And Encapsulating Patents (Class 438/112)
  • Patent number: 8841166
    Abstract: Provided is a resin sealed semiconductor device with improved reliability. After positioning a cap (lid) so as to cover semiconductor chips and wires, resin is supplied into a space formed by the cap, so that a sealing body is formed to cover the semiconductor chips and the wires. In the step of forming the sealing body, the resin is supplied from an opening formed at a corner of the cap in the planar view. The sealing body is exposed at the corner of the cap, so that the exposed part of the sealing body can be kept away from the wires.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 23, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Noriyuki Takahashi
  • Publication number: 20140264798
    Abstract: Packaged chips comprising non-integer lead pitches, systems and methods for manufacturing packaged chips are disclosed. In one embodiment a packaged device includes a first chip, a package encapsulating the first chip and a plurality of leads protruding from the package, wherein the plurality of leads comprises differing non-integer multiple lead pitches.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Guenther Lohmann, Josef Hoeglauer, Teck Sim Lee, Matteo-Alessandro Kutschak, Wolfgang Peinhopf
  • Patent number: 8836097
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias formed through the substrate and conductive layer formed over the substrate. A first encapsulant is deposited over the substrate outside a die attach area of the substrate. The first encapsulant surrounds each die attach area over the substrate and the die attach area is devoid of the first encapsulant. A channel connecting adjacent die attach areas is also devoid of the first encapsulant. A first semiconductor die is mounted over the substrate within the die attach area after forming the first encapsulant. A second semiconductor die is mounted over the first die within the die attach area. An underfill material can be deposited under the first and second die. A second encapsulant is deposited over the first and second die and first encapsulant. The first encapsulant reduces warpage of the substrate during die mounting.
    Type: Grant
    Filed: February 16, 2013
    Date of Patent: September 16, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeWook Yang, SeungWon Kim, MinJung Kim
  • Publication number: 20140252572
    Abstract: Provided is a chip package structure and a method for forming the chip package. The method includes bonding a plurality of first dies on a carrier, encapsulating in a first molding compound the first dies on the carrier, coupling a plurality of second dies on the first dies using conductive elements, adding an underfill between the second dies and the first dies surrounding the conductive elements, and encapsulating in a second molding compound the second dies and the underfill. The chip package comprises a chip encapsulated in a molding compound, and a larger chip coupled to the first chip via conductive elements, wherein the conductive elements are encapsulated in an underfill between the chip and the larger chip without an interposer, and wherein the larger chip and the underfill are encapsulated in a second molding compound in contact with the molding compound.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Patent number: 8822273
    Abstract: A semiconductor package and a method for making the same are provided. In the method, a clip is used to conduct a lead frame and at least one chip. The clip has at least one second connection segment, at least one third connection segment, and at least one intermediate connection segment. The second connection segment is electrically connected to a second conduction region of the chip and a second pin of the lead frame respectively, and the third connection segment is electrically connected to a third conduction region of the chip and a third pin of the lead frame respectively. The intermediate connection segment connects the at least one second connection segment and the at least one third connection segment, and is removed in a subsequent process. Thereby, the present invention does not need to use any gold wire, which effectively saves the material cost and the processing time.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 2, 2014
    Assignee: Vishay-Siliconix
    Inventors: Frank Kuo, Suresh Belani
  • Patent number: 8822323
    Abstract: A method of manufacturing a semiconductor device having a transition layer, including (a) forming a wiring and a die pad on a wafer, (b) forming a thin film layer on an entire surface of the wafer obtained in the step (a), (c) forming a resist layer on the thin film layer, and forming a thickening layer on a resist layer unformed section, (d) peeling the resist layer, (e) removing the thin film layer by etching, and (f) dividing the wafer to thereby form semiconductor devices.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 2, 2014
    Assignee: Ibiden Co., Ltd.
    Inventors: Hajime Sakamoto, Dongdong Wang
  • Publication number: 20140242755
    Abstract: A method of making an integrated circuit module starts with a top leadframe strip comprising a plurality of integrally connected top leadframes. A plurality of flipchip dies are mounted on the top leadframe strip with solder bumps of each flipchip bonded to predetermined pad portions on each of the top leadframes. The top leadframe strip is attached to a bottom leadframe strip. The bottom leadframe strip has a plurality of integrally connected bottom leadframes each having a central die attach pad (DAP) portion and a peripheral frame portion. A back face of each flipchip die contacts the DAP portion of each bottom leadframe. Lead portions of each top leadframe are attached to the peripheral frame portion of each bottom leadframe. The top leadframe strip is attached to the bottom leadframe strip with a back face of each flipchip die contacting the DAP portion of each bottom leadframe and with lead portions of each top leadframe attached to the peripheral frame portion of each bottom leadframe.
    Type: Application
    Filed: May 1, 2014
    Publication date: August 28, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Lee Han Meng@Eugene Lee, Anis Fauzi bin Abdul Aziz, Susan Goh Geok Ling, Ng Swee Tiang
  • Patent number: 8815648
    Abstract: A method of assembling semiconductor devices includes applying a metal paste including a plurality of metal particles having an average size less than 50 nanometers and a binder material onto a metal terminal of a package substrate. The metal paste is processed including a heat up step in a reducing gas atmosphere and then a vacuum sintering step at a temperature of at least 200° C. for forming a sintered metal coating. A semiconductor die is attached onto a die attach area of the package substrate. A bond wire is then connected between a bond pad on the semiconductor die and the sintered metal coating on the metal terminal.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: August 26, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Kengo Aoya, Shohta Ujiie, Kazunori Hayata
  • Patent number: 8816480
    Abstract: The electronic device package includes a package substrate including a frame portion and a cantilever portion surrounded by the frame portion, at least one semiconductor chip mounted on the cantilever portion, and a molding member disposed on the package substrate to cover the at least one semiconductor chip. The cantilever portion has a first edge connected to the frame portion and declines from the first edge toward a second edge located opposite to the first edge. Related methods are also provided.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: August 26, 2014
    Assignee: SK Hynix Inc.
    Inventor: Tae Jim Kang
  • Patent number: 8816515
    Abstract: There is provided a semiconductor module capable of being easily manufactured and a manufacturing method thereof, the semiconductor module including a module substrate on which at least one electronic element is mounted, at least one external connection terminal fastened to the module substrate, and a case formed by coupling a first case and a second case, wherein the first case and the second case accommodate the module substrate at both ends of the module substrate and are coupled to each other.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: August 26, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Ki Lee, Kwang Soo Kim, Young Hoon Kwak, Sun Woo Yun
  • Patent number: 8815649
    Abstract: The present invention features a method for fabricating a lead-frame package, having a first, second, third and fourth electrically conductive structures with a pair of semiconductor dies disposed therebetween defining a stacked structure. The first and second structures are spaced-apart from and in superimposition with the first structure. A semiconductor die is disposed between the first and second structures. The semiconductor die has contacts electrically connected to the first and second structures. A part of the third structure lies in a common plane with a portion of the second structure. The third structure is coupled to the semiconductor die.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: August 26, 2014
    Assignee: Alpha & Omega Semiconductor Corporation
    Inventors: Jun Lu, Ming Sun, Yueh-Se Ho, Kai Liu, Lei Shi
  • Patent number: 8809119
    Abstract: An integrated circuit packaging system and method of manufacture thereof including: providing a leadframe having unprocessed leads; depositing an etch mask on a top surface of the unprocessed leads, the unprocessed leads having the etch mask and an unmasked portions of the top surface; connecting an integrated circuit die to the unprocessed leads; encapsulating with a package body the leadframe, the top surface of the unprocessed leads exposed from the package body; forming side-solderable leads including forming a groove in the unprocessed leads, the groove formed under a portion of the etch mask including forming an overhang of the etch mask over the groove; removing the etch mask; and depositing a plating on the side-solderable leads.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: August 19, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Emmanuel Espiritu, Henry Descalzo Bathan, Byung Tai Do
  • Publication number: 20140227830
    Abstract: A quad flat non-leaded (QFN) package structure with an electromagnetic interference (EMI) shielding function is proposed, including: a lead frame having a die pad, a plurality of supporting portions connecting to the die pad and a plurality of leads disposed around the periphery of the die pad without connecting to the die pad; a chip mounted on the die pad; bonding wires electrically connecting the chip and the leads; an encapsulant for encapsulating the chip, the bonding wires and the lead frame and exposing the side and bottom surfaces of the leads and the bottom surface of the die pad; and a shielding film disposed on the top and side surfaces of the encapsulant and electrically connecting to the supporting portions for shielding from EMI. A method of fabricating the package structure as described above is further proposed.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chin-Tsai Yao, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 8802506
    Abstract: A method of manufacturing a semiconductor device sealed in a cured silicone body by placing an unsealed semiconductor device into a mold and subjecting a curable silicone composition which is fed into the space between the mold and the unsealed semiconductor device to compression molding, the method being characterized by the fact that the aforementioned curable silicone composition comprises at least the following components: (A) an epoxy-containing silicone and (B) a curing agent for an epoxy resin; can reduce warping of the semiconductor chips and circuit board, and improve surface resistance to scratching.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: August 12, 2014
    Assignee: Dow Corning Toray Company, Ltd.
    Inventors: Minoru Isshiki, Tomoko Kato, Yoshitsugu Morita, Hiroshi Ueki
  • Patent number: 8802498
    Abstract: A method of manufacturing a semiconductor package having no chip pad includes preparing a polyimide tape on which an adhesive layer is arranged; forming lead members on the adhesive layer so as to form a plurality of semiconductor packages in a matrix form; attaching the polyimide tape to a carrier; performing wire bonding to mount semiconductor chips on the polyimide tape and connect the lead members and the semiconductor chips; forming an encapsulation member to encapsulate the semiconductor chips, the lead members, and wires; detaching the encapsulation member from the carrier and the polyimide tape; forming conductive layers each on a surface of the lead member exposed through a surface of the encapsulation member; and performing a singulation process on the encapsulation member with the conductive layers formed thereon to define unit semiconductor packages.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: August 12, 2014
    Assignee: STS Semiconductor & Telecommunications Co., Ltd.
    Inventor: Jong Myoung Son
  • Patent number: 8802508
    Abstract: Forming a packaged semiconductor device includes placing a semiconductor die attached to a carrier into a mold cavity having an injection port, wherein the semiconductor die has an encapsulant exclusion region on a top surface of the semiconductor die within an outer perimeter of the top surface; and flowing an encapsulant over the semiconductor die and carrier from the injection port, wherein the encapsulant flows around the encapsulant exclusion region to surround the encapsulant exclusion region without covering the encapsulant exclusion region. The encapsulant exclusion region has a first length corresponding to a single longest distance across the encapsulant exclusion region, wherein the first length is aligned, within 30 degrees, to a line defined by a shortest distance between an entry point of the injection port into the mold cavity and an outer perimeter of the encapsulant exclusion region.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: August 12, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Burton J. Carpenter, Boon Yew Low, Shufeng Zhao
  • Patent number: 8803302
    Abstract: A packaged semiconductor device may include a termination surface having terminations configured as leadless interconnects to be surface mounted to a printed circuit board. A first flange has a first surface and a second surface. The first surface provides a first one of the terminations, and the second surface is opposite to the first surface. A second flange also has a first surface and a second surface, with the first surface providing a second one of the terminations, and the second surface is opposite to the first surface. A die is mounted to the second surface of the first flange with a material having a melting point in excess of 240° C. An electrical interconnect extends between the die and the second surface of the second flange opposite the termination surface, such that the electrical interconnect, first flange and second flange are substantially housed within a body.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 12, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lakshminarayan Viswanathan, Lakshmi N. Ramanathan, Audel A. Sanchez, Fernando A. Santos
  • Publication number: 20140220738
    Abstract: A small form factor near chip scale package is provided that includes input/output contacts not only along the periphery of the package, but also along the package bottom area. Embodiments provide these additional contacts through use of an array lead frame coupled to under die signal contacts through the use of flip chip bonding techniques. The array lead frame contacts are electrically isolated through the use of a partial sawing process performed during package singulation.
    Type: Application
    Filed: March 17, 2014
    Publication date: August 7, 2014
    Applicant: FREESCALE SEMICONDUCTOR INC.
    Inventor: CALEB C. HAN
  • Patent number: 8791551
    Abstract: A well-through type diode element/component manufacturing method which has a pair (pairs) of first and said second electrodes of a diode element/component built on same plane by a process of metallization after a mode of well-through type to penetrate a PN junction depletion region/barrier region, and leads electrons of one of the electrodes to flow through the Depletion/Barrier region without hindrance; the present invention directly conduct the operations of insulation protecting, metallization and the process of elongate welding ball etc., it can independently complete a novel technique of Chip-Scale Package (CSP); it has the features of: grains being exactly the article produced, no need of connecting lines, low energy consumption, low cost and light, thin and small etc.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: July 29, 2014
    Assignee: Formosa Microsemi Co., Ltd.
    Inventors: Wen-Ping Huang, Wen-Hu Wu, His-Piao Lai, Chien-Wu Chen
  • Patent number: 8785248
    Abstract: Wafer level packaging using a lead-frame. When used to package two or more chips, a final product having QFN package-like finish. The final product will also have a performance rivaling or exceeding that of a corresponding monolithic chip because of the very close connection of the two or more chips and the ability to tailor the fabrication processing of each chip to only that required for the devices on that chip. The wafer level packaging can also be used to package monolithic chips, as well as chips having active devices on one chip and passive devices on a second chip. Various exemplary embodiments are disclosed.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 22, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Ahmad R. Ashrafzadeh
  • Patent number: 8786105
    Abstract: A semiconductor device is described having at least one semiconductor chip, the chip having an active area on a top side thereof, the active area formed at least in part of low-k material, said low-k material defining a low-k subarea of said active area; an embedding material, in which said at least one semiconductor chip is embedded, at least part of the embedding material forming a coplanar area with said active area; at least one contact area within the low-k subarea; a redistribution layer on the coplanar area, the redistribution layer connected to said contact areas; at least one first-level interconnect, located outside said low-k subarea, the first-level interconnect electrically connected to at least one of said contact areas via the redistribution layer.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: July 22, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Sven Albers, Christian Geissler, Andreas Wolter, Markus Brunnbauer, David O'Sullivan, Frank Zudock, Jan Proschwitz
  • Publication number: 20140197549
    Abstract: A semiconductor package includes a package substrate, a semiconductor chip, a die attach film, a molding member, and a dummy finger. A bond finger is arranged on an upper surface of the package substrate. The semiconductor chip is arranged on the upper surface of the package substrate, and electrically connected to the bond finger. The die attach film is interposed between the semiconductor chip and the package substrate such that the semiconductor chip is attached to the package substrate. The molding member is formed on the upper surface of the package substrate to cover the semiconductor chip. The dummy finger is formed between the upper surface of the package substrate and the molding member. Moisture in the void formed in the die attach film may be released through the discharge passageway. Thus, the package substrate is prevented from being swollen during a subsequent thermal process such as a reflow process.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Seok-Won JEONG
  • Patent number: 8779585
    Abstract: A method and structures are provided for implementing enhanced thermal conductivity between a lid and heat sink for stacked modules. A chip lid and lateral heat distributor includes cooperating features for implementing enhanced thermal conductivity. The chip lid includes a groove along an inner side wall including a flat wall surface and a curved edge surface. The lateral heat distributor includes a mating edge portion received within the groove. The mating edge portion includes a bent arm for engaging the curved edge surface groove and a flat portion. The lateral heat distributor is assembled into place with the chip lid, the mating edge portion of the lateral heat distributor bends and snaps into the groove of the chip lid. The bent arm portion presses on the curved surface of the groove, and provides an upward force to push the flat portion against the flat wall surface of the groove.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kevin M. O'Connell, Arvind K. Sinha, Kory W. Weckman, II
  • Patent number: 8778735
    Abstract: A WLCSP method comprises: depositing a metal bump on bonding pads of chips; forming a first packaging layer at front surface of wafer to cover metal bumps while forming an un-covered ring at the edge of wafer to expose the ends of each scribe line located between two adjacent chips; thinning first packaging layer to expose metal bumps; forming a groove on front surface of first packaging layer along each scribe line by cutting along a straight line extended by two ends of scribe line exposed on front surface of un-covered ring; grinding back surface of wafer to form a recessed space and a support ring at the edge of the wafer; depositing a metal layer at bottom surface of wafer in recessed space; cutting off the edge portion of wafer; and separating individual chips from wafer by cutting through first packaging layer, the wafer and metal layer along groove.
    Type: Grant
    Filed: June 29, 2013
    Date of Patent: July 15, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ping Huang, Lei Shi, Lei Duan, Yuping Gong
  • Patent number: 8779566
    Abstract: In one aspect of the invention, an integrated circuit package is described. The integrated circuit package includes a substrate formed from a dielectric material that includes multiple electrical contacts and conductive paths. An upper lead frame is attached with and underlies the substrate. The upper lead frame is electrically connected with at least one of the contacts on the substrate. The active surface of an integrated circuit die is electrically and physically coupled to the upper lead frame through multiple electrical connectors. A lower lead frame may be attached with the back surface of the integrated circuit die. A passive device is positioned on and electrically connected with one of the contacts on the substrate and/or the upper lead frame.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: July 15, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Lee Han Meng @ Eugene Lee, Yien Sien Khoo, Kuan Yee Woo
  • Patent number: 8772923
    Abstract: A semiconductor device includes: leads (5) in each of which a cutout (5a) is formed; a die pad (11); a power element (1) held on the die pad (11); and a package (6) made of a resin material, and configured to encapsulate inner end portions of the leads (5), and the die pad (11) including the power element (1). The cutout (5a) is located in a region of each of the leads (5) including a portion of the lead (5) located at a boundary between the lead (5) and the package (6), and is filled with a resin material.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: July 8, 2014
    Assignee: Panasonic Corporation
    Inventor: Masanori Minamio
  • Patent number: 8772088
    Abstract: In a high frequency module, electronic components are mounted on a mounting surface of a collective substrate including a plurality of unit substrates that include a via conductor electrically conducted to a ground potential in a peripheral portion thereof, and the mounting surface and the electronic components are encapsulated with an encapsulation layer. The collective substrate is cut on the encapsulation layer side, thereby forming a half-cut groove penetrating through the encapsulation layer and extending halfway along the collective substrate in a thickness direction such that the via conductor is exposed only at a bottom surface of the half-cut groove. A conductive shield layer is formed to cover the encapsulation layer and is electrically conducted to the exposed via conductor. The collective substrate is then cut into individual unit substrates each including the conductive shield layer electrically conducted to the ground potential through the via conductor.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 8, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takayuki Horibe
  • Patent number: 8772087
    Abstract: Method and apparatus for semiconductor device fabrication using a reconstituted wafer is described. In one embodiment, diced semiconductor chips are placed within openings on a frame. A reconstituted wafer is formed by filling a mold compound into the openings. The mold compound is formed around the chips. Finished dies are formed within the reconstituted wafer. The finished dies are separated from the frame.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: July 8, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Matthias Hierlemann
  • Patent number: 8772089
    Abstract: A chip package structure including a leadframe, a chip, bonding wires and an encapsulant is provided. The leadframe includes a die pad, leads and an insulating layer. The die pad includes a chip mounting portion and a periphery portion. At the periphery portion, the die pad has a second upper surface lying between a first upper surface and a lower surface of the die pad. Each lead includes a suspending portion and a terminal portion. The suspending portion connects to the terminal portion and extends from the terminal portion towards the die pad. The insulating layer is disposed on the second upper surface of the periphery portion and connects the suspending portions to the die pad. The chip is disposed on the chip mounting portion. The bonding wires electrically connect the chip to the suspending portions. The encapsulant covers the chip, the bonding wires, the insulating layer, and the leadframe.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: July 8, 2014
    Assignee: ChipMOS Technologies Inc.
    Inventors: Yu-Tang Pan, Shih-Wen Chou
  • Patent number: 8765525
    Abstract: A method of manufacture of an integrated packaging system includes: providing a substrate; mounting an integrated circuit on the substrate; mounting an interposer substrate having an interposer pad on the integrated circuit; covering an encapsulant over the integrated circuit and the interposer substrate; forming a hole through the encapsulant aligned over the interposer pad; and placing a conductive connector on and in direct contact with the interposer pad.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: July 1, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: In Sang Yoon, DeokKyung Yang, Sungmin Song
  • Patent number: 8754537
    Abstract: A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: June 17, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Hong Wan Ng, Choon Kuan Lee, David J. Corisis, Chin Hui Chong
  • Patent number: 8754521
    Abstract: A packaged semiconductor device includes a package substrate, a semiconductor die on the package substrate, an encapsulant over the semiconductor die and package substrate, and a heat spreader having a pedestal portion and an outer portion surrounding the pedestal portion. The encapsulant includes an opening within a perimeter of the semiconductor die. The bottom surface of the pedestal portion of the heat spreader faces the top surface of the semiconductor die, wherein a first portion of the opening and at least a portion of the encapsulant is between the bottom surface of the pedestal portion and the semiconductor die.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 17, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Burton J. Carpenter, Leo M. Higgins, III, Yuan Yuan
  • Patent number: 8753926
    Abstract: An electronic package with improved warpage compensation. The electronic package includes a mold cap having a variable thickness. The variable thickness can have a mound or dimple design. In another embodiment, a method is provided for reducing unit warpage of an electronic package by designing the topography of a mold cap to compensate for warpage.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 17, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Christopher J. Healy, Gopal C. Jha, Vivek Ramadoss
  • Patent number: 8746932
    Abstract: In the production of a light emitting device, in which a plurality of light emitting element parts carrying LED elements are formed on a substrate, and the substrate is diced, generation of shaving dusts is suppressed at the time of the dicing, and breakage of the substrate during the production process can be prevented. In the process of forming a slit crossing a region for forming a light emitting element part in a metal substrate, a recess which serves as a resin reservoir can be formed so as to cross the slit. The slit can be filled with an insulating material, the recess can be filled with a resin, and they both can be cured. A light emitting element part can be formed in the region for forming the light emitting element part, the metal substrate can be cut into units comprising one or a plurality of the light emitting element parts, and can be mounted on a printed circuit board on which a pattern is formed.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: June 10, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Shunya Ide, Masanori Sato, Takahiko Nozaki, Takaaki Sakai, Hiroshi Kotani
  • Patent number: 8745859
    Abstract: A manufacturing method for a component built-in module, including: forming, in a sheet member including resin, a via hole filled up with a conductive paste, a cavity in which an electronic component is to be built, and an adjustment space; and performing a heat press allowing the sheet member to abut against a substrate on which the electronic component has been mounted, wherein the adjustment space is formed so that a flow vector of the resin in a neighborhood of the via hole during the heat press, which is directed toward the electronic component, is cancelled by a flow vector of the resin in a neighborhood of the via hole during the heat press, which is directed toward the adjustment space.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: June 10, 2014
    Assignee: Panasonic Corporation
    Inventors: Shozo Ochi, Yoshitake Hayashi, Kazuo Ohtani, Yosuke Maeba
  • Patent number: 8749056
    Abstract: A module and a method for manufacturing a module are disclosed. An embodiment of a module includes a first semiconductor device, a frame arranged on the first semiconductor device, the frame including a cavity, and a second semiconductor device arranged on the frame wherein the second semiconductor device seals the cavity.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 10, 2014
    Assignee: Infineon Technologies AG
    Inventors: Daniel Kehrer, Stefan Martens, Tze Yang Hin, Helmut Wietschorke, Horst Theuss, Beng Keh See, Ulrich Krumbein
  • Patent number: 8745860
    Abstract: A method for manufacturing a printed wiring board includes forming on a support board a first resin insulation layer, forming a second resin insulation layer on the first resin insulation layer, forming in the second resin insulation layer an opening portion in which an electronic component having an electrode is mounted, accommodating the electronic component in the opening portion of the second resin insulation layer such that the electrode of the electronic component faces an opposite side of the first resin insulation layer, forming on the first surface of the second resin insulation layer and the electronic component an interlayer resin insulation layer, and forming in the interlayer resin insulation layer a via conductor reaching to the electrode of the electronic component.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: June 10, 2014
    Assignee: Ibiden Co., Ltd.
    Inventor: Tsuyoshi Inui
  • Patent number: 8748233
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; attaching a flip chip to the substrate; attaching a heat slug to the substrate and the flip chip; and forming a moldable underfill having a top underfill surface on the substrate, the flip chip, and the heat slug, the moldable underfill having a characteristic of being liquid at room temperature and the top underfill surface over the flip chip.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 10, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: DaeSik Choi, Oh Han Kim, Jung Sell
  • Patent number: 8749074
    Abstract: Embodiments include but are not limited to apparatuses and systems including semiconductor packages, e.g. memory packages, having an interposer including at least one topological feature, such as a depression in a surface of the interposer, a die coupled to the surface of the interposer, and an encapsulant material formed over the die and the interposer, and disposed in the at least one depression to resist movement of the encapsulant material relative to the interposer. Other embodiments may be described and claimed.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: June 10, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Steven Eskildsen, Aravind Ramamoorthy
  • Patent number: 8742559
    Abstract: To suppress the reduction in reliability of a resin-sealed semiconductor device. A first cap (member) and a second cap (member) with a cavity (space formation portion) are superimposed and bonded together to form a sealed space. A semiconductor including a sensor chip (semiconductor chip) and wires inside the space is manufactured in the following way. In a sealing step of sealing a joint part between the caps, a sealing member is formed of resin such that an entirety of an upper surface of the second cap and an entirety of a lower surface of the first cap are respectively exposed. Thus, in the sealing step, the pressure acting in the direction of crushing the second cap can be decreased.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: June 3, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Noriyuki Takahashi
  • Patent number: 8735220
    Abstract: A method for fabricating a re-built wafer which comprises chips having connection pads, comprising: fabricating a first wafer of chips, production on this wafer of a stack of at least one layer of redistribution of the pads of the chips on conductive tracks designed for the interconnection of the chips, this stack being designated the main RDL layer, cutting this wafer in order to obtain individual chips each furnished with their RDL layer, transferring the individual chips with their RDL layer to a sufficiently rigid support to remain flat during the following steps, which support is furnished with an adhesive layer, with the RDL layer on the adhesive layer, depositing a resin in order to encapsulate the chips, polymerizing the resin, removing the rigid support, depositing a single redistribution layer called a mini RDL in order to connect the conductive tracks of the main RDL layer up to interconnection contacts, through apertures made in the adhesive layer, the wafer comprising the polymerized resin, the c
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: May 27, 2014
    Assignee: 3D Plus
    Inventor: Christian Val
  • Patent number: 8735223
    Abstract: A method of forming a semiconductor device includes affixing a die to a heat sink to form a die and heat sink assembly and then placing the die and heat sink assembly on a support element. A semiconductor device includes a die and heat sink assembly disposed on a support element. The die and heat sink assembly is pre-assembled prior to being disposed on the support element.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Wei Gao, Zhiwei Gong, Dehong Ye, Huchang Zhang
  • Patent number: 8728865
    Abstract: A method of making a microelectronic assembly can include molding a dielectric material around at least two conductive elements which project above a height of a substrate having a microelectronic element mounted thereon, so that remote surfaces of the conductive elements remain accessible and exposed within openings extending from an exterior surface of the molded dielectric material. The remote surfaces can be disposed at heights from said surface of said substrate which are lower or higher than a height of the exterior surface of the molded dielectric material from the substrate surface. The conductive elements can be arranged to simultaneously carry first and second different electric potentials: e.g., power, ground or signal potentials.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: May 20, 2014
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Teck-Gyu Kang, Ilyas Mohammed, Ellis Chau
  • Patent number: 8728869
    Abstract: A method for fabricating a semiconductor chip module and a semiconductor chip package is disclosed. One embodiment provides a first layer, a second layer, and a base layer. The first layer is disposed on the base layer, and the second layer is disposed on the first layer. A plurality of semiconductor chips is applied above the second layer, and the second layer with the applied semiconductor chips is separated from the first layer.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: May 20, 2014
    Assignee: Intel Corporation
    Inventors: Gottfried Beer, Irmgard Escher-Poeppel
  • Publication number: 20140134799
    Abstract: Methods of manufacturing a flat-pack no-lead microelectronic package (2100) coat exposed base metal at a cut end of a lead frame of the package with solder (1001). One method coats the exposed base metal with solder when the package is in a strip (200, 300). Another method coats the exposed base metal with solder after the package is singulated. As a result, all portions of leads of the package that may receive solder during mounting of the package to a printed circuit board are solder wettable. A solder wettable lead end (504) on the package facilitates formation of a solder fillet during mounting of the package.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Dwight L. DANIELS, Alan J. MAGNUS, Pamela A. O'BRIEN
  • Patent number: 8722462
    Abstract: A method of manufacturing a semiconductor package includes providing a carrier and attaching at least one semiconductor piece to the carrier. An encapsulant is deposited onto the at least one semiconductor piece to form an encapsulated semiconductor arrangement. The encapsulated semiconductor arrangement is then singulated in at least two semiconductor packages, wherein each package includes a semiconductor die separated from the semiconductor piece during singulation.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 13, 2014
    Assignee: Infineon Technologies AG
    Inventors: Klaus Elian, Beng-Keh See, Horst Theuss
  • Patent number: 8722463
    Abstract: The invention is related to a chip package including: a semiconductor substrate having at least one bonding pad region and at least one device region, wherein the semiconductor substrate includes a plurality of heavily doped regions in the bonding pad region, and two of the heavily doped regions are insulatively isolated; a plurality of conductive pad structures disposed over the bonding pad region; at least one opening disposed at a sidewall of the chip package to expose the heavily doped regions; and a conductive pattern disposed in the opening to electrically contact with the heavily doped region.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: May 13, 2014
    Inventor: Chien-Hung Liu
  • Publication number: 20140127861
    Abstract: According to an exemplary implementation, a method includes utilizing a leadframe panel comprising a plurality of leadframe modules, each of the plurality of leadframe modules having a leadframe pad. The leadframe panel has a plurality of bars each having a plurality of grooves, where the plurality of bars connect the plurality of leadframe modules. The method further includes attaching a device to the leadframe pad. The method also includes molding the leadframe panel while leaving a bottom of the leadframe pad exposed. Furthermore, the method includes sawing through the plurality of grooves of the plurality of bars to singulate the plurality of leadframe modules into separate packaged modules.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: International Rectifier Corporation
    Inventors: Dean Fernando, Roel Barbosa
  • Patent number: 8716721
    Abstract: A light emitting device comprises a substrate having a plurality of light emitting elements mounted thereon; a side wall structure having a partition wall portion separating a plurality of light emitting areas that each include at least one of the light emitting elements; and encapsulating resin filled in the light emitting areas to bury the light emitting elements therein. The side wall structure is separated by a space from the substrate at, at least, the partition wall portion so as to be in noncontact with the substrate, and the encapsulating resin is formed so as to integrally, continuously fill the light emitting areas and the space without producing any interface therein.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 6, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Kaori Tachibana
  • Patent number: 8710510
    Abstract: An insulated gate bipolar transistor (IGBT) includes a substrate having a first conductivity type, a drift layer having a second conductivity type opposite the first conductivity type, and a well region in the drift layer and having the first conductivity type. An epitaxial channel adjustment layer is on the drift layer and has the second conductivity type. An emitter region extends from a surface of the epitaxial channel adjustment layer through the epitaxial channel adjustment layer and into the well region. The emitter region has the second conductivity type and at least partially defines a channel region in the well region adjacent to the emitter region. A gate oxide layer is on the channel region, and a gate is on the gate oxide layer. Related methods are also disclosed.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: April 29, 2014
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Charlotte Jonas, Anant K. Agarwal