present in the medium in a concentration sufficient to provide for substantially equal solubility of the hydrophobic drug and the metabolites in the medium. The medium, which may further include a hemolytic agent, is incubated under conditions for releasing the hydrophobic drug and the metabolites from endogenous binding moieties. The pretreated sample may be subjected to an assay for determining the hydrophobic drug.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: December 18, 2012
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Tie Q. Wei, Alan Craig, Amy Posey
  • Patent number: 8318492
    Abstract: The present invention relates in one aspect to a method for determining the cell culture history of a cell unit labelled with more than one type of tag comprising the steps of: (a) measuring one or more parameters of each tag that is used to label the cell unit; (b) identifying each tag in the cell unit; and (c) correlating the identity of each tag to the identity of the cell unit and/or the specific cell culture conditions to which the cell unit has been exposed.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Plasticell Limited
    Inventors: Yen Choo, Fraser Hornby, John Girdlestone
  • Patent number: 8309368
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relics on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: November 13, 2012
    Assignee: BioArray Solutions, Ltd.
    Inventor: Michael Seul
  • Patent number: 8304203
    Abstract: A method and kit for assaying a cell sample for the presence of at least a threshold number of cells of a given type are disclosed. The kit includes an assay device having a sample chamber for receiving the cell sample and an elongate collection chamber containing a selected-density and/or viscosity medium and having along its length, a plurality of cell-collection regions, and particles which are capable of specific attachment to cells of the selected cell type, and which are effective, when attached to the cells, to increase the density or magnetic susceptibility of the cells. In operation, particle-bound cells and particles in the cell sample are drawn through the elongate collection chamber under the influence of a gravitational or selected centrifugal or magnetic-field force until the particle-bound cells and particles completely fill successive cell-collection regions in the collection chamber.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 6, 2012
    Assignee: Zyomyx, Inc.
    Inventors: Frank Zaugg, Renee Tobias, Silvia McManus-Munoz, Peter Kernen, Laurence Ruiz-Taylor, Peter Wagner
  • Patent number: 8299222
    Abstract: The invention generally relates to hapten compounds comprising either (+) methamphetamine or (+) amphetamine conjugated to a linker. Generally speaking, hapten compounds of the invention may be used to elicit an immune response to one or more of (+) methamphetamine, (+) amphetamine, or (+) MDMA.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 30, 2012
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Samuel M. Owens, Frank Ivy Carroll, Philip Abraham
  • Patent number: 8273566
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 25, 2012
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Patent number: 8246911
    Abstract: Interactions between molecules that are components of self-assembled monolayers and other molecules can be amplified and transduced into an optical signal through the use of a mesogenic layer. The invention provides for a method for detecting an analyte, comprising contacting with said analyte a recognition moiety for said analyte, wherein said contacting causes at least a portion of a plurality of mesogens proximate to said recognition moiety to detectably switch from a first orientation to a second orientation upon contacting said analyte with said recognition moiety; and detecting said second orientation of said at least a portion of said plurality of mesogens, whereby said analyte is detected.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: August 21, 2012
    Assignee: The Regents of the University of California
    Inventors: Nicholas L. Abbott, Justin J. Skaife, Vinay K. Gupta, Timothy B. Dubrovsky, Rahul Shah
  • Patent number: 8241574
    Abstract: An ophthalmic device which comprises a holographic element comprising a medium comprising a phenylboronic acid group and, disposed therein, a hologram, wherein an optical characteristic of the element changes as a result of a variation of a physical property of the medium, and wherein the variation arises as a result of interaction between the medium and an analyte present in an ocular fluid.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: August 14, 2012
    Assignee: Smart Holograms Limited
    Inventors: Barry Burles, Roger Bradley Millington, Christopher Robin Lowe, Satyamoorthy Kabilan, Jeffrey Blyth
  • Patent number: 8236575
    Abstract: A first reactant, which is provided with a reaction site for specific binding with an analyte, and a fluorescent label site, and a second reactant, which is provided with a reaction site for specific binding with the analyte, and a fluorescence recognition site for recognizing fluorescence produced by the fluorescent label site of the first reactant, are respectively fixed onto a support such that the first reactant and the second reactant have a positional relationship adapted for the binding with the analyte.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 7, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Koichi Minami, Hirohiko Tsuzuki
  • Patent number: 8216854
    Abstract: The present invention is directed to a system, device and method for measuring the concentration of an analyte in a fluid or matrix. A thermodynamically stabilized analyte binding ligand for use in the system, device and method is disclosed. The thermodynamically stabilized analyte binding ligand is resistant to degradation at physiological temperatures and its use within the device provides a minimally invasive sensor for monitoring the concentration of an analyte in a fluid or matrix as are present in the body of an animal.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: July 10, 2012
    Assignee: BioTex, Inc.
    Inventors: Ralph Ballerstadt, Roger McNichols, Ashok Gowda
  • Publication number: 20120171782
    Abstract: Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Inventors: Randall W. Nelson, Peter Williams, Jennifer Reeve Krone
  • Patent number: 8211682
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 3, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Alicja M. Mika, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Patent number: 8206958
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: June 26, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Tapan K. Dey, Carlos Filipe, Raja Ghosh, Marcus Y. Kim, Elena N. Komkova, Alicja M. Mika, Jinsheng Zhou
  • Patent number: 8192971
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: June 5, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Alicja M. Mika, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Patent number: 8192947
    Abstract: The present invention is a novel biosensor composed of mOrange2 and mCherry fluorescent proteins operably linked via a linker, which provides a distinct color change upon separation of the fluorescent proteins.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 5, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Yingxiao Wang, Mingxing Ouyang
  • Patent number: 8192997
    Abstract: The invention provides methods for treatment of acute coronary syndrome and prediction of adverse cardiac events on the basis of elevations of catalytic iron in biological fluid of a human subject. An embodiment of the invention provides a method for early detection of acute coronary syndrome (ACS) in a human subject at the time of presentation of the chest pain. The method includes analyzing a test sample of the biological fluid for amount of catalytic iron and detecting acute coronary syndrome in the human subject.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: June 5, 2012
    Inventors: Mohan Rajapurkar, Suhas Lele, Sudhir Shah
  • Patent number: 8178359
    Abstract: A process for the quantitative optical analysis of fluorescently labeled biological cells involves contacting a cell layer on a transparent support at the bottom of a reaction vessel with a solution containing the fluorescent dye. This process can also be used for improving the sensitivity in the quantitative optical analysis of a luminescent biological cell layer. Analogously, these process principles can also be used in receptor studies for the masking of the interfering background radiation in the quantitative optical analysis of fluorescently or luminescently labelled reaction components. In this case, a receptor layer at the bottom of a reaction vessel is in contact with a solution in which a fluorescent or luminescent ligand is dissolved.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 15, 2012
    Assignee: Bayer Healthcare AG
    Inventors: Thoams Krahn, Wolfgang Paffhausen, Andreas Schade, Martin Bechem, Delf Schmidt
  • Patent number: 8178058
    Abstract: In the present invention cells are placed in a multiwell plate and grown. When the assay is to be performed, one uses gravity to wash away any unbound ligands rather than vacuum or centrifugation. The cells are then examined to detect the bound ligand. To perform the washing step(s) the plate is placed into a carrier plate having open wells in register with the wells of the filter plate or one may use a wicking device or an underdrain attached to the bottom of the filter plate. Sufficient wash liquid is added to allow for filtration by the effect of gravity to occur. Cells are retained within the wells at a rate of 4 times that of other rapid methods.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: May 15, 2012
    Assignee: EMD Millipore Corporation
    Inventor: Jun Y. Park
  • Patent number: 8173382
    Abstract: The invention provides among other things methods and kits based on assaying for cardiac troponin autoantibodies, either in conjunction with an assay for cardiac troponin and/or as an independent indicator of cardiac pathology, such as myocarditis, cardiomyopathy, and/or ischemic heart disease. Assay methods of the invention can be employed among other things to identify cardiac pathology, or risk thereof, in subjects who have an autoimmune disease or who are related to an individual with an autoimmune disease. In particular embodiments, the invention also provides a method of determining whether a subject having, or at risk for, a cardiac pathology is a candidate for immunosuppressive therapy or immunoabsorption therapy. The invention also provides kits and kit components that are useful for performing the methods of the invention.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: May 8, 2012
    Assignee: Abbott Laboratories
    Inventors: Phillip G. Mattingly, Maciej Adamczyk, Roy Jeffrey Brashear, Robert C. Doss
  • Patent number: 8168399
    Abstract: Described herein are supports for assaying an analyte and methods of making and using thereof.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 1, 2012
    Assignee: Corning Incorporated
    Inventors: Anthony G. Frutos, David Henry
  • Patent number: 8163562
    Abstract: The present invention provides a method for reducing undesirable light emission from a sample using at least one photon producing agent and at least one photon reducing agent (e.g. dye-based photon reducing agents). The present invention further provides a method for reducing undesirable light emission from a sample (e.g., a biochemical or cellular sample) with at least one photon producing agent and at least one collisional quencher. The present invention also provides a method for reducing undesirable light emission from a sample (e.g., a biochemical or cellular sample) with at least one photon producing agent and at least one quencher, such as an electronic quencher. The present invention also provides a system and method of screening test chemicals in fluorescent assays using photon reducing agents. The present invention also provides compositions, pharmaceutical compositions, and kits for practicing these methods.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: April 24, 2012
    Assignee: Life Technologies Corporation
    Inventors: Tom Knapp, Gregory Zlokarnik, Paul Negulescu, Roger Tsien, Timothy Rink
  • Patent number: 8148141
    Abstract: Disclosed is a peptide-immobilized substrate for measuring a target protein, with which the peptide can have a structure required for being recognized by the target protein, with which the accurate loading amount of the peptide can be attained, and by which a trace amount of the target protein may be measured accurately and simply. The peptide-immobilized substrate for measuring a target protein according to the present invention comprises a chemically synthesized peptide having an expected spatial structure or having a binding ability with the target protein, which peptide can bind with the target protein and is immobilized on the substrate.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: April 3, 2012
    Assignee: HiPep Laboratories
    Inventors: Kiyoshi Nokihara, Hisakazu Mihara
  • Patent number: 8133718
    Abstract: An analytical strip and a detecting method using the analytical strip are provided. The analytical strip includes a substrate having a channel thereon. The channel has a first region, a second region and a third region, which are arranged successively. A first antibody is localized in the first region. A saccharide and a peroxidase are localized in the first or second region. A second antibody for recognizing a different epitope of an identical antigen with the first antibody is immobilized in the second region. A substrate reagent including a saccharide oxidase is localized in the third region.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: March 13, 2012
    Assignee: Actherm Inc
    Inventors: Yi-Jen Wu, Chih-Wei Hsieh, Wen-Pin Hsieh
  • Patent number: 8133691
    Abstract: The invention relates to a kit comprising MHC Class I and Class II HLA-coated beads containing specific antigenic peptides for binding to antigen-specific T cells and the appropriate negative control peptides. Also provided are methods for making the coated beads and methods for use. The application of these beads go to the stimulation of peripheral blood cell populations and in vitro-stimulated culture for the elicitation of functional activities such as cell activation and signaling, cytokine secretion, proliferation and cytotoxicity activity.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: March 13, 2012
    Assignee: The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.
    Inventors: Sathibalan Ponniah, George E. Peoples, Catherine E. Storrer, Michael Flora