Having Additional, Nonmemory Control Electrode Or Channel Portion (e.g., For Accessing Field Effect Transistor Structure, Etc.) Patents (Class 438/266)
  • Patent number: 8017991
    Abstract: Example embodiments provide a non-volatile memory device with increased integration and methods of operating and fabricating the same. A non-volatile memory device may include a plurality of first storage node films and a plurality of first control gate electrodes on a semiconductor substrate. A plurality of second storage node films and a plurality of second control gate electrodes may be recessed into the semiconductor substrate between two adjacent first control gate electrodes and below the bottom of the plurality of first control gate electrodes. A plurality of bit line regions may be on the semiconductor substrate and each may extend across the plurality of first control gate electrodes and the plurality of second control gate electrodes.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park, June-mo Koo
  • Patent number: 8017477
    Abstract: A nonvolatile memory device includes a plurality of first control gate electrodes, second control gate electrodes, first storage node films, and second storage node films. The first control gate electrodes are recessed into a semiconductor substrate. Each second control gate electrode is disposed between two adjacent first control gate electrodes. The second control gate electrodes are disposed on the semiconductor substrate over the first control gate electrodes. The first storage node films are disposed between the semiconductor substrate and the first control gate electrodes. The second storage node films are disposed between the semiconductor substrate and the second control gate electrodes. A method of fabricating the nonvolatile memory device includes forming the first storage node films, forming the first control gate electrodes, forming the second storage node films, and forming the second control gate electrodes.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park
  • Patent number: 8017481
    Abstract: A memory cell is provided including a tunnel dielectric layer overlying a semiconductor substrate. The memory cell also includes a floating gate having a first portion overlying the tunnel dielectric layer and a second portion in the form of a nanorod extending from the first portion. In addition, a control gate layer is separated from the floating gate by an intergate dielectric layer.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: September 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D. V. Nirmal Ramaswamy
  • Publication number: 20110215393
    Abstract: A device for monitoring charging effects includes a semiconductor substrate having a surface region. The device also includes first, second, and third doped regions spaced apart in the semiconductor substrate and a dielectric layer overlying the surface region. The device also includes a first gate overlying a first portion of the dielectric layer disposed between the first and the second doped regions, and a second gate overlying a second portion of the dielectric layer disposed between the second and the third doped regions, the second gate being characterized by a first surface area. Moreover, the device has a conductive layer electrically coupled to the second gate for collecting plasma charges. The conductive layer is characterized by a second surface area. The first gate is connected to a conductor that is coupled to a bias voltage, and the second gate is a floating gate that is not connected to any voltage.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 8, 2011
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: JIUUN-JER YANG
  • Patent number: 7999307
    Abstract: A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Hyung Kim, Jung-Dal Choi, Jang-Hyun You
  • Patent number: 7994004
    Abstract: A flash NAND type EEPROM system with individual ones of an array of charge storage elements, such as floating gates, being capacitively coupled with at least two control gate lines. The control gate lines are preferably positioned between floating gates to be coupled with sidewalls of floating gates. The memory cell coupling ratio is desirably increased, as a result. Both control gate lines on opposite sides of a selected row of floating gates are usually raised to the same voltage while the second control gate lines coupled to unselected rows of floating gates immediately adjacent and on opposite sides of the selected row are kept low. The control gate lines can also be capacitively coupled with the substrate in order to selectively raise its voltage in the region of selected floating gates. The length of the floating gates and the thicknesses of the control gate lines can be made less than the minimum resolution element of the process by forming an etch mask of spacers.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 9, 2011
    Assignee: Sandisk Technologies Inc.
    Inventor: Eliyahou Harari
  • Publication number: 20110189829
    Abstract: A memory device includes a first active region on a substrate and first and second source/drain regions on the substrate abutting respective first and second sidewalls of the first active region. A first gate structure is disposed on the first active region between the first and second source/drain regions. A second active region is disposed on the first gate structure between and abutting the first and second source/drain regions. A second gate structure is disposed on the second active region overlying the first gate structure.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Inventors: Eun-Jung Yun, Sung-Young Lee, Min-Sang Kim, Sung-Min Kim, Kyoung-Hwan Yeo
  • Patent number: 7977191
    Abstract: A method of forming a flash memory device includes forming a plurality of memory gates over a semiconductor substrate, forming an oxide film over the uppermost surface and sidewalls of the memory gates and then forming a plurality of selective gates on sidewalls of each of the memory gates.
    Type: Grant
    Filed: December 27, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ki-Jun Yun
  • Patent number: 7977190
    Abstract: A floating gate memory array comprising transistors having isolated inter-gate dielectric regions with respect to one another and methods of fabricating the same. Floating gate transistors are formed such that each of the floating gate transistors in the array has a floating gate, a control gate and an inter-gate dielectric layer therebetween. The inter-gate dielectric layer for each transistor is isolated from the inter-gate dielectric of each of the other transistors in the array. Methods of fabricating such structures are also provided.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: July 12, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Patent number: 7973357
    Abstract: Non-volatile memory devices are provided including a control gate electrode on a substrate; a charge storage insulation layer between the control gate electrode and the substrate; a tunnel insulation layer between the charge storage insulation layer and the substrate; a blocking insulation layer between the charge storage insulation layer and the control gate electrode; and a material layer between the tunnel insulation layer and the blocking insulation layer, the material layer having an energy level constituting a bottom of a potential well.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Suk Kim, Sun-Il Shim, Chang-Seok Kang, Won-Cheol Jeong, Jung-Dal Choi, Jae-Kwan Park, Seung-Hyun Lim, Sun-Jung Kim
  • Patent number: 7968935
    Abstract: A reconfigurable semiconductor device is disclosed. The semiconductor device includes a substrate, a first insulating material formed on the substrate, two channels having different polarities, a plurality of terminal electrodes formed on the insulating material and coupled in common with the channels at their opposite ends, a second insulating material formed on the terminal electrodes, and a control gate formed on the second insulating material. The channels have different polarity and a charge storage layer is formed inside the second insulating material. The control gate is applied with a forward bias or a reverse bias and then the bias is cut off. The voltage-current characteristics of the semiconductor device are changed according to an electrical charge created in the charge storage layer.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: June 28, 2011
    Assignee: Seoul National University Research & Development Business Foundation
    Inventors: Seunghun Hong, Sung Myung, Kwang Heo
  • Patent number: 7968399
    Abstract: Disclosed is a semiconductor device comprising a semiconductor substrate including first and second element-formation regions partitioned by an isolation trench, first and second lower gate insulating films formed on the first and second element-formation regions, first and second floating gates formed on the first and second lower gate insulating films, an isolation insulating film formed at least in the isolation trench and has a depression formed in an upper surface thereof, an upper gate insulating film formed on the first and second floating gates, and a control gate line including an opposed portion opposed to the first and second floating gates, with the upper gate insulating film being interposed, and a portion located inside the depression, the first floating gate including a side surface opposed to the second floating gate and entirely aligns with a side surface included in the first element-formation region and defined by the isolation trench.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: June 28, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Kitamura, Shigeki Sugimoto
  • Patent number: 7968408
    Abstract: A M-I-M capacitor semiconductor device capable of enhancing the reliability and capacitance of a capacitor and maximizing the integration density of the device, and a method of fabricating the same are disclosed. The semiconductor device includes a semiconductor substrate, a capacitor lower metal layer formed over the semiconductor substrate, a SiN capacitor dielectric layer having a thickness of approximately 30 nm or less formed over the capacitor lower metal layer, and a capacitor upper metal layer formed over a portion of the capacitor dielectric layer and overlapping with the capacitor lower metal layer.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 28, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Han-Choon Lee
  • Publication number: 20110140189
    Abstract: An electrically erasable programmable read-only memory includes a first polysilicon layer, a second polysilicon layer and a third polysilicon layer, the first polysilicon layer and the third polysilicon layer forming a control gate and the second polysilicon layer forming a floating gate. The first polysilicon layer is horizontally disposed in series with the second polysilicon layer and is connected to the third polysilicon layer, so that the control gate encloses all of the floating gate except for a tunnel surface of the floating gate.
    Type: Application
    Filed: June 9, 2010
    Publication date: June 16, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Jin-Yeon KANG
  • Patent number: 7955931
    Abstract: A method of fabricating a nanotube field-effect transistor having unipolar characteristics and a small inverse sub-threshold slope includes forming a local gate electrode beneath the nanotube between drain and source electrodes of the transistor and doping portions of the nanotube. In a further embodiment, the method includes forming at least one trench in the gate dielectric (e.g., a back gate dielectric) and back gate adjacent to the local gate electrode. Another aspect of the invention is a nanotube field-effect transistor fabricated using such a method.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Joerg Appenzeller, Phaedon Avouris, Yu-Ming Lin
  • Patent number: 7948026
    Abstract: A method of manufacturing a non-volatile semiconductor memory device including previously forming a recess in a first peripheral region on a semiconductor substrate, forming a first gate insulator having a first thickness in the recess, forming a second gate insulator having a second thickness less than the first thickness in an array region and a second peripheral region on the semiconductor substrate, successively depositing first and second gate electrode films and first and second mask insulators on each of the first and second gate insulators, forming an isolation trench on a surface of the semiconductor substrate to correspond to each position between the array region and the first and second regions of the peripheral region, depositing a buried insulator on the entire surface, and polishing an upper surface of the buried insulator so that the upper surface can be planarized.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 24, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Kamiya
  • Patent number: 7943464
    Abstract: Non-volatile field effect devices and circuits using same. A non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate have a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically positioned between one of the source, drain and gate and its corresponding terminal. The others of the source, drain and gate are directly connected to their corresponding terminals. The nanotube switching element is electromechanically-deflectable in response to electrical stimulation at two control terminals to create one of a non-volatile open and non-volatile closed electrical communication state between the one of the source, drain and gate and its corresponding terminal.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: May 17, 2011
    Assignee: Nantero, Inc.
    Inventors: John E. Berg, Claude L. Bertin, Thomas Rueckes
  • Patent number: 7939406
    Abstract: Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electronically connected to the first electrode layer via the open portion.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: May 10, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michiharu Matsui, Seiichi Mori, Riichiro Shirota, Yuji Takeuchi, Takeshi Kamigaichi
  • Patent number: 7928504
    Abstract: A semiconductor memory device and a method for manufacturing the same are disclosed, which reduce parasitic capacitance generated between a storage node contact and a bit line of a high-integration semiconductor device. A method for manufacturing a semiconductor memory device includes forming a buried word line in an active region of a cell region, forming an insulation layer in the cell region and a lower electrode layer of a gate in a peripheral region so that a height of the insulation layer is substantially equal to that of the lower electrode layer, and providing a first conductive layer over the cell region and the peripheral region to form a bit line layer and an upper electrode layer.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Woong Choi
  • Patent number: 7923769
    Abstract: A non-volatile memory cell including a substrate in which is formed a source region and a drain region defining a channel region between the source region and the drain region is provided. The non-volatile memory cell further includes a select gate structure overlying a first portion of the channel region. The non-volatile memory cell further includes a control gate structure formed overlying a second portion of the channel region, wherein the control gate structure includes a nanocrystal stack having a height, wherein the control gate structure has a convex shape in a corner region formed at an intersection of a first plane substantially parallel to a top surface of the substrate and a second plane substantially parallel to a side surface of the control gate structure, wherein a ratio of radius of the control gate structure in the corner region to the height of the nanocrystal stack is at least 0.5.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 12, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Brian A. Winstead
  • Patent number: 7923327
    Abstract: Provided are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device comprises: a control gate region formed by doping a semiconductor substrate with second impurities; an electron injection region formed by doping the semiconductor substrate with first impurities, where a top surface of the electron injection region includes a tip portion at an edge; a floating gate electrode covering at least a portion of the control gate region and the tip portion of the electron injection region; a first tunnel oxide layer interposed between the floating gate electrode and the control gate region; a second tunnel oxide layer interposed between the floating gate electrode and the electron injection region; a trench surrounding the electron injection region in the semiconductor substrate; and a device isolation layer pattern filled in the trench.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung Kun Park
  • Patent number: 7923328
    Abstract: A non-volatile memory cell including a substrate in which is formed a source region and a drain region defining a channel region between the source region and the drain region is provided. The non-volatile memory cell further includes a select gate structure overlying a first portion of the channel region. The non-volatile memory cell further includes a control gate structure formed overlying a second portion of the channel region, wherein the control gate structure includes a nanocrystal stack having a height, wherein the control gate structure has a convex shape in a corner region formed at an intersection of a first plane substantially parallel to a top surface of the substrate and a second plane substantially parallel to a side surface of the control gate structure, wherein a ratio of radius of the control gate structure in the corner region to the height of the nanocrystal stack is at least 0.5.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 12, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Brian A. Winstead
  • Publication number: 20110070707
    Abstract: In a method of manufacturing a NOR flash memory, two times of tilt ion implantation process are conducted to form a tilt-implanted source region, so as to improve the distribution of the source region in a semiconductor substrate and reduce the probability of short channel effect (SCE) between the drain regions and the source region in the NOR flash memory.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicant: EON SILICON SOLUTION INC.
    Inventor: Yung-Chung Lee
  • Patent number: 7910981
    Abstract: A semiconductor device having a non-volatile memory and a method of manufacturing the same are provided. The semiconductor device includes a base material and a stack structure. The stack structure disposed on the base material at least includes a tunneling layer, a trapping layer and a dielectric layer. The trapping layer is disposed on the tunneling layer. The dielectric layer has a dielectric constant and is disposed on the trapping layer. The dielectric layer is transformed from a first solid state to a second solid state when the dielectric layer undergoes a process.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: March 22, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Sheng-Chih Lai, Hang-Ting Lue
  • Patent number: 7902023
    Abstract: A non-volatile semiconductor storage device includes: a substrate; a control circuit layer provided on the substrate; a support layer provided on the control circuit layer; and a memory cell array layer provided on the support layer. The memory cell array layer includes: a first lamination part having first insulation layers and first conductive layers alternately laminated therein; and a second lamination part provided on either the top or bottom surface of the respective first lamination part and laminated so as to form a second conductive layer between second insulation layers. The control circuit layer includes at least any one of: a row decoder driving word lines provided in the memory cell array layer, and a sense amplifier sensing and amplifying a signal from bit lines provided in the memory cell array layer.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: March 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Izumi, Takeshi Kamigaichi
  • Publication number: 20110049603
    Abstract: Circuits and methods for providing a floating gate structure comprising floating gate cells having improved reverse tunnel disturb immunity. A floating gate structure is formed over a semiconductor substrate comprising a floating gate, a charge trapping dielectric layer is formed, and a control gate is formed. The floating gate structure has vertical sidewalls, one side adjacent a source region and one side adjacent a drain region. A symmetric sidewall dielectric is formed over the floating gate structure on both the source side and drain side regions. An asymmetric dielectric layer is formed over the drain side sidewall only. The use of the asymmetric sidewall on the drain side sidewall provides improved RTD immunity. Methods for forming the structure are disclosed.
    Type: Application
    Filed: July 1, 2010
    Publication date: March 3, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Yu Pan, Chung-Jen Hwang, Ming-Hui Shen
  • Patent number: 7897456
    Abstract: A non-volatile memory device includes a peripheral circuit region and a cell region. A method for fabricating the non-volatile memory device includes forming gate patterns over a substrate, the gate pattern including a tunnel insulation layer, a floating gate electrode, a charge blocking layer and a control gate electrode, and removing the control gate electrode and the charge blocking layer of the gate pattern formed in the peripheral circuit region.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Nam-Jae Lee
  • Patent number: 7897455
    Abstract: A semiconductor device manufacturing method includes forming a first insulating film on a semiconductor substrate containing silicon, the first insulating film having a first dielectric constant and constituting a part of a tunnel insulating film, forming a floating gate electrode film on the first insulating film, the floating gate electrode film being formed of a semiconductor film containing silicon, patterning the floating gate electrode film, the first insulating film, and the semiconductor substrate to form a first structure having a first side surface, exposing the first structure to an atmosphere containing an oxidizing agent, oxidizing that part of the floating gate electrode film which corresponds to a boundary between the first insulating film and the floating gate electrode film using the oxidizing agent, to form a second insulating film having a second dielectric constant smaller than the first dielectric constant and constituting a part of the tunnel insulating film.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Isao Kamioka
  • Patent number: 7892943
    Abstract: A first dielectric plug is formed in a portion of a trench that extends into a substrate of a memory device so that an upper surface of the first dielectric plug is recessed below an upper surface of the substrate. The first dielectric plug has a layer of a first dielectric material and a layer of a second dielectric material formed on the layer of the first dielectric material. A second dielectric plug of a third dielectric material is formed on the upper surface of the first dielectric plug.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Michael Violette
  • Patent number: 7888203
    Abstract: Nonvolatile memory devices and methods of making the same are described. A nonvolatile memory device includes a string selection transistor, a plurality of memory cell transistors, and a ground selection transistor electrically connected in series to the string selection transistor and to the pluralities of memory cell transistors. Each of the transistors includes a channel region and source/drain regions. First impurity layers are formed at boundaries of the channels and the source/drain regions of the memory cell transistors. The first impurity layers are doped with opposite conductivity type impurities relative to the source/drain regions of the memory cell transistors. Second impurity layers are formed at boundaries between a channel and a drain region of the string selection transistor and between a channel and a source region of the ground selection transistor.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jung-Dal Choi
  • Patent number: 7888204
    Abstract: A method of manufacturing a non-volatile memory device is provided. The method includes forming isolation patterns defining an active region on a substrate, forming a floating gate pattern on the active region, and forming a gate line on the floating gate pattern. The floating gate pattern is self-aligned on the active region and has an impurity ion concentration that becomes relatively low as the floating gate pattern gets nearer to the active region.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Ho-Min Son, Yong-Woo Hyung, Jae-Jong Han, Taek-Jin Lim
  • Patent number: 7888210
    Abstract: Fabricating semiconductor-based non-volatile memory that includes composite storage elements, such as those with first and second charge storage regions, can include etching more than one charge storage layer. To avoid inadvertent shorts between adjacent storage elements, a first charge storage layer for a plurality of non-volatile storage elements is formed into rows prior to depositing the second charge storage layer. Sacrificial features can be formed between the rows of the first charge storage layer that are adjacent in a column direction, before or after forming the rows of the first charge layer. After forming interleaving rows of the sacrificial features and the first charge storage layer, the second charge storage layer can be formed. The layers can then be etched into columns and the substrate etched to form isolation trenches between adjacent columns. The second charge storage layer can then be etched to form the second charge storage regions for the storage elements.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 15, 2011
    Assignee: SanDisk Corporation
    Inventors: Vinod Robert Purayath, George Matamis, Takashi Orimoto, James Kai
  • Patent number: 7888729
    Abstract: A first portion of a semiconductor substrate belonging to a flash memory device region is recessed to a recess depth to form a recessed region, while a second portion of the semiconductor substrate belonging to a logic device region is protected with a masking layer. A first gate dielectric layer and a first gate conductor layer formed within the recessed region such that the first gate conductive layer is substantially coplanar with the top surfaces of the shallow trench isolation structures. A second gate dielectric layer, a second gate conductor layer, and a gate cap hard mask layer, each having a planar top surface, is subsequently patterned. The pattern of the gate structure in the flash memory device region is transferred into the first gate conductor layer and the first gate dielectric layer to form a floating gate and a first gate dielectric, respectively.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Lawrence A. Clevenger, Timothy J. Dalton, Louis L. Hsu
  • Publication number: 20110032762
    Abstract: According to one embodiment, a multi-dot flash memory includes an active area, a floating gate arranged on the active area via a gate insulating film and having a first side and a second side facing each other in a first direction, a word line arranged on the floating gate via an inter-electrode insulating film, a first bit line arranged on the first side of the floating gate via a first tunnel insulating film and extending in a second direction intersecting the first direction, and a second bit line arranged on the second side of the floating gate via a second tunnel insulating film and extending in the second direction. The active area has a width in the first direction narrower than that between a center of the first bit line and a center of the second bit line.
    Type: Application
    Filed: August 27, 2010
    Publication date: February 10, 2011
    Inventors: Hiroshi WATANABE, Makoto Mizukami
  • Patent number: 7883964
    Abstract: A nonvolatile semiconductor memory includes: a device region and a device isolating region, which have a pattern with a striped form that extends in a first direction, and are alternately and sequentially disposed at a first pitch in a second direction that is perpendicular to the first direction; and a contact made of a first conductive material, which is connected to the device region and disposed at the first pitch in the second direction. On a cross section of the second direction, the bottom width of the contact is longer than the top width of the contact, and the bottom width is longer than the width of the device region.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Goda, Hiroyuki Nitta
  • Patent number: 7879679
    Abstract: A method for manufacturing an electronic component on a semiconductor substrate, including forming at least one opening in the substrate; forming in the bottom and on the walls of the opening and on the substrate an alternated succession of layers of a first material and of a second material, the second material being selectively etchable with respect to the first material and the substrate; trimming the layer portions of the first material and of the second material which are not located in the opening; selectively etching a portion of the first material to obtain trenches; and filling the trenches with at least one third material.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: February 1, 2011
    Assignee: STMicroelectronics Crolles 2 SAS
    Inventors: Oliver Kermarrec, Daniel Bensahel, Yves Campidelli
  • Patent number: 7858474
    Abstract: A nonvolatile semiconductor memory device is provided in such a manner that a semiconductor layer is formed over a substrate, a charge accumulating layer is formed over the semiconductor layer with a first insulating layer interposed therebetween, and a gate electrode is provided over the charge accumulating layer with a second insulating layer interposed therebetween. The semiconductor layer includes a channel formation region provided in a region overlapping with the gate electrode, a first impurity region for forming a source region or drain region, which is provided to be adjacent to the channel formation region, and a second impurity region provided to be adjacent to the channel formation region and the first impurity region. A conductivity type of the first impurity region is different from that of the second impurity region.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: December 28, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tamae Takano, Shunpei Yamazaki
  • Patent number: 7855114
    Abstract: A memory device may include a source region and a drain region formed in a substrate and a channel region formed in the substrate between the source and drain regions. The memory device may further include a first oxide layer formed over the channel region, the first oxide layer having a first dielectric constant, and a charge storage layer formed upon the first oxide layer. The memory device may further include a second oxide layer formed upon the charge storage layer, a layer of dielectric material formed upon the second oxide layer, the dielectric material having a second dielectric constant that is greater than the first dielectric constant, and a gate electrode formed upon the layer of dielectric material.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: December 21, 2010
    Assignee: Spansion LLC
    Inventors: Wei Zheng, Mark Randolph, Hidehiko Shiraiwa
  • Patent number: 7847337
    Abstract: A semiconductor device including a semiconductor substrate, and a memory cell and a peripheral circuit provided on the semiconductor substrate, the memory cell having a first insulating film, a first electrode layer, a second insulating film, and a second electrode layer provided on the semiconductor substrate in order, and the peripheral circuit having the first insulating film, the first electrode layer, the second insulating film having an opening for the peripheral circuit, and the second electrode layer electrically connected to the first electrode layer through the opening for the peripheral circuit, wherein a thickness of the first electrode layer under the second insulating film of the peripheral circuit is thicker than a thickness of the first electrode layer of the memory cell.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Iwase, Tadashi Iguchi
  • Publication number: 20100301403
    Abstract: A semiconductor device includes a source region within a semiconductor substrate, a drain region within the semiconductor substrate, a control gate over the semiconductor substrate and between the source region and the drain region, a first gate between the control gate and the drain region, and a first doped region within the semiconductor region and between the control gate and the first gate. The method of forming the semiconductor device may include depositing an electrode material over the semiconductor substrate, patterning the electrode material to form a control gate and a first gate, implanting a first doped region within the semiconductor substrate between the control gate and the first gate while using the control gate and the first gate as a mask, and implanting a source region within the semiconductor substrate.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Inventors: WON GI MIN, John L. Huber, Jiang-Kai Zuo
  • Patent number: 7842570
    Abstract: In methods of manufacturing a memory device, a tunnel insulation layer is formed on a substrate. A floating gate having a substantially uniform thickness is formed on the tunnel insulation layer. A dielectric layer is formed on the floating gate. A control gate is formed on the dielectric layer. A flash memory device including the floating gate may have more uniform operating characteristics.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Albert Fayrushin, Byung-Yong Choi, Choong-Ho Lee
  • Patent number: 7842573
    Abstract: A virtual ground memory array (VGA) is formed by a storage layer over a substrate with a conductive layer over the storage layer. The conductive layer is opened according to a patterned photoresist layer. The openings are implanted to form source/drain lines in the substrate, then filled with a layer of dielectric material. Chemical mechanical polishing (CMP) is then performed until the top of the conductive layer is exposed. This leaves dielectric spacers over the source/drain lines and conductive material between the dielectric spacers. Word lines are then formed over the conductive material and the dielectric spacers. As an alternative, instead of using a conductive layer, a sacrificial layer is used that is removed after the CMP step. After removing the sacrificial portions, the word lines are formed. In both cases, dielectric spacers reduce gate/drain capacitance and the distance from substrate to gate is held constant across the channel.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: November 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig T. Swift, Gowrishankar L. G. Chindalore, Laureen H. Parker
  • Patent number: 7842997
    Abstract: A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Hyung Kim, Jung-Dal Choi, Jang-Hyun You
  • Publication number: 20100296340
    Abstract: A method for manufacturing a nanotube non-volatile memory cell is proposed. The method includes the steps of: forming a source electrode and a drain electrode, forming a nanotube implementing a conduction channel between the source electrode and the drain electrode, forming an insulated floating gate for storing electric charges by passivating conductive nanoparticles with passivation molecules and arranging a disposition of passivated conductive nanoparticles on the nanotube, the conductive nanoparticles being adapted to store the electric charges and being insulated by the passivation molecules from the nanotube, and forming a control gate coupled with the channel.
    Type: Application
    Filed: September 8, 2006
    Publication date: November 25, 2010
    Inventors: Andrea Basco, Maria Viviana Volpe, Maria Fortuna Bevilacqua, Valeria Casuscelli
  • Patent number: 7811889
    Abstract: A fin field effect transistor (FinFET) memory cell and method of formation has a substrate for providing mechanical support. A first dielectric layer overlies the substrate. A fin structure overlies the dielectric layer and has a first current electrode and a second current electrode separated by a channel. A floating gate has a vertical portion that is adjacent to and electrically insulated from a side of the channel and has a horizontal portion overlying the first dielectric layer and extending laterally away from the channel. The floating gate stores electrical charge. A second dielectric layer is adjacent the floating gate. A control gate adjacent the second dielectric layer and physically separated from the floating gate by the second dielectric layer. The “L-shape” of the floating gate enhances capacitive coupling ratio between the control gate and the floating gate.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: October 12, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Vishal P. Trivedi, Leo Mathew
  • Patent number: 7807989
    Abstract: Provided is a phase-change memory using a single-element semimetallic thin film. The device includes a storage node having a phase-change material layer and a switching element connected to the storage node, wherein the storage node includes a single-element semimetallic thin film which is formed between an upper electrode and a lower electrode. Thus, the write speed of the phase-change memory can be increased compared with the case of a Ge—Sb—Te (GST) based material.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: October 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-yon Lee, Ki-joon Kim, Jun-ho Lee, Cheol-kyu Kim
  • Publication number: 20100244116
    Abstract: In one embodiment, an EEPROM device is formed to include a metal layer having an opening therethrough. The opening overlies a portion of a floating gate of the EEPROM device.
    Type: Application
    Filed: June 3, 2010
    Publication date: September 30, 2010
    Inventors: John J. Naughton, Matthew Tyler
  • Patent number: 7803683
    Abstract: A semiconductor device includes an insulating film formed above an upper surface of a semiconductor substrate and including a contact hole, the contact hole including an upper portion and a lower portion located on the upper portion via a boundary as a first lower end of the upper portion and a first upper end of the lower portion, the boundary including a second inner width same as the first inner width, the lower portion including a second lower end having a third inner width narrower than the second inner width, a first conductive plug made from polycrystalline silicon and formed in the lower portion of the contact hole so that the exposed upper surface of the substrate is in contact with the first conductive plug, and a second conductive plug formed on the first conductive plug and made from a conductive material different from the polycrystalline silicon.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: September 28, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takaharu Nishimura
  • Patent number: 7803682
    Abstract: A semiconductor memory device includes a plurality of memory transistors. Each of the memory transistors has: a floating gate electrode; an interelectrode insulating film; and a control gate electrode. The floating gate electrode includes, in a cross section taken along a bit line direction, a first conductive film, first sidewall insulating films opposed to each other across the first conductive film, and a second conductive film provided on the first sidewall insulating films and the first conductive film. The interelectrode insulating film is provided on the second conductive film. The control gate electrode includes a third conductive film provided on the interelectrode insulating film and a fourth conductive film provided on the third conductive film.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: September 28, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuaki Natori, Masayuki Tanaka, Akihito Yamamoto
  • Patent number: 7799629
    Abstract: A example embodiment may provide a memory device that may include an active pattern on a semiconductor substrate, a first charge trapping layer pattern on the active pattern, a first gate electrode on the first charge trapping layer pattern, a second charge trapping layer pattern on a sidewall of the active pattern in a first direction, a second gate electrode on the second charge trapping layer pattern in the first direction, and/or a source/drain region in the active pattern. The memory device may have improved integration by forming a plurality of charge trapping layer patterns on the same active pattern.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Na-Young Kim, Chang-Woo Oh, Sung-Hwan Kim, Yong-Lack Choi