And Encapsulating Patents (Class 438/112)
  • Patent number: 8569080
    Abstract: A method of packaging a light emitting diode comprising: providing a flexible substrate with a heat-conducting layer, an insulating layer covering on a surface of the heat-conducting layer and an electrically conductive layer positioned on the insulating layer; etching the conductive layer to form a gap in the conductive layer and expose a part of the insulating layer, the conductive layer being separated by the gap into a first electrode and a second electrode isolated from each other; stamping the flexible substrate with a mold at the position of the gap to form a recess in the flexible substrate; positioning a light emitting element on the conductive layer and electrically connecting the light emitting element to the conductive layer; and forming an encapsulation to cover the light emitting element.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 29, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Li-Hsiang Chen, Hsin-Chiang Lin, Pin-Chuan Chen
  • Patent number: 8569111
    Abstract: The reliability of a semiconductor device is enhanced. A first lead frame, a first semiconductor chip, a second lead frame, and a second semiconductor chip are stacked over an assembly jig in this order with solder in between and solder reflow processing is carried out to fabricate their assembly. Thereafter, this assembly is sandwiched between first and second molding dies to form an encapsulation resin portion. The upper surface of the second die is provided with steps. At a molding step, the second lead frame is clamped between the first and second dies at a position higher than the first lead frame; and a third lead frame is clamped between the first and second dies at a higher position. The assembly jig is provided with steps at the same positions as those of the steps in the upper surface of the second die in positions corresponding to those of the same.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: October 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Machida
  • Patent number: 8564012
    Abstract: A method for manufacturing an optoelectronic apparatus includes attaching bottom surfaces of first and second packaged optoelectronic semiconductor devices (POSDs) to a carrier substrate (e.g., a tape) so that there is a space between the first and second POSDs. An opaque molding compound is molded around portions of the first and second POSDs attached to the carrier substrate, so that peripheral surfaces of the first POSD and the second POSD are surrounded by the opaque molding compound, the space between the first and second POSDs is filled with the opaque molding compound, and the first and second POSDs are attached to one another by the opaque molding compound. The carrier substrate is thereafter removed so that electrical contacts on the bottom surfaces of the first and second POSDs are exposed. A window for each of the POSDs is formed during the molding process or thereafter.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: October 22, 2013
    Assignee: Intersil Americas LLC
    Inventors: Seshasayee S. Ankireddi, Lynn K. Wiese
  • Patent number: 8563361
    Abstract: A WLCSP method comprises: depositing a metal bump on bonding pads of chips; forming a first packaging layer at front surface of wafer to cover metal bumps while forming an un-covered ring at the edge of wafer to expose the ends of each scribe line located between two adjacent chips; thinning first packaging layer to expose metal bumps; forming a groove on front surface of first packaging layer along each scribe line by cutting along a straight line extended by two ends of scribe line exposed on front surface of un-covered ring; grinding back surface of wafer to form a recessed space and a support ring at the edge of the wafer; depositing a metal layer at bottom surface of wafer in recessed space; cutting off the edge portion of wafer; and separating individual chips from wafer by cutting through first packaging layer, the wafer and metal layer along groove.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 22, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ping Huang, Lei Shi, Lei Duan, Yuping Gong
  • Patent number: 8557674
    Abstract: Provided are a high voltage semiconductor device in which a field shaping layer is formed on the entire surface of a semiconductor substrate and a method of fabricating the same. Specifically, the high voltage semiconductor device includes a first conductivity-type semiconductor substrate. A second conductivity-type semiconductor layer is disposed on a surface of the semiconductor substrate, and a first conductivity-type body region is formed in semiconductor layer. A second conductivity-type source region is formed in the body region. A drain region is formed in the semiconductor layer and is separated from the body region. The field shaping layer is formed on the entire surface of the semiconductor layer facing the semiconductor layer.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 15, 2013
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Yong-cheol Choi, Chang-ki Jeon, Min-suk Kim
  • Patent number: 8551812
    Abstract: In a manufacturing method of a printed circuit board, a rigid substrate having a rigid-board metal layer is provided, an open slot is formed on the rigid substrate, and a flexible substrate is installed in the open slot, and the flexible substrate and the rigid substrate are securely bonded, and an increased-layer circuit layer is formed after electric circuits are manufactured on the rigid-board and flexible-board metal layers, and stacked on the rigid substrate and on an adjacent block where the flexible substrate is coupled to the rigid substrate, and an electric circuit is manufactured, and the increased-layer circuit layer is provided for electrically connecting and conducting the rigid and flexible substrates to overcome the issue of alignment errors.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: October 8, 2013
    Assignee: Unitech Printed Circuit Board Corp.
    Inventors: Ming Yi Yeh, Jia Lin Liu, Chung Shih Wu
  • Patent number: 8546160
    Abstract: A method for packaging LEDs includes steps of: forming a substrate with a rectangular frame, a plurality of first and second electrode strips received within the frame and alternately arranged along a width direction of the frame; forming a carrier layer on each pair of the first and second electrode strips, the carrier layer defining a plurality of recesses; arranging an LED die in each recess and electrically connecting the LED die with first and second electrodes; forming an encapsulation in each recess to cover the LED die; and cutting the first and second electrode strips along the width direction of the frame to obtain a plurality of separated LED packages each including the first and second electrodes, the LED die, the encapsulation and a part of the carrier layer.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: October 1, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventor: Pin-Chuan Chen
  • Patent number: 8546190
    Abstract: A process for fabricating a reconstituted wafer that includes chips having connection pads on a front side of the chip, this process including positioning of the chips on an adhesive support, front side down on the support; deposition of a resin on the support in order to encapsulate the chips; and curing of the resin. Before deposition of the resin, the process includes bonding, onto the chips, a support wafer for positioning the chips, this support wafer having parts placed on one side of the chips.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: October 1, 2013
    Assignee: 3D Plus
    Inventor: Christian Val
  • Patent number: 8541260
    Abstract: An exposed die overmolded flip chip package includes a substrate. A die is flip chip mounted to an upper surface of the substrate. The package further includes a mold cap filling a apace between an active surface of the die and the upper surface of the substrate. The mold cap includes a principal surface, sidewalls extending from the upper surface of the substrate to the principal surfaces, an annular surface coplanar with the inactive surface of the die and extending outward from a peripheral edge of the inactive surface of the die, and protruding surfaces extending between the principal surface and the annular surface. The mold cap does not cover the inactive surface of the die such that heat transfer from the die to the ambient environment is maximized and the package thickness is minimized.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: September 24, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Robert Francis Darveaux, Michael Barrow, Miguel Angel Jimarez, Jae Dong Kim, Dae Keun Park, Ki Wook Lee, Ju Hoon Yoon
  • Patent number: 8536715
    Abstract: A method of manufacturing a semiconductor device, includes temporarily fixing a semiconductor chip to a supporting member to direct a connection electrode toward the supporting member side, forming an insulating layer for preventing resin-permeation covering the semiconductor chip, on the supporting member and the semiconductor chip, forming a resin substrate sealing a periphery and a back surface side of the semiconductor chip, on the insulating layer, and removing the supporting member to expose the connection electrode of the semiconductor chip. A build-up wiring is connected directly to the connection electrode of the semiconductor chip.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 17, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Teruaki Chino
  • Patent number: 8535981
    Abstract: A method of manufacturing of an integrated circuit packaging system includes: providing a bottom package in a cavity in a central region of the bottom package having inter-package interconnects in the cavity; forming a vent on an inter-package connection side of the bottom package from an exterior of the bottom package to the cavity; mounting a top package on the inter-package interconnects; and applying an underfill through the vent and into the cavity.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 17, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Chan Hoon Ko, SeungYun Ahn
  • Patent number: 8535982
    Abstract: A mechanism is provided by which optically-inspectable features formed during surface mount bonding of no-leads packages are enhanced. Embodiments of the present invention use a lead frame having features that will lie upon the edges of the finished semiconductor device package, where molding material is prevented from lying in those features through the use of a preplaced film on the lead frame or film-assisted molding in conjunction with a mold chase that conforms to the features provided on the lead frame. Embodiments use a lead frame that has a pre-plated solderable surface, such that the exposed features enhance formation of the optically-inspectable features during solder reflow operations of PCB mounting.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: September 17, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: David F. Abdo, Pamela A. O'Brien
  • Patent number: 8535986
    Abstract: An integrated circuit 15 is placed onto a lead frame 101 having lead fingers 109 of substantially constant thickness along their length. Wires are formed from the lead fingers 109 to corresponding electrical contacts the integrated circuit. Following the wire bonding process, the thickness of the tips of the lead fingers 109 is reduced by a laser process, to form tips of reduced thickness desirable for a subsequent moulding operation. Thus, at the time of the wire bonding the tips of the fingers 109 need not have a gap beneath them, so that more secure wire bonds to the lead fingers 109 can be formed.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: September 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Liang Kng Ian Koh, Richard Mangapul Sinaga
  • Publication number: 20130237014
    Abstract: Disclosed is a technique in which an excessive resin can be stably cut and removed in a molding step. In a step for separating part of a runner leading to a resin-sealing body from the resin-sealing body, the runner is formed by a first runner and a second runner coupled to the first runner and the resin-sealing body. The runner is separated from a middle of the second runner by supporting, with a first supporting portion, the second runner from the side of the second surface of a lead frame, and by pushing down, with a break pin, the first runner in the direction from the side of the first surface of the lead frame toward the side of the second surface thereof, while the resin-sealing body is in a condition of floating in the air.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 12, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Junji SAKAKIBARA, Takehiko IKEGAMI
  • Patent number: 8528195
    Abstract: A layout method for electronic components of a double-sided surface mount circuit board is presented, which includes the following steps. At least one first electronic component is fixed on a first side surface of a circuit board through a reflow soldering process. At least one second electronic component is inserted on the first side surface of the circuit board. The other first electronic component is placed on a second side surface of the circuit board, and the other second electronic component is inserted on the second side surface of the circuit board. Finally, a reflow soldering process is performed on the circuit board disposed with the first electronic components and the second electronic components, thereby completing a layout process for the electronic components on the two side surfaces of the circuit board at the same time.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: September 10, 2013
    Assignee: Inventec Corporation
    Inventors: Chung-Yang Wu, Hung-Tao Wong
  • Patent number: 8530279
    Abstract: Placement of an encapsulation material adhesion promoter onto a semiconductor device leadframe can be performed through the use of an offset printing apparatus such as a rotogravure printing apparatus or a tampoprint printing apparatus. This can provide accurate and low-cost placement of the adhesion promoter.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: September 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Howard Raeburn Test
  • Patent number: 8530280
    Abstract: A method for manufacturing an integrated circuit package system includes: providing a carrier; mounting an integrated circuit die on a top side of the carrier; connecting the integrated circuit die with the carrier; forming an encapsulation having a multi-sloped side over the integrated circuit die for reducing ejection stress; and forming a first external interconnect on the top side of the carrier adjacent to and separated from the encapsulation including forming a second external interconnect on a bottom side of the carrier opposite the first external interconnect.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 10, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Choong Bin Yim, Young Cheol Kim
  • Patent number: 8524535
    Abstract: A transition layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: September 3, 2013
    Assignee: IBIDEN Co., Ltd.
    Inventors: Hajime Sakamoto, Dongdong Wang
  • Patent number: 8518746
    Abstract: A semiconductor device has a TSV semiconductor wafer with a cavity formed in a first surface of the wafer. A second cavity can be formed in a second surface of the wafer. A plurality of semiconductor die is mounted within the cavities. The semiconductor die can be mounted side-by-side and/or stacked within the cavity. Conductive TSV can be formed through the die. An encapsulant is deposited within the cavity over the die. A CTE of the die is similar to a CTE of the encapsulant. A first interconnect structure is formed over a first surface of the encapsulant and wafer. A second interconnect structure is formed over a second surface of the encapsulant and wafer. The first and second interconnect structure are electrically connected to the TSV wafer. A second semiconductor die can be mounted over the first interconnect structure with encapsulant deposited over the second die.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: August 27, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Seung Uk Yoon
  • Patent number: 8519526
    Abstract: A semiconductor package includes: a chip having an active surface with a plurality of electrode pads and an inactive surface opposite to the active surface; an encapsulant encapsulating the chip and having opposite first and second surfaces, the first surface being flush with the active surface of the chip; and first and second metal layers formed on the second surface of the encapsulant, thereby providing a rigid support to the overall structure to prevent warpage and facilitating heat dissipation of the overall structure.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 27, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Jung-Pang Huang, Hui-Min Huang, Kuan-Wei Chuang, Chun-Tang Lin, Yih-Jenn Jiang
  • Patent number: 8518747
    Abstract: Stacked semiconductor devices and assemblies including attached lead frames are disclosed herein. One embodiment of a method of manufacturing a semiconductor assembly includes forming a plurality of first side trenches to a first intermediate depth in a molded portion of a molded wafer having a plurality of dies arranged in rows and columns. The method also includes forming a plurality of lateral contacts at sidewall portions of the trenches and electrically connecting first side bond-sites of the dies with corresponding lateral contacts of the trenches. The method further includes forming a plurality of second side channels to a second intermediate depth in the molded portion such that the channels intersect the trenches. The method also includes singulating and stacking the first and second dies with the channels associated with the first die aligned with channels associated with the second die.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Swee Kwang Chua
  • Patent number: 8518722
    Abstract: A method for detecting the under-fill void of the flip chip ball grid array package structure is provided, which includes providing a substrate having an interconnect structure and a plurality of interposers therein; providing a chip having an active surface and a back side, and a plurality of first connecting elements on the active surface of the chip; mounting and electrically connecting the active surface of the chip on the substrate; performing at least once IR reflow to fix the plurality of first connecting elements on the substrate; filling an encapsulate material to cover the active surface of the chip and the plurality of first connecting elements; performing a detecting process to detect that void is not formed between the active surface of the chip and the plurality of first elements; and forming a plurality of second connecting elements on the back side of the substrate to obtain a flip chip ball grid array package structure.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: August 27, 2013
    Assignee: Global Unichip Corporation
    Inventors: Chien-Wen Chen, Chia-Jen Kao, Jui-Cheng Chuang
  • Patent number: 8513059
    Abstract: A method for making a premolded clip structure is disclosed. The method includes obtaining a first clip and a second clip, and forming a molding material around the first clip comprising a first surface and the second clip comprising a second surface. The first surface of the first clip structure and the second surface of the second clip structure are exposed through the molding material, and a premolded clip structure is then formed.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: August 20, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Erwin Victor Cruz, Maria Cristina B. Estacio
  • Publication number: 20130210195
    Abstract: A WLCSP method comprises: depositing a metal bump on bonding pads of chips; forming a first packaging layer at front surface of wafer to cover metal bumps while forming an un-covered ring at the edge of wafer to expose the ends of each scribe line located between two adjacent chips; thinning first packaging layer to expose metal bumps; forming a groove on front surface of first packaging layer along each scribe line by cutting along a straight line extended by two ends of scribe line exposed on front surface of un-covered ring; grinding back surface of wafer to form a recessed space and a support ring at the edge of the wafer; depositing a metal layer at bottom surface of wafer in recessed space; cutting off the edge portion of wafer; and separating individual chips from wafer by cutting through first packaging layer, the wafer and metal layer along groove.
    Type: Application
    Filed: July 12, 2012
    Publication date: August 15, 2013
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ping Huang, Lei Shi, Lei Duan, Yuping Gong
  • Patent number: 8507319
    Abstract: An integrated circuit package system includes: forming a first lead and a second lead; connecting an integrated circuit die with the first lead; forming an encapsulation over the integrated circuit die, the first lead, and the second lead with a portion of a top side of the second lead exposed; and forming a shield over the encapsulation, the first lead, and the second lead with the shield not in contact with the first lead.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: August 13, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Byung Tai Do, Heap Hoe Kuan, Rui Huang
  • Publication number: 20130203217
    Abstract: The present invention provides a non-insulated type DC-DC converter having a circuit in which a power MOS•FET for a high side switch and a power MOS•FET for a low side switch are connected in series. In the non-insulated type DC-DC converter, the power transistor for the high side switch, the power transistor for the low side switch, and driver circuits that drive these are respectively constituted by different semiconductor chips. The three semiconductor chips are accommodated in one package, and the semiconductor chip including the power transistor for the high side switch, and the semiconductor chip including the driver circuits are disposed so as to approach each other.
    Type: Application
    Filed: December 17, 2012
    Publication date: August 8, 2013
    Applicant: Renesas Electronics Corporation
    Inventor: Renesas Electronics Corporation
  • Patent number: 8501539
    Abstract: A method for forming a semiconductor device package includes providing a lead frame array having a plurality of leads. Each of the plurality of leads includes an opening extending through the lead from a first surface of the lead to a second surface of the lead, opposite the first surface, and each of the openings is at least partially filled with a solder wettable material. A plurality of semiconductor devices are attached to the lead frame array. The plurality of semiconductor devices are encapsulated, and, after encapsulating, the plurality of semiconductor devices are separated along separation lines which intersect the openings.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 6, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kevin J. Hess, Michael B. McShane
  • Patent number: 8501517
    Abstract: A method of assembling a pressure sensor device includes providing a substrate having a plurality of substrate connection pads. A pressure sensor die is attached to a first major surface of the substrate and bond pads of the pressure sensor die are electrically connected to the respective substrate connection pads. A retractable cavity pin is placed on the first major surface of the substrate such that the cavity pin covers the pressure sensor die and the electrical connections to the die. A molding compound is then dispensed onto the first major surface of the substrate such that the molding compound surrounds the pressure sensor die and the cavity pin. The cavity pin is retracted such that a cavity is formed around the pressure sensor die and a gel material is dispensed within the cavity such that the gel material fills the cavity and covers the pressure sensor die.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: August 6, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kai Yun Yow, Poh Leng Eu
  • Patent number: 8497158
    Abstract: A leadframe strip comprises a plurality of units arranged in a line. Each unit provides two component positions, each having a chip support substrate. The chip support substrates of the two component positions are mechanically linked by at least one support bar. The two component positions of a unit are molded at essentially the same time to produce a plastic housing for a package in each component position. The central portion of the first support bars remains outside of the plastic housing of the two packages.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 30, 2013
    Assignee: Infineon Technologies AG
    Inventors: Jeffrey Khai Huat Low, Kean Cheong Lee
  • Patent number: 8497575
    Abstract: A method of manufacture of a semiconductor packaging system includes: providing a base substrate having edges; mounting an electrical interconnect on the base substrate; and applying an encapsulant having a reference marker and an opening over the electrical interconnect, the reference marker around the electrical interconnect based on physical locations of the edges.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: July 30, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: In Sang Yoon, JoHyun Bae, DeokKyung Yang
  • Patent number: 8492181
    Abstract: A method of forming an embedded wafer level optical package includes attaching a sensor die, PCB bars and an LED on adhesive tape laminated on a carrier, attaching a dam between two light sensitive sensors of the sensor die, encapsulating the sensor die, the PCB bars, the LED, and the dam in an encapsulation layer, debonding the carrier, grinding a top surface of the encapsulation layer, forming vias through the encapsulation layer to the sensor die and the LED, filling the vias with conductive material, metalizing the top surface of the encapsulation layer, dielectric coating of the top surface of the encapsulation layer, dielectric coating of a bottom surface of the encapsulation layer, patterning the dielectric coating of the bottom surface of the encapsulation layer, and plating the patterned dielectric coating of the bottom surface of the encapsulation layer.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 23, 2013
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Anandan Ramasamy, KahWee Gan, Hk Looi, David Gani
  • Patent number: 8492200
    Abstract: A method for fabricating a semiconductor chip module and a semiconductor chip package is disclosed. One embodiment provides a first layer, a second layer, and a base layer. The first layer is disposed on the base layer, and the second layer is disposed on the first layer. A plurality of semiconductor chips is applied above the second layer, and the second layer with the applied semiconductor chips is separated from the first layer.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 23, 2013
    Assignee: Intel Mobile Communications GmbH
    Inventors: Gottfried Beer, Irmgard Escher-Poeppel
  • Patent number: 8482111
    Abstract: A microelectronic package has a microelectronic element overlying or mounted to a first surface of a substrate and substantially rigid conductive posts projecting above the first surface or projecting above a second surface of the substrate remote therefrom. Conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project are electrically interconnected with the microelectronic element. An encapsulant overlies at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a recess or a plurality of openings each permitting at least one electrical connection to be made to at least one conductive post. At least some conductive posts are electrically insulated from one another and adapted to simultaneously carry different electric potentials.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Patent number: 8481420
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an integrated circuit die having an active side and a passive side; providing a contact pad having a top side oriented in a same direction as the passive side; connecting an inner bond wire to the contact pad and the integrated circuit die; and molding a stacking structure around the contact pad, the inner bond wire, and the integrated circuit die with the passive side and the top side exposed, and the stacking structure having a top structure surface on top and adjacent to or below the integrated circuit die, and a horizontal member under the integrated circuit die and forming a cavity.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: July 9, 2013
    Assignee: STATS Chippac Ltd.
    Inventors: Jong-Woo Ha, DaeSik Choi, Byoung Wook Jang
  • Patent number: 8481367
    Abstract: Provided is a method of manufacturing a circuit device in which a circuit element is resin-sealed with sealing resins formed integrally with each other. In the present invention, a resin sheet and a circuit board are housed in a cavity of a mold, and thereafter a first sealing resin formed of a tablet in melted form is injected into the cavity. At the time of injecting the first sealing resin, a second sealing resin formed of the resin sheet in melted form is not yet cured and is maintained in liquid form. Accordingly, the injected first sealing resin and the second sealing resin are mixed at the boundary therebetween, preventing the generation of a gap in the boundary portion and therefore preventing the deterioration of the moisture resistance and withstand voltage at the boundary portion.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 9, 2013
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Katsuyoshi Mino, Akira Iwabuchi, Ko Nishimura
  • Patent number: 8476113
    Abstract: When chip-scale molding system is employed for QFP, the number of semiconductor devices available from a leadframe decreases because cavities each requires a runner portion. This problem can be overcome by employing MAP system, but use of a laminate tape increases the production cost. In through mold system, each cavity needs an ejector pin, which however makes it difficult to place a support pillar. The present application provides a manufacturing method of a semiconductor device by filling, while sandwiching a leadframe between mold dies having a matrix-state cavity group in which cavity columns obtained by linking mold cavities in series via a through gate have been placed in rows, a sealing resin in the cavities. In this method, the matrix-state cavity group has, at the cavity corner portions thereof, a support pillar having a cross-section striding over all the cavities adjacent to the cavity corner portions when viewed planarly.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: July 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Bunshi Kuratomi, Fukumi Shimizu
  • Patent number: 8476748
    Abstract: An exposed die overmolded flip chip package includes a substrate. A die is flip chip mounted to an upper surface of the substrate. The package further includes a mold cap filling a space between an active surface of the die and the upper surface of the substrate. The mold cap includes a principal surface, sidewalls extending from the upper surface of the substrate to the principal surface, an annular surface coplanar with the inactive surface of the die and extending outward from a peripheral edge of the inactive surface of the die, and protruding surfaces extending between the principal surface and the annular surface. The mold cap does not cover the inactive surface of the die such that heat transfer from the die to the ambient environment is maximized and the package thickness is minimized.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 2, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Robert Francis Darveaux, Michael Barrow, Miguel Angel Jimarez, Jae Dong Kim, Dae Keun Park, Ki Wook Lee, Ju Hoon Yoon
  • Publication number: 20130161802
    Abstract: A semiconductor package having electrical connecting structures includes: a conductive layer having a die pad and traces surrounding the die pad; a chip; bonding wires; an encapsulant with a plurality of cavities having a depth greater than the thickness of the die pad and traces for embedding the die pad and the traces therein, and the cavities exposing the die pad and the traces; a solder mask layer formed in the cavities and having a plurality of openings for exposing the trace ends and a portion of the die pad; and solder balls formed in the openings and electrically connected to the trace ends. Engaging the solder mask layer with the encapsulant enhances adhesion strength of the solder mask layer so as to prolong the moisture permeation path and enhance package reliability.
    Type: Application
    Filed: February 27, 2013
    Publication date: June 27, 2013
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventor: Siliconware Precision Industries Co., Ltd.
  • Patent number: 8470641
    Abstract: A method for forming a semiconductor device can include providing a patterned layer of mold compound having a plurality of individual mold compound structures overlying a base film. The plurality of mold compound structures are aligned with a plurality of semiconductor dice to interpose the individual mold compound structures between the plurality of semiconductor dice. A pressure is applied to the individual mold compound structures to fill spaces between each of the plurality of semiconductor dice with the mold compound. The mold compound structures can be formed on the base film using a photosensitive mold compound. The mold compound structures can also be formed through the use of a patterned mask and a screen printing process.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 25, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Yoshimi Takahashi
  • Patent number: 8466009
    Abstract: A method of fabricating a semiconductor package. In one embodiment the method includes forming a mold cavity about a portion of a first major surface of a leadframe, including about a mold lock opening extending through the leadframe between the first major surface and a second major surface. A spacer is inserted to fill at least a portion of the mold lock opening. The mold cavity is filled with an encapsulating material including filling a portion of the mold lock opening not occupied by the spacer.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: June 18, 2013
    Assignee: Infineon Technologies AG
    Inventors: Bernd Goller, Markus Dinkel, Wae Chet Yong, Teck Sim Lee, Boon Kian Lim
  • Patent number: 8466539
    Abstract: A method of assembling a magnetoresistive random access memory (MRAM) device includes providing a substrate having an opening. A tape is applied to a surface of the substrate and a first magnetic shield is placed onto the tape and within the substrate opening. An adhesive is applied between the first magnetic shield and the substrate to attach the first magnetic shield to the substrate. An MRAM die is attached to the first magnetic shield and bond pads of the MRAM die are connected to pads on the substrate with wires. A second magnetic shield is attached to a top surface of the MRAM die. An encapsulating material is dispensed onto the substrate, the MRAM die, the second magnetic shield and part of the first magnetic shield, cured, and then the tape is removed. Solder balls then may be attached to the substrate.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 18, 2013
    Assignee: Freescale Semiconductor Inc.
    Inventors: Jun Li, Jianhong Wang, Xuesong Xu, Jinzhong Yao, Wanming Yu
  • Patent number: 8460969
    Abstract: Method for encapsulating an electronic arrangement against permeates wherein a pressure-sensitive adhesive mass based on butylene block copolymers is applied to and around the areas of the electronic arrangement to be encapsulated.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: June 11, 2013
    Assignee: tesa SE
    Inventors: Thorsten Krawinkel, Klaus Keite-Telgenbüscher, Jan Ellinger, Alexander Steen
  • Patent number: 8460970
    Abstract: A package includes a first plated area, a second plated area, a die attached to the first plated area, and a bond coupling the die to the second plated area. The package further includes a molding encapsulating the die, the bond, and the top surfaces of the first and second plated areas, such that the bottom surfaces of the first and second plated areas are exposed exterior to the package. Additional embodiments include a method of making the package.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: June 11, 2013
    Assignee: UTAC Thai Limited
    Inventor: Saravuth Sirinorakul
  • Patent number: 8460972
    Abstract: A method of forming a semiconductor package includes providing a transfer film and placing electronic components on the transfer film with active sides of the electronic components facing the transfer film. The electronic components include a first assembled package and one or more of a second assembled package and a passive component. A molding operation is performed to encapsulate the electronic components and one side of the transfer film. The transfer film is then removed, which exposes the active sides of the electronic components. An electrical distribution layer is formed over the active sides of the electronic components and electrically connects the electronic components. Conductive bumps are then formed on the electrical distribution layer.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: June 11, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Wai Yew Lo
  • Patent number: 8461676
    Abstract: A semiconductor device includes a substrate having a first side and a second side, the second side having a mounting location for at least one semiconductor element, and the first side having a plurality of locations electrically connected to locations on the second side. A plurality of electrically conductive interconnects are provided at the locations, each having a first end attached at the location and a second end spaced from the substrate, and an encapsulant partially encapsulates the plurality of interconnects and has a surface lying in a first plane. The second ends are located on the side of the first plane opposite from the substrate first side, an annular space in the encapsulant surrounds each of the plurality of electrically conductive interconnects, and the annular space has a bottom located between the first plane and the substrate first side. Also a method for making such a semiconductor device.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: June 11, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Mark Wendell Schwarz, Jianwen Xu
  • Patent number: 8450151
    Abstract: A variety of improved approaches for packaging integrated circuits are described. In one described approach, a multiplicity of dice are mounted on a carrier (e.g., a plastic carrier). Each die has a plurality of wire bonded contact studs secured to its associated I/O pads. An encapsulant is applied over the carrier to cover the dice and at least portions of the contact studs to form an encapsulant carrier structure. After the encapsulant has been applied, a first surface of the encapsulant and the contact studs are ground such that exposed portions of the contact studs are smooth and substantially co-planar with the encapsulant. In some embodiments, a redistribution layer is formed over the encapsulant carrier structure and solder bumps are attached to the redistribution layer. A contact encapsulant layer is applied over the encapsulant carrier structure to provide extra mechanical support for the resulting packages.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 28, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Anindya Poddar, Tao Feng, Will K. Wong
  • Patent number: 8450153
    Abstract: A method for manufacturing a package comprises a first step of forming a metal pattern including a frame and a plurality of leads extending inward from the frame, a second step of molding a resin pattern including a first resin portion which holds the plurality of leads from an inner side thereof, and second resin portions which cover bottom surfaces of peripheral portions, adjacent to portions to be removed, in the plurality of leads while exposing bottom surfaces of the portions to be removed in the plurality of leads, so as to hold the plurality of leads from a lower side thereof, and a third step of cutting the plurality of leads into a plurality of first leads and a plurality of second leads by removing the portions to be removed in the plurality of leads while the resin pattern keeps holding the peripheral portions in the plurality of leads.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: May 28, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Koji Ono
  • Patent number: 8450148
    Abstract: A semiconductor device whose semiconductor device components have particularly reliable adhesion to a plastic housing composition surrounding them is intended to be produced by a simplest possible method. An adhesion promoting solution is introduced into the interspace between the front side of the flip-chips and the top side of the substrate and the solvent from the adhesion promoting solution is evaporated with formation of an adhesion promoting coating on the front sides of the semiconductor chips and the top side of the substrate. The semiconductor chip and the top side of the substrate are subsequently embedded into a plastic housing composition.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: May 28, 2013
    Assignee: Infineon Technologies, AG
    Inventors: Joachim Mahler, Edward Fuergut
  • Patent number: 8450149
    Abstract: Methods and systems are described for enabling the efficient fabrication of small form factor power converter packages and other devices using stacked leadframes.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: May 28, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Jaime A. Bayan, James D. Broiles
  • Patent number: 8445321
    Abstract: In one embodiment, a method of manufacturing a semiconductor device is disclosed. The method includes forming a cured film of an insulation resin on a surface of a first semiconductor chip and flip-chip bonding a second semiconductor via a bump on the first semiconductor chip on which the cured film of the insulation resin is formed. The insulation resin can be cured at temperature range from (A?50)° C. to (A+50)° C., wherein “A” is a solidification point of the bump.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: May 21, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masatoshi Fukuda