And Encapsulating Patents (Class 438/112)
  • Patent number: 8710640
    Abstract: A method of manufacture of an integrated circuit packaging system includes: mounting an integrated circuit over a package carrier; mounting a conductive connector over the package carrier; forming an encapsulation over the integrated circuit, the encapsulation having a recess exposing the conductive connector; and mounting a heat slug over the encapsulation, the heat slug having an opening with an opening width greater than a recess width of the recess, the opening exposing a portion of a top surface of the encapsulation.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 29, 2014
    Assignee: Stats ChipPac Ltd.
    Inventors: DaeSik Choi, JoungIn Yang, MinJung Kim, KyungEun Kim
  • Patent number: 8703545
    Abstract: A semiconductor package is provided with an Aluminum alloy lead-frame without noble metal plated on the Aluminum base lead-frame. Aluminum alloy material with proper alloy composition and ratio for making an aluminum alloy lead-frame is provided. The aluminum alloy lead-frame is electroplated with a first metal electroplating layer, a second electroplating layer and a third electroplating layer in a sequence. The lead-frame electroplated with the first, second and third metal electroplating layers is then used in the fabrication process of a power semiconductor package including chip connecting, wire bonding, and plastic molding. After the molding process, the area of the lead-frame not covered by the molding compound is electroplated with a fourth metal electroplating layer that is not easy to be oxidized when exposing to air.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: April 22, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Zhiqiang Niu, Ming-Chen Lu, Yan Xun Xue, Yan Huo, Hua Pan, Guo Feng Lian, Jun Lu
  • Patent number: 8703539
    Abstract: System and method for providing a multiple die interposer structure. An embodiment comprises a plurality of interposer studs in a molded interposer, with a redirection layer on each side of the interposer. Additionally, the interposer studs may be initially attached to a conductive mounting plate by soldering or wirebond welding prior to molding the interposer, with the mounting plate etched to form one of the redirection layers. Integrated circuit dies may be attached to the redirection layers on each side of the interposer, and interlevel connection structures used to mount and electrically connect a top package having a third integrated circuit to the interposer assembly.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Mirng-Ji Lii, Hao-Yi Tsai, Jui-Pin Hung, Chien-Hsiun Lee, Kai-Chiang Wu
  • Patent number: 8691630
    Abstract: A method of manufacturing a semiconductor package structure is provided. A heat-conductive block is adhered to a portion of a second surface of a conductive substrate via a first adhesive layer. An opening is formed by performing a half-etching process on a first surface of the conductive substrate. The remaining conductive substrate is patterned to form leads and expose a portion of the heat-conductive block. Each lead has a first portion and a second portion. A thickness of the first portion is greater than a thickness of the second portion. A first lower surface of the first portion and a second lower surface of the second portion are coplanar. A chip is disposed on the exposed portion of the heat-conductive block and electrically connected to the second portions of the leads. A first bottom surface of the heat-conductive block and a second bottom surface of a molding compound are coplanar.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: April 8, 2014
    Assignee: ChipMOS Technologies Inc.
    Inventors: Yu-Tang Pan, Shih-Wen Chou
  • Patent number: 8691626
    Abstract: A method of manufacturing is provided that includes placing a removable cover on a surface of a substrate. The substrate includes a first semiconductor chip positioned on the surface. The first semiconductor chip includes a first sidewall. The removable cover includes a second sidewall positioned opposite the first sidewall. A first underfill is placed between the first semiconductor chip and the surface wherein the second sidewall provides a barrier to flow of the first underfill. Various apparatus are also disclosed.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 8, 2014
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Michael Z. Su, Lei Fu, Gamal Refai-Ahmed, Bryan Black
  • Patent number: 8691629
    Abstract: An embodiment is a method for semiconductor packaging. The method comprises attaching a chip to a carrier substrate through a first side of a jig, the chip being attached by bumps; applying balls to bond pads on the carrier substrate through a second side of the jig; and simultaneously reflowing the bumps and the balls. According to a further embodiment, a packaging jig comprises a cover, a base, and a connector. The cover has a first window through the cover. The base has a second window through the base. The first window exposes a first surface of a volume intermediate the cover and the base, and the second window exposes a second surface of the volume. The first surface is opposite the volume from the second surface. The connector aligns and couples the cover to the base.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Huang, Tsung-Ding Wang
  • Patent number: 8685794
    Abstract: A package includes a first plated area, a second plated area, a die attached to the first plated area, and a bond coupling the die to the second plated area. The package further includes a molding encapsulating the die, the bond, and the top surfaces of the first and second plated areas, such that the bottom surfaces of the first and second plated areas are exposed exterior to the package. Additional embodiments include a method of making the package.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 1, 2014
    Assignee: UTAC Thai Limited
    Inventors: Somchai Nondhasitthichai, Saravuth Sirinorakul, Kasemsan Kongthaworn, Vorajit Suwannaset
  • Patent number: 8686550
    Abstract: A pressure sensor package is provided that reduces the occurrence of micro gaps between molding material and metal contacts that can store high-pressure air. The present invention provides this capability by reducing or eliminating interfaces between package molding material and metal contacts. In one embodiment, a control die is electrically coupled to a lead frame and then encapsulated in molding material, using a technique that forms a cavity over a portion of the control die. The cavity exposes contacts on the free surface of the control die that can be electrically coupled to a pressure sensor device using, for example, wire bonding techniques. In another embodiment, a region of a substrate can be encapsulated in molding material, using a technique that forms a cavity over a sub-portion of the substrate that includes contacts. A pressure sensor device can be electrically coupled to the exposed contacts.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, Alexander M. Arayata, Philip H. Bowles, Stephen R. Hooper
  • Publication number: 20140084436
    Abstract: To enhance the reliability of connection between a semiconductor chip and a metal plate by ensuring sufficiently the thickness of a conductive material interposed between the semiconductor chip and the metal plate. A lead frame is arranged over a jig and a clip frame is arranged over protruding portions provided on the jig. In this state, a heating process (reflow) is performed. In this case, high melting point solders filling first spaces are melted in a state in which the first space is formed between a High-MOS chip and a High-MOS clip and the first space is formed between a Low-MOS chip and a Low-MOS clip. At this time, even when the high melting point solder is melted in the first space, the size (in particular, the height) of the first space does not change and the first space is maintained.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 27, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Katsuhiko Funatsu, Tomoaki Uno, Toru Ueguri, Yasushi Takahashi
  • Publication number: 20140087520
    Abstract: To improve the reliability in applying a tape to the rear surface of a substrate while securing the heat resistance of the tape applied to the rear surface of the substrate. There is a gap between a bottom surface of a ditch provided in a support member and an upper surface of a driver IC chip. On the other hand, the upper surface side of a lead frame is supported by the support member so that the bottom surface of the ditch contacts the upper surface of a Low-MOS clip mounted over a Low-MOS chip. Thus, even in a state where the driver IC chip and the Low-MOS chip are mounted on the upper surface side of the lead frame, the tape can be reliably applied to the rear surface of the lead frame (in particular, to the rear surface of the product region).
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Katsuhiko Funatsu, Tomoaki Uno, Toru Ueguri, Yukihiro Sato
  • Publication number: 20140084435
    Abstract: A resin-encapsulated semiconductor device includes: a semiconductor element mounted on a die pad portion; a plurality of lead portions disposed so that distal end parts thereof are opposed to the die pad portion; a metal thin wire for connecting an electrode of the semiconductor element to the lead portion; and an encapsulating resin for partially encapsulating those components. A bottom surface part of the die pad portion, and a bottom surface part, an outer surface part, and an upper end part of the lead portion are exposed from the encapsulating resin. A plated layer is formed on the exposed lead bottom surface part and the exposed lead upper end part.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Applicant: SEIKO INSTRUMENTS INC.
    Inventor: Noriyuki KIMURA
  • Patent number: 8671560
    Abstract: Low temperature bond balls connect two structures having disparate coefficients of linear thermal expansion. An integrated circuit is made to heat the device such that the low temperature bond balls melt. After melting, the bond balls solidify, and the device is operated with the bond balls solidified. In one example, one of the two structures is a semiconductor substrate, and the other structure is a printed circuit board. The integrated circuit is a die mounted to the semiconductor substrate. The bond balls include at least five percent indium, and the integrated circuit is an FPGA loaded with a bit stream. The bit stream configures the FPGA such that the FPGA has increased power dissipation, which melts the balls. After the melting, a second bit stream is loaded into the FPGA and the FPGA is operated in a normal user-mode using the second bit stream.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 18, 2014
    Assignee: Research Triangle Institute
    Inventors: Robert O. Conn, Daniel S. Stevenson
  • Patent number: 8673687
    Abstract: An embodiment includes a method that includes encapsulating a die and at least a portion of a lead-frame in a mold to form a package body. At least one primary lead attached to the lead-frame extends from the package body. The method includes etching a feature to within a threshold in an exposed die pad. The exposed die pad comprises a first surface that is prepared for etching and a second surface opposite to the first surface and attached to the die. The method includes positioning the die within a footprint of the exposed die pad, connecting the die to at least one primary lead, and connecting the feature to the die.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: March 18, 2014
    Assignee: Marvell International Ltd.
    Inventors: Chenglin Liu, Shiann-Ming Liou
  • Patent number: 8669138
    Abstract: A substrate and a semiconductor chip are connected by means of flip-chip interconnection. Around connecting pads of the substrate and input/output terminals of the semiconductor chip, an underfill material is injected. The underfill material is a composite material of filler and resin. Also, a first main surface of the substrate, which is not covered with the underfill material, and the side surfaces of the semiconductor chip are encapsulated with a molding material. The molding material is a composite material of filler and resin. An integrated body of the substrate and the semiconductor chip, which are covered with the molding material, is thinned from above and below.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 11, 2014
    Assignee: NEC Corporation
    Inventors: Akinobu Shibuya, Koichi Takemura, Akira Ouchi, Tomoo Murakami
  • Patent number: 8669140
    Abstract: A method of making a semiconductor device includes providing a first semiconductor die and a conductive frame member having at least one conductive via. A first encapsulation layer is formed. A first redistribution layer is formed opposite the first encapsulation layer. A second redistribution layer is formed opposite the first redistribution layer. A second semiconductor die is mounted and electrically connected with receptor pads in the second redistribution layer. A third semiconductor die is mounted to the second semiconductor die and electrically connected with bond wires to a conductor in the second redistribution layer. A second encapsulation layer embeds the second and third semiconductor dies, the wires, and the conductor in the second redistribution layer.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: March 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kesvakumar V. C. Muniandy, Navas Khan Oratti Kalandar, Lan Chu Tan
  • Patent number: 8664752
    Abstract: Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 4, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Oseob Jeon, Yoonhwa Choi, Boon Huan Gooi, Maria Cristina B. Estacio, David Chong, Tan Teik Keng, Shibaek Nam, Rajeev Joshi, Chung-Lin Wu, Venkat Iyer, Lay Yeap Lim, Byoung-Ok Lee
  • Patent number: 8659050
    Abstract: Disclosed herein is a slim LED package. The slim LED package includes first and second lead frames separated from each other, a chip mounting recess formed on one upper surface region of the first lead frame by reducing a thickness of the one upper surface region below other upper surface regions of the first lead frame, an LED chip mounted on a bottom surface of the chip mounting recess and connected with the second lead frame via a bonding wire, and a transparent encapsulation material protecting the LED chip while supporting the first and second lead frames.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 25, 2014
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventor: Eun Jung Seo
  • Patent number: 8652882
    Abstract: A chip packaging method includes the steps of: attaching a first tape to a metal plate; patterning the metal plate to form a plurality of terminal pads and a plurality of leads, wherein the plurality of terminal pads and the plurality of leads are disposed on two opposite sides of a central void region, the plurality of terminal pads on each side are arranged in at least two rows spaced apart from each other in the direction away from the central void region, and each lead has a first end portion extending to the central void region and a second end portion connecting to a corresponding terminal pad; attaching a second tape having openings to the plurality of terminal pads, wherein each of the openings exposes the central void region and the first end portions of the leads; removing the first tape; attaching a chip to the plurality of terminal pads and the plurality of leads, wherein a plurality of bond pads on the chip are corresponding to the central void region; and connecting the bond pads to the first en
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 18, 2014
    Assignee: Chipmos Technologies Inc.
    Inventors: Yu Tang Pan, Shih Wen Chou
  • Patent number: 8652879
    Abstract: A package includes a first plated area, a second plated area, a die attached to the first plated area, and a bond coupling the die to the second plated area. The package further includes a molding encapsulating the die, the bond, and the top surfaces of the first and second plated areas, such that the bottom surfaces of the first and second plated areas are exposed exterior to the package. Additional embodiments include a method of making the package.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: February 18, 2014
    Assignee: UTAC Thai Limited
    Inventors: Somchai Nondhasitthichai, Saravuth Sirinorakul, Kasemsan Kongthaworn, Vorajit Suwannaset
  • Patent number: 8650748
    Abstract: A method of fabricating chip carriers suitable for use in packaging integrated circuits and other electronic, electro-mechanical and opto-electronic devices is described. In general, a number of wires (or wires and rods) are arranged in parallel in a wiring fixture. After the wires are positioned, they are encapsulated to form an encapsulated wiring block. The wiring block is then sliced to form a number of discrete panels. Preferably, the various wires are geometrically positioned such that each resulting panel has a large number of device areas defined therein. The encapsulant in each panel effectively forms a substrate and the wire segments in each panel form conductive vias that extend through the substrate. The resulting panels/chip carriers can then be used in a wide variety of packaging applications.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: February 18, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Artur Darbinyan, David T. Chin, Kurt E. Sincerbox
  • Patent number: 8648456
    Abstract: A embedded integrated circuit package is provided, the embedded integrated circuit package including: at least one chip arranged over a chip carrier, the at least one chip including a plurality of chip contact pads; encapsulation material formed over the chip carrier and at least partially surrounding the at least one chip; a plurality of electrical interconnects formed through the encapsulation material, wherein each electrical interconnect is electrically connected to a chip contact pad; and a structure formed between the electrical interconnects of the embedded integrated circuit package, wherein the structure increases the creepage resistance between the electrical interconnects.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 11, 2014
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Edward Fuergut, Khalil Hosseini, Georg Meyer-Berg
  • Patent number: 8642397
    Abstract: A wafer-level semiconductor package method comprising the step of providing a first wafer comprising a plurality of first dies each having a first, a second and a third electrodes formed on its front surface; attaching a second die having a fourth and a fifth electrodes formed on its front surface and a sixth electrode formed at its back surface onto each of the first die of the first wafer with the sixth electrode at the back surface of the second die attached and electrically connected to the second electrode at the front surface of the first die; and cutting the first wafer to singulate individual semiconductor packages.
    Type: Grant
    Filed: September 9, 2012
    Date of Patent: February 4, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yuping Gong, Yan Xun Xue, Ping Huang
  • Patent number: 8642388
    Abstract: A method for manufacturing LEDs includes following steps: forming circuit structures on a substrate, each circuit structure having a first metal layer and a second metal layer formed on opposite surfaces of the substrate and a connecting section interconnecting the first and second metal layers; cutting through each circuit structure along a middle of the connecting section to form first and second electrical connecting portions insulated from each other via a gap therebetween; arranging LED chips on the substrate and electrically connecting the LED chips to the first and second electrical connecting portions; forming an encapsulation on the substrate to cover the LED chips; and cutting through the substrate and the encapsulation between the first and second electrical connecting portions of neighboring circuit structures to obtain the LEDs.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: February 4, 2014
    Assignee: Advanced Optoelectronics Technology, Inc.
    Inventor: Chao-Hsiung Chang
  • Patent number: 8637341
    Abstract: A semiconductor module. In one embodiment, at least two semiconductor chips are placed on a carrier. The at least two semiconductor chips are then covered with a molding material. An exposed portion of the at least two semiconductor chips is provided. A first layer of conductive material is applied over the exposed portion of the at least two semiconductor chips to electrically connect to a contact pad on the exposed portion of the at least two semiconductor chips. The at least two semiconductor chips are singulated.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Josef Hoeglauer, Helmut Strack, Xaver Schloegel
  • Patent number: 8637352
    Abstract: Ball grid array to pin grid array conversion methods are provided. An example method can include coupling a plurality of solder balls to a respective plurality of pin grid array contact pads. Each of the plurality of solder balls is encapsulated in a fixed material. A portion of the plurality of solder balls and a portion of the fixed material is removed to provide a plurality of exposed solder balls. The exposed solder balls are softened and each of a plurality of pin members is inserted in a softened, exposed, solder ball. The plurality of pin members forms a pin grid array package.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 28, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventor: Kim-Yong Goh
  • Patent number: 8633061
    Abstract: A package structure includes a metal sheet having perforations; a semiconductor chip having an active surface and an opposite inactive surface, wherein the active surface has electrode pads thereon, conductive bumps are disposed on the electrode pads, the semiconductor chip is combined with the metal sheet via the inactive surface thereof, a protective buffer layer is formed on the active surface to cover the conductive bumps, and the perforations are arranged around a periphery of the inactive surface of the semiconductor chip; an encapsulant formed on the metal sheet and in the perforations, for encapsulating the semiconductor chip and exposing the protective buffer layer; and a circuit fan-out layer formed on the encapsulant and the protective buffer layer and having conductive vias penetrating the protective buffer layer and electrically connecting to the conductive bumps. A method of fabricating the package structure and a package-on-package device including the package structure are also provided.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: January 21, 2014
    Assignee: Unimicron Technology Corporation
    Inventors: Tzyy-Jang Tseng, Dyi-Chung Hu, Yu-Shan Hu
  • Patent number: 8623702
    Abstract: A semiconductor device has a plurality of semiconductor die mounted to a carrier. An encapsulant is deposited over the carrier around a peripheral region of the semiconductor die. A plurality of vias is formed through the encapsulant. A first conductive layer is conformally applied over a sidewall of the vias to form conductive vias. A second conductive layer is formed over a first surface of the semiconductor die between the conductive vias and contact pads of the semiconductor die. The first and second conductive layers can be formed during the same manufacturing process. A third conductive layer is formed over a second surface of the semiconductor die opposite the first surface of the semiconductor die. The third conductive layer is electrically connected to the conductive vias. A plurality of semiconductor die is stacked and electrically connected through the conductive vias and second and third conductive layers.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: January 7, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 8624366
    Abstract: A semiconductor package structure is provided, including: a semiconductor chip having electrode pads disposed thereon and metal bumps disposed on the electrode pads; an encapsulant encapsulating the semiconductor chip; a dielectric layer formed on the encapsulant and having a plurality of patterned intaglios formed therein for exposing the metal bumps; a wiring layer formed in the patterned intaglios of the dielectric layer and electrically connected to the metal bumps; and a metal foil having a plurality of metal posts disposed on a surface thereof such that the metal foil is disposed on the encapsulant with the metal posts penetrating the encapsulant so as to extend to the inactive surface of the semiconductor chip. Compared with the prior art, the present invention reduces the overall thickness of the package structure, increases the electrical transmission efficiency and improves the heat dissipating effect.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: January 7, 2014
    Assignee: Unimicron Technology Corporation
    Inventors: Tzyy-Jang Tseng, Dyi-Chung Hu, Yu-Shan Hu
  • Publication number: 20140001616
    Abstract: A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of forming a semiconductor device package includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the strip.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Dwight L. DANIELS, Stephen R. HOOPER, Alan J. MAGNUS, Justin E. POARCH
  • Patent number: 8617927
    Abstract: A method and apparatus for mounting microelectronic chips to a thermal heat sink. The chips are arranged in a desired configuration with their active faces all facing a common direction and with their active faces defining a common planar surface for all of said chips. A metallic material is applied to the chip, preferably by electroplating to backsides of the chips, the metallic material being electro-formed thereon and making void-free contact with the backsides of the chips.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: December 31, 2013
    Assignee: HRL Laboratories, LLC
    Inventors: Alexandros D. Margomenos, Miroslav Micovic
  • Patent number: 8618653
    Abstract: An integrated circuit package system includes: providing a singulated, layered structure equivalent in size to an integrated circuit die and having an adhesive layer, an electrical insulator layer, and a heat slug; attaching the integrated circuit die to a base; attaching bond wires to a top of the base for electrical connection between the integrated circuit die and the base; attaching the singulated, layered structure to the integrated circuit die wherein the bond wires are surrounded by the adhesive layer; and encapsulating the integrated circuit die and a portion of the heat slug with a molding compound.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 31, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: WonJun Ko, Taeg Ki Lim, Sungmin Song
  • Patent number: 8617413
    Abstract: A method for encapsulating structures (11) (typically MEMS structures) supported by a carrier substrate (12) (typically made of glass or silicon), includes: application, on the carrier substrate (12), of at least one cover (7) supported by a mould (1, 2, 6), the mould including a catching layer (6), each cover (7) being in contact with the catching layer (6); then fastening of at least one cover (7) onto the carrier substrate (12); and then separation of the mould (1, 2, 6) from the at least one cover (7). The catching layer (6) includes a fluoropolymer. Preferably, the mould (1, 2, 6) is mechanically separated from the at least one cover (7), by pulling the mould (1, 2, 6) away from the at least one cover (7). Thus, the mould (1) can be reused, which considerably simplifies encapsulating operations carried out on an industrial scale.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 31, 2013
    Assignee: KFM Technology
    Inventors: Sebastien Brault, Elisabeth Dufour-Gergam, Martial Desgeorges
  • Patent number: 8614899
    Abstract: In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta-module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a portion of the metallic structure for each component area to be shielded is then exposed through the body by a cutting, drilling, or like operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed portion of the metallic structures.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 24, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: Ulrik Riis Madsen, Lars Sandahl Ubbesen
  • Patent number: 8603859
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; mounting a top integrated circuit on a first side of the substrate; mounting a bottom integrated circuit on a second side of the substrate; forming a top encapsulation over the top integrated circuit and a bottom encapsulation over the bottom integrated circuit simultaneously; and forming a bottom via through the bottom encapsulation to the substrate.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 10, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: DeokKyung Yang, DaeSik Choi
  • Publication number: 20130320516
    Abstract: Disclosed herein are a semiconductor package and a method of manufacturing the same, the semiconductor package including: a molding member having a cavity formed therein; a device mounted in the cavity; an insulating member formed inside the cavity and on and/or beneath the molding member and the device; a circuit layer formed on the insulating member, and including vias and connection pads electrically connected with the device; a solder resist layer formed on the circuit layer, and having openings exposing upper portions of the connection pads; and solder balls formed in the openings.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 5, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Doo Hwan Lee, Tae Sung Jeong, Yul Kyo Chung
  • Patent number: 8597988
    Abstract: System for flash-free overmolding of LED array substrates. In an aspect, a method is provided for molding encapsulations onto an LED array substrate. The method includes attaching a protective tape onto a substrate surface of the substrate so that openings in the protective tape align with LED devices of the substrate and applying molding material onto a molding surface of a molding tool and to portions of the substrate exposed through the openings in the protective tape. The method also includes pressing the molding surface and the substrate surface together at a selected pressure and a selected temperature so that encapsulations are formed on the portions of the substrate exposed through the openings in the protective tape, separating the molding surface from the substrate surface, and removing the protective tape so that molding material flash is removed from the substrate leaving a clean molded substrate.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 3, 2013
    Assignee: Bridgelux, Inc.
    Inventors: Alexander Shaikevitch, Vahid Moshtagh
  • Patent number: 8598034
    Abstract: A method of manufacture of a package-on-package system includes: providing a substrate connection; attaching a semiconductor die to the substrate connection using an adhesive, with the substrate connection affixed directly by the adhesive; forming an encapsulant around the semiconductor die to have a bottom exposed surface coplanar with a bottom surface of the substrate connection and to have a top exposed surface with through openings extending therefrom through the bottom exposed surface; and creating through vias by applying solder into the through openings, the through vias coplanar with the bottom exposed surface of the encapsulant and coplanar with the top exposed surface of the encapsulant.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: December 3, 2013
    Assignee: STATS ChipPac Ltd.
    Inventors: DongSam Park, JoungIn Yang
  • Publication number: 20130316496
    Abstract: A method of manufacturing a semiconductor package having no chip pad includes preparing a polyimide tape on which an adhesive layer is arranged; forming lead members on the adhesive layer so as to form a plurality of semiconductor packages in a matrix form; attaching the polyimide tape to a carrier; performing wire bonding to mount semiconductor chips on the polyimide tape and connect the lead members and the semiconductor chips; forming an encapsulation member to encapsulate the semiconductor chips, the lead members, and wires; detaching the encapsulation member from the carrier and the polyimide tape; forming conductive layers each on a surface of the lead member exposed through a surface of the encapsulation member; and performing a singulation process on the encapsulation member with the conductive layers formed thereon to define unit semiconductor packages.
    Type: Application
    Filed: March 18, 2013
    Publication date: November 28, 2013
    Applicant: STS Semiconductor & Telecommunications Co., Ltd.
    Inventor: STS Semiconductor & Telecommunications Co., Ltd.
  • Patent number: 8592973
    Abstract: A method of manufacture of an integrated circuit packaging system including: forming a top package including: providing a through silicon via interposer having a through silicon via; coupling a stacked integrated circuit die to the through silicon via, and testing a top package; forming a base package including: providing a substrate, coupling a base integrated circuit die to the substrate, and testing a base package; and coupling a stacked interconnect between the top package and the base package.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: November 26, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: HyungSang Park, DeokKyung Yang, DaeSik Choi
  • Patent number: 8592960
    Abstract: A MMIC package is disclosed comprising: a leadframe based overmolded package, a die positioned within the overmolded package; and a partial waveguide interface, wherein the partial waveguide interface is integral with the overmolded package facilitating low cost and reliable assembly. Also disclosed is an overmolded package where the die sits on a metal portion exposed on the bottom of the package and the package is configured for attachment to a chassis of a transceiver such that heat from the die is easily dissipated to the chassis with a direct thermal path. The disclosure facilitates parallel assembly of MMIC packages and use of pick and place/surface mounting technology for attaching the MMIC packages to the chassis of transceivers. This facilitates reliable and low cost transceivers.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: November 26, 2013
    Assignee: ViaSat, Inc.
    Inventors: David R. Laidig, Kenneth V. Buer, Michael R. Lyons, Noel Lopez
  • Patent number: 8592853
    Abstract: A semiconductor light emitting element includes: a semiconductor layer; first electrodes arranged in a staggered array on an upper surface of the semiconductor layer; and a second electrode on a lower surface of the semiconductor layer. Each first electrode includes an external connection, a first elongated portion which extends from the external connection toward a central region of the upper surface of the semiconductor layer, and a second elongated portion which extends from the external connection to a near-edge region of the semiconductor layer. In addition, the first electrodes are arrayed so that a near-tip part of the first elongated portion of each first electrode is opposed to a near-tip part of the first elongated portion of each of an adjacent one or ones of the first electrodes in a direction in which the first electrodes arranged, on the central region of the semiconductor layer.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: November 26, 2013
    Assignee: Nichia Corporation
    Inventors: Hidetoshi Tanaka, Keiji Emura
  • Publication number: 20130309812
    Abstract: An integrated chip package structure and method of manufacturing the same is by adhering dies on a ceramic substrate and forming a thin-film circuit layer on top of the dies and the ceramic substrate. Wherein the thin-film circuit layer has an external circuitry, which is electrically connected to the metal pads of the dies, that extends to a region outside the active surface of the dies for fanning out the metal pads of the dies. Furthermore, a plurality of active devices and an internal circuitry is located on the active surface of the dies. Signal for the active devices are transmitted through the internal circuitry to the external circuitry and from the external circuitry through the internal circuitry back to other active devices. Moreover, the chip package structure allows multiple dies with different functions to be packaged into an integrated package and electrically connecting the dies by the external circuitry.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 21, 2013
    Applicant: MEGICA CORPORATION
    Inventor: Megica Corporation
  • Patent number: 8586422
    Abstract: A semiconductor device is made by providing a semiconductor die having an optically active area, providing a leadframe or pre-molded laminated substrate having a plurality of contact pads and a light transmitting material disposed between the contact pads, attaching the semiconductor die to the leadframe so that the optically active area is aligned with the light transmitting material to provide a light transmission path to the optically active area, and disposing an underfill material between the semiconductor die and leadframe. The light transmitting material includes an elevated area to prevent the underfill material from blocking the light transmission path. The elevated area includes a dam surrounding the light transmission path, an adhesive ring, or the light transmission path itself can be the elevated area. An adhesive ring can be disposed on the dam. A filler material can be disposed between the light transmitting material and contact pads.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: November 19, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R Camacho, Henry D Bathan, Lionel Chien Hui Tay, Amel Senosa Trasporto
  • Patent number: 8586414
    Abstract: A semiconductor package and it manufacturing method includes a lead frame having a die pad, and a source lead with substantially a V groove disposed on a top surface. A semiconductor chip disposed on the die pad. A metal plate connected to a top surface electrode of the chip having a bent extension terminated in the V groove in contact with at least one of the V groove sidewalls.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 19, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Yueh-Se Ho, Hamza Yilmaz, Anup Bhalla, Jun Lu, Kal Liu
  • Patent number: 8580608
    Abstract: A package structure having an embedded semiconductor component, includes: a chip having an active surface with electrode pads and an inactive surface opposite to the active surface; a first insulating protection layer having a chip mounting area for the chip to be mounted thereon via the active surface thereof; a plurality of connection columns disposed in the first insulating protection layer at positions corresponding to the electrode pads and electrically connected to the electrode pads via solder bumps; an encapsulant formed on one surface of the first insulating protection layer having the chip mounted thereon for encapsulating the chip; and a built-up structure formed on the other surface of the first insulating protection layer and the connection columns. Due to the bending resistance of the encapuslant, the warpage of the built-up structure is prevented.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: November 12, 2013
    Assignee: Unimicron Technology Corporation
    Inventors: Shih-Ping Hsu, I-Ta Tsai
  • Patent number: 8574961
    Abstract: A semiconductor device (10) is made by mounting the bottom surfaces (31, 44, 54) of a semiconductor die (14) and a lead (15, 17) on a tape (12) and over a hole (19) in the tape. A vacuum is drawn through the hole to secure the die in place when the lead's top surface (43) is wirebonded to a top surface (32) of the semiconductor die. A molding material (49) is formed to encapsulate the top surface of the semiconductor die and to expose its bottom surface.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: November 5, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: James Howard Knapp, Jay A. Yoder, Harold G. Anderson
  • Patent number: 8575749
    Abstract: A semiconductor device includes a semiconductor chip, an electrode pad formed on the semiconductor chip, an underlying barrier metal formed on the electrode pad, a solder bump formed on the underlying barrier metal, and an underfill material surrounding the underlying barrier metal and the solder bump. A junction interface of the solder bump with the underlying barrier metal corresponds to an upper surface of the underlying barrier metal, and a portion of the underfill material bonded to a side surface of the solder bump and an end surface of the underlying barrier metal forms a right angle or an obtuse angle.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Shinya Tsujimoto
  • Patent number: 8574967
    Abstract: An improved semiconductor device package is manufactured by attaching semiconductor chips (130) on an insulating substrate (101) having contact pads (103). A mold is provided, which has a top portion (210) with metal protrusions (202) at locations matching the pad locations. The protrusions are shaped as truncated cones. The substrate and the chips are loaded onto the bottom mold portion (310); the mold is closed by clamping the top portion onto the bottom portion so that the protrusions approach the contact pads. Encapsulation compound is introduced into the cavity and the protrusions create apertures through the encapsulation compound towards the pad locations.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: November 5, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Mark A. Gerber, David N. Walter
  • Publication number: 20130288432
    Abstract: A method of manufacturing a leadless integrated circuit (IC) package comprising an IC chip mounted on a metal leadframe and a plurality of electrical contacts electrically coupled to the IC chip. The IC chip, the electrical contacts, and a portion of the metal leadframe are covered with an encapsulation compound, with portions of the electrical contacts exposed on a bottom surface of the encapsulation compound. The electrical contacts of the IC package having metal traces connecting bonding areas on a top surface thereof and contact areas on a bottom surface thereof, wherein at least some of the bonding areas are laterally disposed from the contact areas connected thereto.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Applicant: Kaixin, Inc.
    Inventor: Tung Lok Li
  • Patent number: RE44811
    Abstract: The invention relates to a high power LED package, in which a package body is integrally formed with resin to have a recess for receiving an LED chip. A first sheet metal member is electrically connected with the LED chip, supports the LED chip at its upper partial portion in the recess, is surrounded by the package body extending to the side face of the package body, and has a heat transfer section for transferring heat generated from the LED chip to the metal plate of the board and extending downward from the inside of the package body so that a lower end thereof is exposed at a bottom face of the package body thus to contact the board. A second sheet metal member is electrically connected with the LED chip spaced apart from the first sheet metal member for a predetermined gap, and extends through the inside of the package body to the side face of the package body in a direction opposite to the first sheet metal member. A transparent sealant is sealingly filled up into the recess.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seon Goo Lee, Chang Wook Kim, Kyung Taeg Han