Having Fuse Or Integral Short Patents (Class 438/281)
  • Patent number: 8110462
    Abstract: The present invention relates to electrostatic discharge (ESD) protection circuitry. Multiple techniques are presented to adjust one or more ends of one or more fingers of an ESD protection device so that the ends of the fingers have a reduced initial trigger or breakdown voltage as compared to other portions of the fingers, and in particular to central portions of the fingers. In this manner, most, if not all, of the adjusted ends of the fingers are likely to trigger or fire before any of the respective fingers completely enters a snapback region and begins to conduct ESD current. Consequently, the ESD current is more likely to be distributed among all or substantially all of the plurality of fingers rather than be concentrated within one or merely a few fingers. As a result, potential harm to the ESD protection device (e.g., from current crowding) is mitigated and the effectiveness of the device is improved.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: February 7, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Robert Michael Steinhoff
  • Patent number: 8101471
    Abstract: A programmable anti-fuse element includes a substrate (224), an N-well (426) in the substrate, an electrically insulating layer (427) over the N-well, and a gate electrode (430) over the electrically insulating layer. The gate electrode has n-type doping so that the N-well is able to substantially contain within its boundaries a current generated following a programming event of the programmable anti-fuse element. In the same or another embodiment, a twice-programmable fuse element (100) includes a metal gate fuse (110) and an oxide anti-fuse (120) such as the programmable anti-fuse element just described.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: January 24, 2012
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Chia-Hong Jan, Jie-Feng Lin, Chetan Prasad, Sangwoo Pae, Zhanping Chen, Anisur Rahman
  • Patent number: 8102019
    Abstract: A fuse structure for a semiconductor integrated circuit (IC) includes an anode comprising conductive material overlaying a diffusion material disposed within a substrate layer of the IC, wherein the diffusion material is electrically isolated from the substrate layer by at least one p-n junction. The fuse structure can include a cathode comprising conductive material overlaying the diffusion material. The fuse structure further can include a fuse link comprising conductive material overlaying the diffusion material, wherein a first end of the fuse link couples to the anode and a second end of the fuse link, that is distal to the first end, couples to the cathode.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: January 24, 2012
    Assignee: Xilinx, Inc.
    Inventors: Serhii Tumakha, Boon Y. Ang, Amit Ghia, Jan L. de Jong
  • Patent number: 8097515
    Abstract: A method for forming a nanowire field effect transistor (FET) device includes forming a nanowire over a semiconductor substrate, forming a gate structure around a portion of the nanowire, forming a capping layer on the gate structure; forming a first spacer adjacent to sidewalls of the gate and around portions of nanowire extending from the gate, forming a hardmask layer on the capping layer and the first spacer, removing exposed portions of the nanowire, epitaxially growing a doped semiconductor material on exposed cross sections of the nanowire to form a source region and a drain region, forming a silicide material in the epitaxially grown doped semiconductor material, and forming a conductive material on the source and drain regions.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Guy M. Cohen, Shreesh Narasimha, Jeffrey W. Sleight
  • Patent number: 8080861
    Abstract: A semiconductor device includes an electric fuse and first and second large area wirings for applying a voltage to the electric fuse. The electric fuse includes a fuse unit which includes an upper-layer fuse wiring, a lower-layer fuse wiring, and a via connecting the upper-layer fuse wiring and the lower-layer fuse wiring, an upper-layer lead-out wiring which connects the upper-layer fuse wiring and the first large area wiring and has a bent pattern, and a lower-layer lead-out wiring which connects the lower-layer fuse wiring and the second large area wiring and has a bent pattern.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 20, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Tsuda, Yoshitaka Kubota, Hiromichi Takaoka
  • Patent number: 8076733
    Abstract: Provided are an organic TFT that reduces contact resistance between a source and drain electrode and an organic semiconductor layer and that can be easily manufactured, a flat panel display device having the organic TFT, and methods of manufacturing the organic TFT and the flat panel display device having the same. The organic TFT includes; a substrate; a gate electrode and a blocking layer formed on the substrate; a gate insulating film covering the gate electrode and the blocking layer; a source electrode and a drain electrode located on the gate insulating film; an auxiliary source electrode and an auxiliary drain electrode respectively located on the source electrode and the drain electrode; and an organic semiconductor layer contacting the auxiliary source electrode and the auxiliary drain electrode.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: December 13, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Hun-Jung Lee, Sung-Jin Kim, Jong-Han Jeong
  • Patent number: 8076760
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 8071437
    Abstract: A method of fabricating an efuse, a resistor and a transistor includes the following steps: A substrate is provided. Then, a gate, a resistor and an efuse are formed on the substrate, wherein the gate, the resistor and the efuse together include a first dielectric layer, a polysilicon layer and a hard mask. Later, a source/drain doping region is formed in the substrate besides the gate. After that, the hard mask in the resistor and the efuse is removed. Subsequently, a salicide process is performed to form a silicide layer on the source/drain doping region, the resistor, and the efuse. Then, a planarized second dielectric layer is formed on the substrate and the polysilicon in the gate is exposed. Later, the polysilicon in the gate is removed to form a recess. Finally a metal layer is formed to fill up the recess.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 6, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Chang Lin, Kuei-Sheng Wu, Chang-Chien Wong, Ching-Hsiang Tseng
  • Patent number: 8053346
    Abstract: A gate in a semiconductor device is formed to have a dummy gate pattern that protects a gate. Metal lines are formed to supply power for a semiconductor device and transfer a signal. A semiconductor device includes a quad coupled receiver type input/output buffer. The semiconductor device is formed with a gate line that extends over an active region, and a gate pad located outside of the active region. The gate line and the gate pad are adjoined such that the gate line and a side of the gate pad form a line. Dummy gates may also be applied. The semiconductor device includes a first metal line patterns supplying power to a block having a plurality of cells, a second metal line pattern transferring a signal to the cells, and dummy metal line patterns divided into in a longitudinal direction.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: November 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Nam Gyu Ryu, Ho Ryong Kim, Won John Choi, Jae Hwan Kim, Seoung Hyun Kang, Young Hee Yoon
  • Patent number: 8053809
    Abstract: A device is provided that in one embodiment includes a substrate having a first region and a second region, in which a semiconductor device is present on a dielectric layer in the first region of the substrate and a resistive structure is present on the dielectric layer in the second region of the substrate. The semiconductor device may include a semiconductor body and a gate structure, in which the gate structure includes a gate dielectric material present on the semiconducting body and a metal gate material present on the gate dielectric material. The resistive structure may include semiconductor material having a lower surface is in direct contact with the dielectric layer in the second region of the substrate. The resistive structure may be a semiconductor containing fuse or a polysilicon resistor. A method of forming the aforementioned device is also provided.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ying Zhang
  • Patent number: 8035191
    Abstract: A contact efuse structure includes a silicon layer and a contact contacting the silicon layer with one end. When a voltage is applied to the contact, a void is formed at the end of the contact, and thus the contact is open. Such structure may be utilized in an efuse device or a read only memory. A method of making a contact efuse device and a method of making a read only memory are also disclosed.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: October 11, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Chang Lin, Kuei-Sheng Wu, San-Fu Lin, Hui-Shen Shih
  • Publication number: 20110241086
    Abstract: In sophisticated semiconductor devices, electronic fuses may be provided on the basis of a replacement gate approach by using the aluminum material as an efficient metal for inducing electromigration in the electronic fuses. The electronic fuse may be formed on an isolation structure, thereby providing an efficient thermal decoupling of the electronic fuse from the semiconductor material and the substrate material, thereby enabling the provision of efficient electronic fuses in a bulk configuration, while avoiding incorporation of fuses into the metallization system.
    Type: Application
    Filed: November 8, 2010
    Publication date: October 6, 2011
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Andreas Kurz, Christoph Schwan, Jan Hoentschel
  • Patent number: 7989914
    Abstract: An anti-fuse cell includes a standard MOS transistor of an integrated circuit, with source and drain regions covered with a metal silicide layer and at least one track of a resistive layer at least partially surrounding the MOS transistor, and adapted to pass a heating current such that the metal of said metal silicide diffuses across drain and/or source junctions.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: August 2, 2011
    Assignees: STMicroelectronics Crolles 2 SAS, Koninklijke Philips Electronics N.V.
    Inventors: Bertrand Borot, Roberto Maurizio Gonella, Sébastien Fabre
  • Patent number: 7982285
    Abstract: The present invention provides antifuse structures having an integrated heating element and methods of programming the same, the antifuse structures comprising first and second conductors and a dielectric layer formed between the conductors, where one or both of the conductors functions as both a conventional antifuse conductor and as a heating element for directly heating the antifuse dielectric layer during programming.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Byeongju Park, Subramanian S. Iyer, Chandrasekharan Kothandaraman
  • Patent number: 7915096
    Abstract: A semiconductor device includes a fuse pattern formed as conductive polymer layer having a low melting point. The fuse pattern is easily cut at low temperature to improve repair efficiency. The semiconductor device includes first and second fuse connecting patterns that are separated from each other by a distance, a fuse pattern including a conductive polymer layer formed between the first and second fuse connection patterns and connecting the first and second fuse connection patterns, and a fuse box structure that exposes the fuse pattern.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: March 29, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyung Jin Park
  • Patent number: 7892926
    Abstract: A method of forming a programmable fuse structure includes forming at least one shallow trench isolation (STI) in a substrate, forming an e-fuse over the at least one STI and depositing an interlevel dielectric (ILD) layer over the e-fuse. Additionally, the method includes removing at least a portion of the at least one STI under the e-fuse to provide an air gap below a portion of the e-fuse and removing at least a portion of the ILD layer over the e-fuse to provide the air gap above the portion of the e-fuse.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Karl W. Barth, Jeffrey P. Gambino, Tom C. Lee, Kevin S. Petrarca
  • Patent number: 7888771
    Abstract: An electronic fuse (“E-fuse”) has a silicide filament link extending along a gap between polysilicon structures formed on a silicon substrate. The silicide filament link extends across diffusions formed in the gap. A P-N junction between terminals of the E-fuse provides high resistivity after programming (fusing) the silicide filament link.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: February 15, 2011
    Assignee: Xilinx, Inc.
    Inventors: Lakhbeer Singh Sidhu, Srikanth Sundararajan, Michael J. Hart
  • Patent number: 7872327
    Abstract: A semiconductor integrated circuit device has: a layer insulating film formed on a semiconductor substrate; a fuse portion which is configured by an uppermost metal wiring layer that is formed on the layer insulating film; an inorganic insulating protective film which is formed on the metal wiring layer and the layer insulating film; and an organic insulating protective film which is formed on the inorganic insulating protective film. An opening is formed in the organic insulating protective film so that the inorganic insulating protective on the fuse portion is exposed. According to this configuration, it is not required to etch away the layer insulating film in order to form an opening above the fuse portion. Therefore, the time period required for forming the opening can be shortened and the whole production time period can be shortened.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventor: Katsuhiko Tsuura
  • Patent number: 7867832
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Haining S. Yang
  • Patent number: 7838358
    Abstract: An upper electrode of a capacitor has a two-layer structure of first and second upper electrodes. A gate electrode of a MOS field effect transistor and a fuse are formed by patterning conductive layers used to form the lower electrode, first upper electrode and second upper electrode of the capacitor. In forming a capacitor and a fuse on a semiconductor substrate by a conventional method, at least three etching masks are selectively used to pattern respective layers to form the capacitor and fuse before wiring connection. The number of etching masks can be reduced in manufacturing a semiconductor device having capacitors, fuses and MOS field effect transistors so that the number of processes can be reduced and it becomes easy to improve the productivity and reduce the manufacture cost.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: November 23, 2010
    Assignee: Yamaha Corporation
    Inventor: Masayoshi Omura
  • Patent number: 7833860
    Abstract: A recessed dielectric antifuse device includes a substrate and laterally spaced source and drain regions formed in the substrate. A recess is formed between the source and drain regions. A gate and gate oxide are formed in the recess and lightly doped source and drain extension regions contiguous with the laterally spaced source and drain regions are optionally formed adjacent the recess. Programming of the recessed dielectric antifuse is performed by application of power to the gate and at least one of the source region and the drain region to breakdown the dielectric, which minimizes resistance between the gate and the channel.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: November 16, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Dwayne Kreipl
  • Patent number: 7820493
    Abstract: A fuse structure, an integrated circuit including the structure, and methods for making the structure and (re)configuring a circuit using the fuse. The fuse structure generally includes (a) a conductive structure with at least two circuit elements electrically coupled thereto, (b) a dielectric layer over the conductive structure, and (c) a first lens over both the first dielectric layer and the conductive structure configured to at least partially focus light onto the conductive structure. The method of making the structure generally includes the steps of (1) forming a conductive structure electrically coupled to first and second circuit elements, (2) forming a dielectric layer thereover, and (3) forming a lens on or over the dielectric layer and over the conductive structure, the lens being configured to at least partially focus light onto the conductive structure.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: October 26, 2010
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Shuhua Yu, Roawen Chen, Albert Wu
  • Patent number: 7795094
    Abstract: A recessed dielectric antifuse device includes a substrate and laterally spaced source and drain regions formed in the substrate. A recess is formed between the source and drain regions. A gate and gate oxide are formed in the recess and lightly doped source and drain extension regions contiguous with the laterally spaced source and drain regions are optionally formed adjacent the recess. Programming of the recessed dielectric antifuse is performed by application of power to the gate and at least one of the source region and the drain region to breakdown the dielectric, which minimizes resistance between the gate and the channel.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: September 14, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Dwayne Kreipl
  • Patent number: 7791111
    Abstract: A semiconductor device has a plurality of fuse element portions each of which including a first fuse interconnect having a fuse to be portion, a second fuse interconnect connected to an internal circuit, a first impurity diffusion layer for electrically connecting the first fuse interconnect and the second fuse interconnect, and a second impurity diffusion layers. The first fuse interconnect, the second fuse interconnect, and the first impurity diffusion layer of each of the plurality of fuse element portions are arranged approximately parallel to one another at a predetermined pitch distance.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: September 7, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Kazumasa Kuroyanagi, Shoji Koyama
  • Patent number: 7781280
    Abstract: An upper electrode of a capacitor has a two-layer structure of first and second upper electrodes. A gate electrode of a MOS field effect transistor and a fuse are formed by patterning conductive layers used to form the lower electrode, first upper electrode and second upper electrode of the capacitor. In forming a capacitor and a fuse on a semiconductor substrate by a conventional method, at least three etching masks are selectively used to pattern respective layers to form the capacitor and fuse before wiring connection. The number of etching masks can be reduced in manufacturing a semiconductor device having capacitors, fuses and MOS field effect transistors so that the number of processes can be reduced and it becomes easy to improve the productivity and reduce the manufacture cost.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Yamaha Corporation
    Inventor: Masayoshi Omura
  • Patent number: 7772680
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7772047
    Abstract: A semiconductor device having a redistribution layer, and methods of forming same, are disclosed. After fabrication of semiconductor die on a wafer, a tape assembly is applied onto a surface of the wafer, in contact with the surfaces of each semiconductor die on the wafer. The tape assembly includes a backgrind tape as a base layer, and a film assembly adhered to the backgrind tape. The film assembly in turn includes an adhesive film on which is deposited a thin layer of conductive material. The redistribution layer pattern is traced into the tape assembly, using for example a laser. Thereafter, the unheated portions of the tape assembly may be removed, leaving the heated redistribution layer pattern on each semiconductor die.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 10, 2010
    Assignee: SanDisk Corporation
    Inventors: Chien-Ko Liao, Chin-Tien Chiu, Jack Chang Chien, Cheemen Yu, Hem Takiar
  • Publication number: 20100133649
    Abstract: A contact efuse structure includes a silicon layer and a contact contacting the silicon layer with one end. When a voltage is applied to the contact, a void is formed at the end of the contact, and thus the contact is open. Such structure may be utilized in an efuse device or a read only memory. A method of making a contact efuse device and a method of making a read only memory are also disclosed.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 3, 2010
    Inventors: Yung-Chang Lin, Kuei-Sheng Wu, San-Fu Lin, Hui-Shen Shih
  • Patent number: 7709329
    Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: May 4, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Martin B. Mollat, Tony Thanh Phan
  • Patent number: 7704805
    Abstract: A fuse structure, an integrated circuit including the structure, and methods for making the structure and (re)configuring a circuit using the fuse. The fuse structure generally includes (a) a conductive structure with at least two circuit elements electrically coupled thereto, (b) a dielectric layer over the conductive structure, and (c) a first lens over both the first dielectric layer and the conductive structure configured to at least partially focus light onto the conductive structure. The method of making the structure generally includes the steps of (1) forming a conductive structure electrically coupled to first and second circuit elements, (2) forming a dielectric layer thereover, and (3) forming a lens on or over the dielectric layer and over the conductive structure, the lens being configured to at least partially focus light onto the conductive structure.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: April 27, 2010
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Shuhua Yu, Roawen Chen, Albert Wu
  • Patent number: 7662674
    Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a metallic fuse structure by forming at least one via on a first interconnect structure, lining the at least one via with a barrier layer, and then forming a second interconnect structure on the at least one via.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 16, 2010
    Assignee: Intel Corporation
    Inventors: Jose A. Maiz, Jun He, Mark Bohr
  • Patent number: 7659601
    Abstract: A semiconductor device having a moisture-proof dam and a method of fabricating the same are provided. The semiconductor device includes an interlayer insulating layer provided on a substrate having a fuse region. A fuse guard dam is provided on the interlayer insulating layer to surround the fuse region. A cover insulating layer is provided on the interlayer insulating layer to cover the fuse guard dam and have a fuse window exposing a middle part of the fuse region, and at least two upper extension dams are provided in the cover insulating layer to sequentially surround the fuse region and be connected to the fuse guard dam.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: February 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Suk Park, Won-Chul Lee
  • Patent number: 7659168
    Abstract: In a first aspect, a first apparatus is provided. The first apparatus is an eFuse including (1) a semiconducting layer above an insulating oxide layer of a substrate; (2) a diode formed in the semiconducting layer; and (3) a silicide layer formed on the diode. Numerous other aspects are provided.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack A. Mandelman, William R. Tonti
  • Patent number: 7648870
    Abstract: A method of forming a fuse region in a semiconductor damascene process in which a specific layer is formed to prevent corrosion and re-connection of a severed part of the fuse region to prevent malfunction. A first conductive layer is formed over a substrate and an interlayer dielectric layer is deposited over the first conductive layer. A second conductive layer is buried in the interlayer dielectric layer by a dual damascene process to simultaneously form an interconnection and a fuse. The resultant structure is coated with a passivation layer. The fuse is cut to form a severed portion. A selective metal layer is deposited over the severed portion.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: January 19, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Se Yeul Bae
  • Patent number: 7642138
    Abstract: An anti-fuse memory cell having a variable thickness gate oxide. The variable thickness gate oxide has a thick gate oxide portion and a thin gate oxide portion, where the thing gate oxide portion has at least one dimension less than a minimum feature size of a process technology. The thin gate oxide can be rectangular in shape or triangular in shape. The anti-fuse transistor can be used in a two-transistor memory cell having an access transistor with a gate oxide substantially identical in thickness to the thick gate oxide of the variable thickness gate oxide of the anti-fuse transistor.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 5, 2010
    Assignee: Sidense Corporation
    Inventor: Wlodek Kurjanowicz
  • Patent number: 7629641
    Abstract: Non-volatile memory devices and arrays are described that utilize reverse mode non-volatile memory cells that have band engineered gate-stacks and nano-crystal charge trapping in EEPROM and block erasable memory devices, such as Flash memory devices. Embodiments of the present invention allow a reverse mode gate-insulator stack memory cell that utilizes the control gate for programming and erasure through a band engineered crested tunnel barrier. Charge retention is enhanced by utilization of high work function nano-crystals in a non-conductive trapping layer and a high K dielectric charge blocking layer. The band-gap engineered gate-stack with symmetric or asymmetric crested barrier tunnel layers of the non-volatile memory cells of embodiments of the present invention allow for low voltage tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: December 8, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7605059
    Abstract: A semiconductor device comprises: a MOS transistor including: a semiconductor substrate; a source region, formed in the semiconductor substrate, that comprises an impurity of a first conductive type; a drain region, formed in the semiconductor substrate, that comprises an impurity of the first conductive type; and a gate electrode, formed through a gate insulating film on the semiconductor substrate, between the source region and the drain region; an impurity region of the first conductive type formed in the semiconductor substrate; an impurity region of a second conductive type to be opposite to the first conductive type formed in the semiconductor substrate; and a wiring provided to connect each of the impurity region of the first conductive type and the impurity region of the second conductive type to the gate electrode.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 20, 2009
    Assignee: Fujifilm Corporation
    Inventors: Noriaki Suzuki, Masanori Nagase
  • Publication number: 20090224323
    Abstract: At least one MOS parameter of a MOS fuse is characterized to provide at least one MOS parameter reference value. Then, the MOS fuse is programmed by applying a programming signal to the fuse terminals so that programming current flows through the fuse link. The fuse resistance is measured to provide a measured fuse resistance associated with a first logic value. A MOS parameter of the programmed MOS fuse is measured to provide a measured MOS parameter value. The measured MOS parameter value is compared to the reference MOS parameter value to determine a second logic value of the MOS fuse, and a bit value is output based on the comparison.
    Type: Application
    Filed: March 6, 2008
    Publication date: September 10, 2009
    Applicant: XILINX, INC.
    Inventors: Hsung Jai Im, Sunhom Paak, Boon Yong Ang
  • Publication number: 20090224324
    Abstract: A semiconductor device includes a semiconductor substrate, and an electric fuse element, the electric fuse element including: first impurity-diffused layer regions formed in an active region of the semiconductor substrate; an insulating film formed on the semiconductor substrate between the first impurity-diffused layer regions; and a gate electrode formed on the insulating film, the insulating film including thermal oxide silicon films arranged immediately below both ends of the gate electrode in a gate-length direction thereof, and a high-k film arranged between the thermal oxide silicon films.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 10, 2009
    Applicant: ELPIDA MEMORY, INC.
    Inventor: NOBUYUKI NAKAMURA
  • Patent number: 7575950
    Abstract: A semiconductor device having improved performance and improvement manufacturing yield is provided. After a semiconductor integrated circuit including a phase change memory and a nonvolatile memory other than a phase change memory is formed in a semiconductor substrate, an inspection step such as a probe inspection is performed. In accordance with the result of the inspection, data is stored in the nonvolatile memory other than a phase change memory. At this stage, the data is not stored in the phase change memory. Then, the semiconductor substrate is cut by dicing or the like into separate pieces corresponding to individual semiconductor chips. Each of the separate pieces of semiconductor chips is packaged.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: August 18, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Kazuyoshi Shiba
  • Patent number: 7560345
    Abstract: A method for preventing charging damage during manufacturing of an integrated circuit design, having silicon over insulator (SOI) transistors. The method prevents damage from charging during processing to the gate of IC devices by assigning regions to the IC design such that the devices located within the regions have electrically independent nets, identifying devices that may have a voltage differential between the source or drain, and gate as susceptible devices within a given region, and connecting a element across the respective source or drain, and the gate of each of the susceptible devices such that the element is positioned within the region. The method includes connecting compensating conductors to an element to eliminate potential charging damage.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Jeffrey Scott Zimmerman
  • Patent number: 7554164
    Abstract: A method of deforming a pattern comprising the steps of: forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: June 30, 2009
    Assignee: NEC LCD Technologies, Ltd.
    Inventor: Shusaku Kido
  • Patent number: 7553704
    Abstract: An antifuse element (102, 152, 252, 302, 352, 402, 602, 652, 702) and method of fabricating the antifuse element, including a substrate material (101) having an active area (106) formed in an upper surface, a gate electrode (104) having at least a portion positioned above the active area (106), and a gate oxide layer (110) disposed between the gate electrode (104) and the active area (106). The gate oxide layer (110) including the fabrication of one of a gate oxide dip (128) or a gate oxide undercut (614). During operation a voltage applied between the gate electrode (104) and the active area (106) creates a current path through the gate oxide layer (110) and a rupture of the gate oxide layer (110) in a rupture region (130). The rupture region (130) defined by the oxide structure and the gate oxide dip (128) or the gate oxide undercut (614).
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: June 30, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Won Gi Min, Robert W. Baird, Jiang-Kai Zuo, Gordon P. Lee
  • Patent number: 7534671
    Abstract: A method for integrally forming a metal-oxide-semiconductor (MOS) device and an electrical fuse device on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. A dielectric layer is deposited over the isolation structure and the semiconductor substrate. A metal layer is deposited on the dielectric layer. A polysilicon layer is deposited on the metal layer. The dielectric layer, the metal layer and the polysilicon layer are patterned into a first stack of the dielectric layer, the metal layer and the polysilicon layer on the isolation structure for functioning as the electrical fuse device, and a second stack of the dielectric layer, the metal layer and the polysilicon layer on the semiconductor substrate for functioning as a gate of the MOS device.
    Type: Grant
    Filed: March 29, 2008
    Date of Patent: May 19, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chiang-Ming Chuang, Liang-Kai Han
  • Patent number: 7535078
    Abstract: A fuse (43) is formed overlying a passivation layer (35) and under a packaging material (55, 70). In one embodiment, a fuse (43) is blown before the packaging material (55, 70) is formed. In some embodiments, the fuse (43) may be formed of metal (47), a metal nitride (42) or a combination thereof.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: May 19, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thomas S. Kobayashi, Stephen G. Sheck, Scott K. Pozder
  • Patent number: 7531388
    Abstract: Electrically programmable fuse structures and methods of fabrication thereof are presented, wherein a fuse includes first and second terminal portions interconnected by an elongate fuse element. The first terminal portion has a maximum width greater than a maximum width of the fuse element, and the fuse includes a narrowed width region where the first terminal portion and fuse element interface. The narrowed width region extends at least partially into and includes part of the first terminal portion. The width of the first terminal portion in the narrowed region is less than the maximum width of the first terminal portion to enhance current crowding therein. In another implementation, the fuse element includes a restricted width region wherein width of the fuse element is less than the maximum width thereof to enhance current crowding therein, and length of the restricted width region is less than a total length of the fuse element.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 12, 2009
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., William R. Tonti, Jack A. Mandelman
  • Publication number: 20090108337
    Abstract: A method of protecting a transistor formed on a die of an integrated circuit is disclosed. The method comprises forming an active region of the transistor on the die; forming a gate of the transistor over the active region; coupling a primary contact to the gate of the transistor; coupling a programmable element between the gate of the transistor and a protection element; and decoupling the protection element from the gate of the transistor by way of the programmable element. Circuits for protecting a transistor formed on a die of an integrated circuit are also disclosed.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Applicant: Xilinx, Inc.
    Inventors: Yuhao Luo, Shuxian Wu, Xin X. Wu, Jae-Gyung Ahn, Deepak Kumar Nayak, Daniel Gitlin
  • Publication number: 20090102995
    Abstract: A width and a length of the electrostatic discharge (ESD) protection circuit are reduced by changing a connection structure of the electrostatic discharge protection circuit. The ESD protection circuit includes a plurality of gate electrodes disposed between odd signal lines and even signal lines adjacent to the odd signal lines among the signal lines; source/drain electrode pairs each disposed on a respective one of the gate electrodes to form a plurality of transistors; and connection nodes parallel to the source/drain electrode pairs, each connection node adjacent to a respective one of the source/drain electrodes pairs and on a respective one of the gate electrodes, wherein each of the connection nodes is directly connected to the source/drain electrode pair of an adjacent transistor and the gate electrode formed below the source/drain electrode through a contact part.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 23, 2009
    Inventors: Ju Han Kim, Jong Beom Lee
  • Publication number: 20090102014
    Abstract: An anti-fuse cell includes a standard MOS transistor of an integrated circuit, with source and drain regions covered with a metal silicide layer and at least one track of a resistive layer at least partially surrounding the MOS transistor, and adapted to pass a heating current such that the metal of said metal silicide diffuses across drain and/or source junctions.
    Type: Application
    Filed: December 23, 2005
    Publication date: April 23, 2009
    Applicants: STMicroelectronics Crolles 2 SAS, France and Koninklijke Philips Electronics N.V.
    Inventors: Bertrand Borot, Roberto Maurizio Gonella, Sebastien Fabre
  • Patent number: 7521266
    Abstract: A method for reducing the scrap rate of fuse structures after laser repairing is provided. The method includes providing a semiconductor wafer comprising integrated circuits, performing a yield test on the semiconductor wafer to determine defective circuits, predetermining a wavelength limit, and keeping the semiconductor wafer away from lights having wavelengths lower than the wavelength limit. The defects on the semiconductors wafer are repaired by burning laser fuses. For copper-based fuse structures, the wavelength limit is about 550 nm.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 21, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Jung Tseng, Chi Chang Su, Chien-Wu Chu, You-Wen Yau, Long Sheng Yeou