Having Diverse Electrical Device Patents (Class 438/23)
  • Publication number: 20110097830
    Abstract: In case that a conventional TFT is formed to have an inversely staggered type, a resist mask is required to be formed by an exposing, developing, and droplet discharging in forming an island-like semiconductor region. It resulted in the increase in the number of processes and the number of materials. According to the present invention, a process can be simplified since after forming a source region and a drain region, a portion serving as a channel region is covered by an insulating film serving as a channel protecting film to form an island-like semiconductor film, and so a semiconductor element can be manufactured by using only metal mask without using a resist mask.
    Type: Application
    Filed: January 3, 2011
    Publication date: April 28, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei Kanno, Gen Fujii
  • Publication number: 20110084271
    Abstract: Disclosed is a highly reliable semiconductor device and a manufacturing method thereof, which is achieved by using a transistor with favorable electrical characteristics and high reliability as a switching element. The semiconductor device includes a driver circuit portion and a pixel portion over one substrate, and the pixel portion comprises a light-transmitting bottom-gate transistor. The light-transmitting bottom-gate transistor comprises: a transparent gate electrode layer; an oxide semiconductor layer over the gate electrode layer, a superficial layer of the oxide semiconductor layer including comprising a microcrystal group of nanocrystals; and source and drain electrode layers formed over the oxide semiconductor layer, the source and drain electrode layers comprising a light-transmitting oxide conductive layer.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 14, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Kengo AKIMOTO, Kosei NODA
  • Publication number: 20110079786
    Abstract: An organic light emitting diode display includes a substrate, a semiconductor layer on the substrate, the semiconductor layer including an impurity-doped polycrystalline silicon layer, a first capacitor electrode on the substrate main body, the first capacitor electrode including an impurity-doped polycrystalline silicon layer, and bottom surfaces of the first capacitor electrode and semiconductor layer facing the substrate main body being substantially coplanar, a gate insulating layer on the semiconductor layer and the first capacitor electrode, a gate electrode on the semiconductor layer with the gate insulating layer therebetween, and a second capacitor electrode on the first capacitor electrode with the gate insulating layer therebetween, bottom surfaces of the second capacitor electrode and gate electrode facing the substrate main body being substantially coplanar, and the second capacitor electrode having a smaller thickness than the gate electrode.
    Type: Application
    Filed: April 13, 2010
    Publication date: April 7, 2011
    Inventors: Oh-Seob Kwon, Moo-Soon Ko
  • Publication number: 20110070671
    Abstract: A method for fabricating a pixel unit is provided. A TFT is formed on a substrate. A protection layer and a patterned photoresist layer are sequentially formed on the substrate entirely. A patterned protection layer is formed by using the patterned photoresist layer as a mask and partially removing the protection layer, wherein the patterned protection layer has an undercut located at a sidewall thereof. A pixel electrode material layer is formed to cover the substrate, the TFT and the patterned photoresist layer, wherein the electrode material layer is disconnected at the undercut and exposes the undercut. A pixel electrode electrically connected to the TFT is formed by lifting off the patterned photoresist layer and parts of the electrode material layer covering the patterned photoresist layer simultaneously through a stripper, wherein the stripper permeates from the undercut to an interface of the patterned photoresist layer and the patterned protection layer.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Chin-Yueh Liao, Chih-Chun Yang, Chih-Hung Shih, Shine-Kai Tseng
  • Publication number: 20110069265
    Abstract: An electrostatic discharge protection element, a liquid crystal display device having the same, and a manufacturing method. A first ESD organic TFT, a second ESD organic TFT, a third ESD organic TFT each have a gate electrode, a source electrode and a drain electrode in which the source electrode and drain electrode of the first and second ESD organic TFTs and the gate electrode of the third ESD organic TFT are electrically connected. The gate electrode and the source electrode of the first ESD organic TFT are electrically connected to a first array line and the gate electrode and the drain electrode of the second ESD organic TFT are electrically connected to a second array line. The source electrode of the third ESD organic TFT is electrically connected to a data line or a gate line and the drain of the third ESD organic TFT are electrically connected to a common voltage line.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 24, 2011
    Inventors: Min Joo Kim, Ho Cheol Kang, Kyo Seop Choo
  • Patent number: 7909671
    Abstract: A dual emitting device includes a transparent substrate and an array of pixels. The array of pixels is disposed on the transparent, and each pixel of the array includes at least one first sub-pixel and at least one second sub-pixel. The first sub-pixel includes a first OLED driven by a first TFT, and a first sheltering layer on the first OLED. The second sub-pixel includes a second OLED driven by a second TFT, and a second sheltering layer formed between the transparent substrate and the second OLED.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: March 22, 2011
    Assignee: AU Optronics Corp.
    Inventors: Shi-Hao Li, Tze-Chien Tsai
  • Publication number: 20110057306
    Abstract: A module has a substrate, first and second integrated circuits, and a heat sink. The integrated circuits each have a first major surface, a second major surface, a first edge, a second edge, and a third edge and have optical circuits having ports on the first edge and electronic circuits having ports on the second edge. The second edges are connected to the substrate. The first major surface of the second integrated circuit is parallel with the second major surface of the first integrated circuit. The heat sink has a backplane adjacent to the third edge, a first portion along the first major surface of the first integrated circuit, a second portion along the second major surface of the second integrated circuit extending from the backplane, and an insert between the first major surface of the second integrated circuit and the second major surface of the first integrated circuit.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 10, 2011
    Inventors: Michael B. McShane, Perry H. Pelley
  • Patent number: 7897975
    Abstract: A light emitting display device includes a first electrode formed at a light emitting region of a first substrate; a transparent oxide thin film of about 1 ? to about 200 ? in thickness formed on an entire surface of the first electrode at the light emitting region to substantially cover particle on the entire surface of the first electrode; an organic light emitting layer formed on an entire surface of the oxide thin film to emit a light; and a second electrode formed on an entire surface of the first substrate including the organic light emitting layer.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: March 1, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Min Su Kim, Doo Seok Yang, Young Hyo Jung, Feng Jin Li, Kyoung Min Kang
  • Publication number: 20110043464
    Abstract: A touch screen display apparatus including a sensor unit to sense and to process light signals and a pixel unit to drive pixels according to the light signal processing performed by the sensor unit. The touch screen display apparatus includes a substrate; a plurality of pixel units disposed on the substrate, wherein each of the pixel units includes a first electrode, a second electrode, and an emission layer interposed between the first electrode and the second electrode; and a plurality of sensor units disposed on the substrate, wherein each of the sensor units includes a sensor first electrode, a sensor second electrode, and an organic light receiving layer interposed between the sensor first electrode and the sensor second electrode.
    Type: Application
    Filed: May 27, 2010
    Publication date: February 24, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Moon-Jae LEE, Won-Jun Song, Sun-Hee Lee, Young-Hee Lee, Mu-Hyun Kim, Hye-Dong Kim, Ji-Young Kim
  • Publication number: 20110037054
    Abstract: An active matrix organic light emitting display includes a plurality of pixels with each pixel including at least one organic light emitting diode circuit. Each diode circuit producing a predetermined amount of light lm in response to power W applied to the circuit and including n organic light emitting diodes cascaded in series so as to increase voltage dropped across the cascaded diodes by the factor of n, where n is an integer greater than one. Each diode of the n organic light emitting diodes produces approximately 1/n of the predetermined amount of light lm so as to reduce current flowing in the diodes by 1/n. The organic light emitting diode circuit of each pixel includes a thin film transistor current driver with the cascaded diodes connected in the source/drain circuit so the current driver provides the current flowing in the diodes.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 17, 2011
    Inventors: Chan-Long Shieh, Gang Yu
  • Publication number: 20110031493
    Abstract: An object is to improve reliability of a semiconductor device. A semiconductor device including a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate is provided. The driver circuit portion and the display portion include thin film transistors in which a semiconductor layer includes an oxide semiconductor; a first wiring; and a second wiring. The thin film transistors each include a source electrode layer and a drain electrode layer which each have a shape whose end portions are located on an inner side than end portions of the semiconductor layer. In the thin film transistor in the driver circuit portion, the semiconductor layer is provided between a gate electrode layer and a conductive layer. The first wiring and the second wiring are electrically connected in an opening provided in a gate insulating layer through an oxide conductive layer.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Masayuki SAKAKURA, Yoshiaki OIKAWA, Kenichi OKAZAKI, Hotaka MARUYAMA
  • Publication number: 20110033960
    Abstract: An organic light emitting diode (OLED) device according to the present invention includes a first substrate; a first electrode on the first substrate in the pixel region, the first electrode formed of a metal; an organic light-emitting layer on the first electrode; a second electrode on the organic light-emitting layer, the second electrode formed of a transparent conductive material; and a transparent layer on the second electrode, the transparent layer including an inorganic material or a semiconductor material.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 10, 2011
    Inventors: Choong Keun Yoo, Jeong Hyun Kim
  • Publication number: 20110031470
    Abstract: Methods for fabricating passivated silicon nanowires and an electronic arrangement thus obtained are described. Such arrangements may comprise a metal-oxide-semiconductor (MOS) structure such that the arrangements may be utilized for MOS field-effect transistors (MOSFETs) or opto-electronic switches.
    Type: Application
    Filed: June 23, 2010
    Publication date: February 10, 2011
    Inventors: Axel Scherer, Sameer Walavalkar, Michael D. Henry, Andrew P. Homyk
  • Patent number: 7884466
    Abstract: According to the present invention, a recess portion is formed in a package substrate which is formed of a multilayer organic substrate having a multilayer wiring, and an LSI chip is accommodated within the recess portion. Wiring traces are formed on the upper surface of a resin which seals the LSI chip connected to the multilayer wiring. The wiring traces are connected to terminal wiring traces connected to the multilayer wiring on the front face of the package substrate and to front-face bump electrodes for external connection on the upper surface of the resin. On the back face side of the package substrate, back-face bump electrodes for external connection are formed and connected to the multilayer wiring.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: February 8, 2011
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Masamichi Ishihara, Fumihiko Ooka, Yoshihiko Ino
  • Publication number: 20110027920
    Abstract: An object of the present invention is to realize a light emitting device having low power consumption and high stability, in addition to improve extraction efficiency of light generated in a light emitting element. At least an interlayer insulating film (including a planarizing film), an anode, and a bank covering an edge portion of the anode contain chemically and physically stable silicon oxide, or are made of a material containing silicon oxide as its main component in order to accomplish a light emitting device having high stability. Generation of heat in a light emitting panel can be suppressed in addition to increase in efficiency (luminance/current) of a light emitting panel according to the structure of the present invention. Consequently, synergistic effect on reliability of a light emitting device is obtained.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 3, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Takashi HAMADA, Masaharu NAGAI, Yutaka MATSUDA
  • Publication number: 20110024753
    Abstract: A fabricating method of a pixel structure is provided. First, a substrate with a plurality of pixel areas is provided. A common electrode is formed on the substrate to surround each pixel area. Then, a capacitance storage electrode is formed on the common electrode, and a first passivation layer is formed to cover the capacitance storage electrode and the common electrode. Following that, a scan line and a gate electrode are formed within each pixel area. Next, a gate insulation layer and a semiconductor layer are formed. A data line, a source, and a drain are formed within each pixel area. After that, a second passivation layer is formed on the substrate, and a contact window is formed in the second passivation layer above the drain. Moreover, a pixel electrode is formed within each pixel area, and the pixel electrode is electrically connected with the drain through the contact window.
    Type: Application
    Filed: October 8, 2009
    Publication date: February 3, 2011
    Applicant: CHUNGHWA PICTURE TUBES, LTD.
    Inventor: Meng-Chi Liou
  • Publication number: 20110014730
    Abstract: An object of the present invention is to provide a new light emitting element with little initial deterioration, and a display device in which initial deterioration is reduced and variation in deterioration over time is reduced by a new method for driving a display device having the light emitting element. One feature of the invention is that a display device comprising a light emitting element including a first electrode, a second electrode opposed to the first electrode, and a mixed layer of metal oxide and an organic compound provided between the first electrode and the second electrode is subjected to aging drive.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 20, 2011
    Inventors: Shunpei Yamazaki, Masahiko Hayakawa, Koichiro Kamata, Hiroyuki Tomatsu, Hisao Ikeda, Junichiro Sakata
  • Publication number: 20110012142
    Abstract: A method for producing a luminous device is specified. A number of light emitting diodes each have a radiation-transmissive carrier and at least two semiconductor bodies spatially separated from one another. Each semiconductor body is provided for generating electromagnetic radiation. The semiconductor bodies can be driven separately from one another and the semiconductor bodies are arranged at the top side of the radiation-transmissive carrier on the radiation-transmissive carrier. A chip assemblage is composed of CMOS chips each of which has at least two connection locations at its top side. At least one of the light emitting diodes is connected to one of the CMOS chips. The light emitting diode is arranged, at the top side of the radiation-transmissive carrier, at the top side of the CMOS chip and each semiconductor body of the light emitting diode is connected to a connection location of the CMOS chip.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 20, 2011
    Inventors: Berthold Hahn, Markus Maute, Siegfried Herrmann
  • Patent number: 7871834
    Abstract: A semiconductor apparatus includes two thin semiconductor films bonded to a substrate, and a thin-film interconnecting line electrically connecting a semiconductor device such as a light-emitting device in the first thin semiconductor film to an integrated circuit in the second thin semiconductor film. Typically, the integrated circuit drives the semiconductor device. The two thin semiconductor films are formed separately from the substrate. The first thin semiconductor film may include an array of semiconductor devices. The first and second thin semiconductor films may be replicated as arrays bonded to the same substrate. Compared with conventional semiconductor apparatus comprising an array chip and a separate driver chip, the invented apparatus is smaller and has a reduced material cost.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: January 18, 2011
    Assignee: Oki Data Corporation
    Inventors: Mitsuhiko Ogihara, Hiroyuki Fujiwara, Ichimatsu Abiko, Masaaki Sakuta
  • Publication number: 20110001156
    Abstract: A light emitting device includes: a substrate; an LED chip provided on a main surface of the substrate; and a printed resistor element connected in parallel with the LED chip, the printed resistor element being provided in at least one of regions (i) on the main surface of the substrate, (ii) on a back surface of the substrate, and (iii) inside the substrate. According to the arrangement, it is possible to provide: a light emitting device which can emit light having preferable luminance without a reduction in optical output by suppressing light shielding and light absorption of light emitted from the LED toward the outside; and a method for manufacturing the light emitting device.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 6, 2011
    Inventors: Makoto Matsuda, Toyonori Uemura, Toshio Hata
  • Publication number: 20100321352
    Abstract: A display array which can reduce the row connections between the display and the driver circuit and methods of manufacturing and operating the same are disclosed. In one embodiment, a display device comprises an array of MEMS display elements and a plurality of voltage dividers coupled to the array and configured to provide row output voltages to drive the array, wherein each row is connected to at least two inputs joined by a voltage divider.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 23, 2010
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Alan Lewis, Marc M. Mignard
  • Patent number: 7855092
    Abstract: A device for emitting white-color light comprises: a light emitting diode including: an LED chip comprising a gallium nitride compound semiconductor containing indium and being capable of emitting a blue color light, and a phosphor capable of absorbing a part of the blue color light and emitting a light having longer wavelength than the blue color light, the blue color light and the light from the phosphor being mixed to make the white-color; a control unit for converting an input to pulse signals; and a driver receiving the pulse signals from the control unit to drive the LED chip, wherein the brightness of the white-color light from the light emitting diode is controlled by a width of the pulse signals.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: December 21, 2010
    Assignee: Nichia Corporation
    Inventors: Yoshinori Shimizu, Kensho Sakano, Yasunobu Noguchi, Toshio Moriguchi
  • Publication number: 20100309172
    Abstract: A top emission type organic electroluminescent display device includes a first substrate including a pixel region, a switching thin film transistor and a driving thin film transistor in the pixel region on the first substrate, a passivation layer covering the switching thin film transistor and the driving thin film transistor and exposing a drain electrode of the driving thin film transistor, a first electrode on the passivation layer and connected to the drain electrode of the driving thin film transistor, a buffer pattern in a border of the pixel region and overlapping an edge of the first electrode, a first spacer on the buffer pattern along a first direction, the first spacer having a first thickness and a dam shape, a second spacer on the buffer pattern along a second direction, the second spacer having a second thickness and a dam shape, a third spacer on the buffer pattern at a crossing portion of the first and second spacers, the third spacer having a third thickness and a columnar shape, wherein the
    Type: Application
    Filed: December 24, 2009
    Publication date: December 9, 2010
    Inventors: Kyung-Tak Oh, Byoung-June Lee, Mi-Youn Yang
  • Publication number: 20100300862
    Abstract: A touch sensor (touch panel) which can be formed over the same substrate as a display portion is provided. Alternatively, a touch sensor (touch panel) which does not cause degradation in the quality of an image displayed on a display portion is provided. The touch panel includes a light-emitting element and a microstructure in which a pair of electrodes facing each other is isolated with an insulating material. As the insulating material, an elastic material or a material having a hole is used so that a filler layer formed using the insulating material can be deformed when a movable portion operates. It is preferable to use a material which is softened or hardened by certain treatment (e.g., heat treatment or chemical treatment) after formation.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Inventors: Hikaru Tamura, Munehiro Kozuma
  • Patent number: 7842524
    Abstract: An organic electro luminescence device and a fabrication method thereof are provided. An array element is formed on a first substrate and an electro luminescent diode is formed on a second substrate. The array element and the electro luminescent diode are electrically connected together by a spacer. A separator divides a sub pixel into a first region and a second region. In the electro luminescent diode, an anode electrode is formed over the first and second regions. An organic electro luminescent layer and a cathode electrode are formed on the anode electrode of one of the first and second regions.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 30, 2010
    Assignee: LG. Display Co., Ltd.
    Inventors: Chang Yeon Kim, Tae Joon Ahn
  • Publication number: 20100285618
    Abstract: In this pixel structure, a metal layer/a dielectric layer/a heavily doped silicon layer constitutes a bottom electrode/a capacitor dielectric layer/a top electrode of a storage capacitor. At the same time, a metal shielding layer is formed under the thin film transistor to decrease photo-leakage-current.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 11, 2010
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Yi-Sheng Cheng, Chih-Wei Chao
  • Publication number: 20100270578
    Abstract: A light emitting diode chip includes a device for protection against overvoltages, e.g., an ESD protection device. The ESD protection device is integrated into a carrier, on which the semiconductor layer sequence of the light emitting diode chip is situated, and is based on a specific doping of specific regions of said carrier. By way of example, the ESD protection device is embodied as a Zener diode that is connected to the semiconductor layer sequence by means of an electrical conductor structure.
    Type: Application
    Filed: December 9, 2008
    Publication date: October 28, 2010
    Inventors: Joerg Erich Sorg, Stefan Gruber, Georg Bogner
  • Publication number: 20100270538
    Abstract: Provided are an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a substrate; at least one thin film transistor including a gate electrode including a metal oxide layer and a metal layer, a semiconductor layer including source/drain regions and a channel layer; at least one capacitor including a first electrode formed on a layer on which the gate electrode is formed by using a material forming the gate electrode, and a second electrode formed on a layer on which the source/drain electrodes are formed by using a material used to form the source/drain electrodes; and at least one organic light emitting device including a pixel electrode formed on a layer on which the gate electrode is formed by using a material used to form the gate electrode and connected to the source/drain electrodes via a contact hole.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Applicant: Samsung Mobile Display Co., Ltd
    Inventor: Jin-Kyu Kang
  • Publication number: 20100260221
    Abstract: Proposed is a light emitting module (1), comprising a semiconductor light emitting device (10) and a thermal switch (20). The thermal switch (20) is arranged to protect the device (10) from over heating. At elevated temperatures the junction of the device (10) may reach a critical level causing catastrophic breakdown of the device. According to the invention, the thermal switch is arranged to shunt the semiconductor light emitting device. This is especially advantageous as the thermal protection offered by the switch (20) correlates directly to the (junction) temperature of the device (10).
    Type: Application
    Filed: December 10, 2008
    Publication date: October 14, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Jiang Hong Yu
  • Publication number: 20100259857
    Abstract: An integrated circuit including ESD device is disclosed. One embodiment includes a semiconductor region being electrically isolated from adjacent semiconductor regions by an isolating region. Both an ESD device and a device configured to emit radiation are formed within the semiconductor region.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 14, 2010
    Applicant: Infineon Technologies AG
    Inventors: Michael Mayerhofer, Joost Willemen, David Johnsson
  • Patent number: 7811838
    Abstract: A high efficiency light-emitting diode and a method for manufacturing the same are described. The high efficiency light-emitting diode comprises: a permanent substrate; a first contact metal layer and a second contact metal layer respectively deposed on two opposite surfaces of the permanent substrate; a bonding layer deposed on the second contact metal layer; a diffusion barrier layer deposed on the bonding layer, wherein the permanent substrate, the bonding layer and the diffusion barrier layer are electrically conductive; a reflective metal layer deposed on the diffusion barrier layer; a transparent conductive oxide layer deposed on the reflective metal layer; an illuminant epitaxial structure deposed on the transparent conductive oxide layer, wherein the illuminant epitaxial structure includes a first surface and a second surface opposite to the first surface; and a second conductivity type compound electrode pad deposed on the second surface of the illuminant epitaxial structure.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: October 12, 2010
    Assignee: Epistar Corporation
    Inventor: Schang-Jing Hon
  • Publication number: 20100255617
    Abstract: A method of manufacturing an active matrix substrate that enables increased productivity due to a reduction in the number of patterning processes and low generation of particles during the patterning processes. The method includes forming a patterned electrode on a substrate, and covering the first electrode with an insulating film. A mono-crystalline semiconductor layer is then formed on the insulating film by attaching a first layer formed on a surface of a semiconductor wafer to the first insulating film, and peeling off a portion of the semiconductor wafer. The semiconductor layer is then patterned and doped, in part, by utilizing the patterned electrode as a photo mask for light illuminated from a lower side of the substrate. This results in part in mono-crystalline active layers for thin film transistors, which are then configured to form a pixel for an active matrix substrate.
    Type: Application
    Filed: January 28, 2010
    Publication date: October 7, 2010
    Inventor: Woong-Sik Choi
  • Publication number: 20100253610
    Abstract: A display apparatus comprises a first thin film transistor (TFT) and a second TFT which are disposed in a display area. A first signal transmission line is disposed in a peripheral area surrounding the display area and is electrically connected to the first TFT. A second signal transmission line adjacent to the first signal transmission line is electrically connected to the second TFT. In a first portion of the peripheral area, the first signal transmission line is parallel to the second signal transmission line and is spaced by a first gap from the second signal transmission line. In a second portion of the peripheral area, the first signal transmission line is parallel to the second signal transmission line and is spaced by a second gap from and the second signal transmission line. The second gap is greater than the first gap. Other features are also provided.
    Type: Application
    Filed: February 10, 2010
    Publication date: October 7, 2010
    Inventors: Seung-Kyu LEE, Chul-Ho Kim, Kyung-Min Park, Kyung-Hoon Kim, Jin-Suk Park
  • Publication number: 20100245699
    Abstract: A liquid crystal display device and a manufacturing method thereof which can suppress chipping of an alignment film or the like are provided. A liquid crystal display device and a manufacturing method thereof which can obviate the complication of manufacturing steps and the increase of a manufacturing cost are also provided. A liquid crystal display device includes: a TFT substrate; a counter substrate; and liquid crystal sandwiched between the TFT substrate and the counter substrate. A plurality of color filters are arranged on the counter substrate, and spacers are formed by stacking the plurality of color filters and by covering a surface of stacked color filters with an overcoat layer. Pedestals are formed on the TFT substrate in a state where the pedestal faces the spacer in an opposed manner. The pedestal is formed by stacking at least a semiconductor layer and a metal layer formed which are simultaneously with a thin film transistor on the TFT substrate.
    Type: Application
    Filed: February 9, 2010
    Publication date: September 30, 2010
    Inventors: Yasuko Gotoh, Kazuhiko Koyahara
  • Publication number: 20100245740
    Abstract: A transflective LCD panel and a manufacturing method for lower substrate thereof are provided. The transflective LCD panel includes an upper substrate, a liquid crystal layer and a lower substrate. The liquid crystal layer, including a plurality of liquid crystal molecules, is disposed between the upper substrate and the lower substrate. The lower substrate includes an active array structure layer, a plurality of transparent pixel electrodes and a cushion layer. The active array structure layer includes a plurality of transparent bottom electrodes, transistor structures and an insulation layer. The insulation layer covers the transparent bottom electrode. The transparent pixel electrodes are formed on the active array structure layer, wherein each transparent pixel electrode partially overlaps the corresponding transparent bottom electrode and the overlap is located at the transmissive region.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Applicant: WINTEK CORPORATION
    Inventors: Hsiu-Lin Chan, Cheng-Yen Yeh, Chien-Chang Lee
  • Publication number: 20100240157
    Abstract: The present invention discloses a method for manufacturing a display device comprising the steps of forming a first film pattern using a photosensitive material over a substrate, forming a second film pattern in such a way that the first film pattern is exposed by being irradiated with a laser beam, modifying a surface of the second film pattern into a droplet-shedding surface, forming a source electrode and a drain electrode by discharging a conductive material to an outer edge of the droplet-shedding surface by a droplet-discharging method, and forming a semiconductor region, a gate-insulating film, and a gate electrode over the source electrode and the drain electrode.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shinji Maekawa, Shunpei Yamazaki, Hironobu Shoji
  • Publication number: 20100230712
    Abstract: Provided are a light emitting device and a method of fabricating the same. The light emitting device comprises a first conductive type substrate, first to fourth metal electrodes, and a light emitting diode. The first conductive type substrate comprises P-N junction first to fourth diodes. The first metal electrode is connected to the first diode and the fourth diode. The second metal electrode is connected to the third diode and the second diode. The third metal electrode is connected to the first diode and the third diode. The fourth metal electrode is connected to the second diode and the fourth diode. The light emitting diode is electrically connected to the third metal electrode and the fourth metal electrode.
    Type: Application
    Filed: October 29, 2008
    Publication date: September 16, 2010
    Inventor: Jae Cheon Han
  • Publication number: 20100203657
    Abstract: A method of fabricating a light emitting device includes forming a plurality of light emitting elements on light emitting element mounting regions, respectively, of a substrate, forming lens supports on the light emitting element mounting regions, respectively, are raised relative to isolation regions of the substrate located between neighboring ones of the light emitting element mounting regions, and forming lenses covering the light emitting elements on the lens support patterns, respectively.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 12, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Yu-Sik Kim
  • Publication number: 20100203656
    Abstract: In a method for the manufacture of an active matrix OLED display, at least two thin-film transistors and one storage capacitor are provided to drive each pixel, with a reduced number of photolithographic patterning steps.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 12, 2010
    Inventors: Norbert Fruehauf, Thomas Buergstein, Patrick Schalberger
  • Publication number: 20100197054
    Abstract: A method for manufacturing a light emitting device according to the present invention has the steps of: preparing a first member which has an emission layer on a substrate having a compound semiconductor layer through an etch stop layer and a sacrifice layer; forming a bonded structure by bonding the first member on a second member including a silicon layer so that the emission layer is positioned in the inner side; providing a through groove in the substrate so that the etch stop layer is exposed, by etching the first member from the reverse side of the emission layer; and removing the substrate having the through groove provided therein from the bonded structure by etching the sacrifice layer.
    Type: Application
    Filed: October 1, 2008
    Publication date: August 5, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takao Yonehara
  • Patent number: 7767490
    Abstract: An organic light emitting device and a method for fabricating the same are discussed. According to an embodiment, the method includes forming a mother substrate structure including organic light emitting devices including TFTs and first electrodes, each first electrode electrically connected to the corresponding TFT and being a part of an OLED to be formed; forming first and second conductive layers to form a power line in each organic light emitting device; forming a dummy layer on the first electrodes and the second conductive layer; performing at least one of scribing and grinding processes on the mother substrate structure to divide the mother substrate structure into sub-substrate structures; removing the dummy layer from the first electrodes and the second conductive layer after the performing step; and forming a light emitting layer and a second electrode on the first electrode in one of the sub-substrate structures to form the OLED.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: August 3, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Jaeyong Park, Wonhee Choi, Byoungjune Lee, Donghwan Kim, Hyungchul Kim
  • Publication number: 20100181570
    Abstract: An active matrix substrate in which variations in output characteristics of photodiodes are reduced, and a display device using this active matrix substrate, are provided. An active matrix substrate (1) having an n-TFT (20), a p-TFT (30), and a photodiode (10) is used. The photodiode (10) includes a p-layer (7), an i-layer (8), and an n-layer (9). The i-layer (8) includes a p-type semiconductor region (8a) at a position adjacent to the player (7), said p-type semiconductor region (8a) having a diffusion concentration of p-type impurities that is set at the same level as that of a diffusion concentration of p-type impurities in the channel region (23) of the n-TFT (20); and an n-type semiconductor region (8b) at a position adjacent to the n-layer (9), said n-type semiconductor region (8b) having a diffusion concentration of n-type impurities that is set at the same level as that of a diffusion concentration of n-type impurities in the channel region (33) of the p-TFT (30).
    Type: Application
    Filed: July 11, 2008
    Publication date: July 22, 2010
    Inventors: Hiromi Katoh, Benjamin James Hadwen
  • Publication number: 20100176383
    Abstract: Disclosed is an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes the thin film transistor of the drive unit that has the activation layer formed in a structure where the first oxide semiconductor layer and the second oxide semiconductor layer are stacked, the thin film transistor of the pixel unit that has the activation layer formed of the second oxide semiconductor layer, and the organic light emitting diode coupled to the thin film transistor of the pixel unit. The thin film transistor of the drive unit has channel formed on the first oxide semiconductor layer having a higher carrier concentration than the second oxide semiconductor layer, having a high charge mobility, and the thin film transistor of the pixel unit has a channel formed on the second oxide semiconductor layer, having a stable and uniform functional property.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 15, 2010
    Applicant: Mobile Display Co., Ltd.
    Inventors: Jin-Seong Park, Yeon-Gon Mo, Jae-Kyeong Jeong, Min-Kyu Kim, Hyun-Joong Chung, Tae-Kyung Ahn
  • Publication number: 20100176384
    Abstract: The invention is an organic luminescence transistor device including: a substrate; an assistance electrode layer provided on a side of an upper surface of the substrate; an insulation film provided on a side of an upper surface of the assistance electrode layer; a first electrode provided locally on a side of an upper surface of the insulation film, the first electrode covering an area of a predetermined size; an electric-charge-injection inhibiting layer provided on an upper surface of the first electrode, the electric-charge-injection inhibiting layer having a shape larger than that of the first electrode in a plan view; an electric-charge injection layer provided on the side of an upper surface of the insulation film at an area not provided with the first electrode or the electric-charge-injection inhibiting layer and on an upper surface of the electric-charge-injection inhibiting layer; a luminescent layer provided on an upper surface of the electric-charge injection layer; and a second electrode layer pr
    Type: Application
    Filed: February 26, 2010
    Publication date: July 15, 2010
    Applicants: DAI NIPPON PRINTING CO., LTD., PIONEER CORPORATION
    Inventors: Katsunari Obata, Shinichi Handa, Takuya Hata, Kenji Nakamura, Atsushi Yoshizawa, Hiroyuki Endo
  • Publication number: 20100167435
    Abstract: Provided is a method of fabricating an organic electro luminescence device, the method comprising: forming a thin film transistor on a substrate; forming a passivation layer and a first electrode on the substrate including the thin film transistor; forming a contact hole exposing an upper surface of a drain electrode of the thin film transistor at a predetermined portion of the first electrode and the passivation layer; forming a buffer layer and a barrier rib on a predetermined portion of an upper surface of the first electrode; forming an organic emission layer within a region defined by the buffer layer; and forming a second electrode on the organic emission layer such that the second electrode is electrically connected with the drain electrode through the contact hole.
    Type: Application
    Filed: December 31, 2009
    Publication date: July 1, 2010
    Inventors: Sung Joon Bae, Jae Yoon Lee
  • Patent number: 7745809
    Abstract: Embodiments of the present invention provide an apparatus comprising a substrate comprising an emitter layer and at least one emitter interface adjacent to the emitter layer, and a metal protective layer on a top surface of the at least one emitter interface. A method of manufacturing such an apparatus is also disclosed. The method may include performing plasma nitridation directed at column micro-trench strips. Other embodiments are also described.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: June 29, 2010
    Assignee: Marvell International Ltd.
    Inventors: Pantas Sutardja, Albert Wu, Chien-Chuan Wei, Runzi Chang, Winston Lee, Peter Lee
  • Patent number: 7745246
    Abstract: A light emitting device wafer is fabricated, having a light emitting layer section, composed of AlGaInP, based on a double heterostructure and a GaP light extraction layer disposed on the light emitting layer portion, having a first main surface thereof appearing on the first main surface of the wafer, so as that a P-rich off-angled {100} surface, having a higher existence rate of P atoms than an exact {100} surface, appears on the first main surface the GaP light extraction layer. The main first surface of the GaP light extraction layer is etched with an etching solution FEA so as to form surface roughening projections. Therefore, it provides a method of fabricating a light emitting device capable of applying surface roughening easily to the GaP light extraction surface having the {100} surface, off-angled to be P-rich, as a main surface thereof.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: June 29, 2010
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Yukari Suzuki, Hitoshi Ikeda
  • Publication number: 20100159619
    Abstract: A gate insulating film (13) is formed on a substrate (1) so as to cover a gate electrode (11), and an amorphous silicon film (semiconductor thin film) (15) is further formed. A light absorption layer (19) is formed thereon through a buffer layer (17). Energy lines Lh are applied to the light absorption layer (19) from a continuous-wave laser such as a semiconductor laser. This oxidizes only a surface side of the light absorption layer Lh and produces a beautiful crystalline silicon film (15a) obtained by crystallizing the amorphous silicon film (15) using heat generated by thermal conversion of the energy lines Lh at the light absorption layer (19) and heat of the oxidation reaction. This provides a method for crystallizing a thin film with good controllability at low costs achieved with simpler process.
    Type: Application
    Filed: April 30, 2008
    Publication date: June 24, 2010
    Applicant: SONY CORPORATION
    Inventors: Nobuhiko Umezu, Koichi Tsukihara, Goh Matsunobu, Yoshio Inagaki, Koichi Tatsuki, Shin Hotta, Katsuya Shirai
  • Publication number: 20100157234
    Abstract: A display apparatus includes a thin film transistor array panel including a display region and a non-display region, a gate line extending along a first direction, a data line extending along a second direction, substantially perpendicular to the first direction, the data line being insulated from and crossing the gate line, a storage electrode line which receives a common voltage signal, and a first gate driver disposed on the thin film transistor array panel and which supplies at least one of a gate on signal and a gate off signal to the gate line. The storage electrode line includes a first portion extending along the first direction and a second portion extending along the second direction in the non-display region. A width, measured along the second direction, of the first portion is less than a width, measured along the first direction, of the second portion.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 24, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Bong-Jun LEE, Kyung-Wook KIM
  • Patent number: 7736920
    Abstract: An LED package structure with standby bonding pads for increasing wire-bonding yield includes a substrate unit, a light-emitting unit, a conductive wire unit and a package unit. The substrate unit has a substrate body and a plurality of positive pads and negative pads. The light-emitting unit has a plurality of LED chips. The positive electrode of each LED chip corresponds to at least two of the positive pads, and the negative electrode of each. LED chip corresponds to at least two of the negative pads. Every two wires of the conductive wire unit are respectively electrically connected between the positive electrode of each LED chip and one of the at least two positive pads and between the negative electrode of each LED chip and one of the at least two negative pads. The package unit has a translucent package resin body on the substrate body to cover the LED chips.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: June 15, 2010
    Assignee: Paragon Semiconductor Lighting Technology Co., Ltd.
    Inventors: Chao-Chin Wu, Shen-Ta Yang