Using Platinum Group Metal (i.e., Platinum (pt), Palladium (pd), Rodium (rh), Ruthenium (ru), Iridium (ir), Osmium (os), Or Alloy Thereof) Patents (Class 438/575)
  • Patent number: 11807939
    Abstract: Provided is a method for depositing a metal thin film by atomic layer deposition (ALD) using an organometallic complex as a source material and without using radical species such as plasma and ozone, which have a possibility of deactivation. The method is an atomic layer deposition (ALD) method for metal thin films which includes: a process of supplying an organometallic complex having an aromatic anionic ligand and/or an alkyl ligand into a reaction chamber in which a substrate is installed; and a process of supplying a mixture gas containing a nucleophilic gas and an electrophilic gas into the reaction chamber, the ALD method substantially not using either one of a gas in a plasma or radical state and a gas containing oxygen atoms.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: November 7, 2023
    Assignee: KOJUNDO CHEMICAL LABORATORY CO., LTD.
    Inventors: Fumikazu Mizutani, Shintaro Higashi, Naoyuki Takezawa
  • Patent number: 9790595
    Abstract: Systems and methods of reducing outgassing of a substance within a reaction chamber of a reactor are disclosed. Exemplary methods include depositing a barrier layer within the reaction chamber and using a scavenging precursor to react with species on a surface of the reaction chamber. Exemplary systems include gas-phase deposition systems, such as atomic layer deposition systems, which include a barrier layer source and/or a scavenging precursor source fluidly coupled to a reaction chamber of the system.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: October 17, 2017
    Assignee: ASM IP Holding B.V.
    Inventors: Sung-Hoon Jung, Petri Raisanen, Eric Jen Cheng Liu, Mike Schmotzer
  • Patent number: 8999826
    Abstract: Method of producing a vertically inhomogeneous platinum or gold distribution in a semiconductor substrate with a first and a second surface opposite the first surface, with diffusing platinum or gold into the semiconductor substrate from one of the first and second surfaces of the semiconductor substrate, removing platinum- or gold-comprising residues remaining on the one of the first and second surfaces after diffusing the platinum or gold, forming a phosphorus- or boron-doped surface barrier layer on the first or second surface, and heating the semiconductor substrate for local gettering of the platinum or gold by the phosphorus- or boron-doped surface barrier layer.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: April 7, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Schmidt, Josef Bauer
  • Patent number: 8889537
    Abstract: A method for formation of a segregated interfacial dopant layer at a junction between a semiconductor material and a silicide layer includes depositing a doped metal layer over the semiconductor material; annealing the doped metal layer and the semiconductor material, wherein the anneal causes a portion of the doped metal layer and a portion of the semiconductor material to react to form the silicide layer on the semiconductor material, and wherein the anneal further causes the segregated interfacial dopant layer to form between the semiconductor material and the silicide layer, the segregated interfacial dopant layer comprising dopants from the doped metal layer; and removing an unreacted portion of the doped metal layer from the silicide layer.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Cryil Cabral, Jr., John M. Cotte, Dinesh R. Koli, Laura L. Kosbar, Mahadevaiyer Krishnan, Christian Lavoie, Stephen M. Rossnagel, Zhen Zhang
  • Patent number: 8796808
    Abstract: A MOS P-N junction Schottky diode device includes a substrate having a first conductivity type, a field oxide structure defining a trench structure, a gate structure formed in the trench structure and a doped region having a second conductivity type adjacent to the gate structure in the substrate. An ohmic contact and a Schottky contact are formed at different sides of the gate structure. The method for manufacturing such diode device includes several ion-implanting steps to form several doped sub-regions with different implantation depths to constitute the doped regions. The formed MOS P-N junction Schottky diode device has low forward voltage drop, low reverse leakage current, fast reverse recovery time and high reverse voltage tolerance.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: August 5, 2014
    Assignee: PFC Device Corp.
    Inventors: Kuo-Liang Chao, Hung-Hsin Kuo, Tse-Chuan Su
  • Publication number: 20130234278
    Abstract: The present disclosure relates to a Schottky contact for a semiconductor device. The semiconductor device has a body formed from one or more epitaxial layers, which reside over a substrate. The Schottky contact may include a Schottky layer, a first diffusion barrier layer, and a third layer. The Schottky layer is formed of a first metal and is provided over at least a portion of a first surface of the body. The first diffusion barrier layer is formed of a silicide of the first metal and is provided over the Schottky layer. The third layer is formed of a second metal and is provided over the first diffusion barrier layer. In one embodiment, the first metal is nickel, and as such, the silicide is nickel silicide. Various other layers may be provided between or above the Schottky layer, the first diffusion barrier layer, and the third layer.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: CREE, INC.
    Inventors: Helmut Hagleitner, Saptharishi Sriram
  • Patent number: 8487396
    Abstract: A Schottky photodiode may include a monocrystalline semiconductor substrate having a front surface, a rear surface, and a first dopant concentration and configured to define a cathode of the Schottky photodiode, a doped epitaxial layer over the front surface of the monocrystalline semiconductor substrate having a second dopant concentration less than the first dopant concentration, and parallel spaced apart trenches in the doped epitaxial layer and having of a depth less than a depth of the doped epitaxial layer.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 16, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventor: Massimo Cataldo Mazzillo
  • Patent number: 8440553
    Abstract: Method of producing a vertically inhomogeneous platinum or gold distribution in a semiconductor substrate with a first and a second surface opposite the first surface, with diffusing (100) platinum or gold into the semiconductor substrate from one of the first and second surfaces of the semiconductor substrate, removing (102) platinum- or gold-comprising residues remaining on the one of the first and second surfaces after diffusing the platinum or gold, forming (104) a phosphorus- or boron-doped surface barrier layer on the first or second surface, and heating (105) the semiconductor substrate for local gettering of the platinum or gold by the phosphorus- or boron-doped surface barrier layer.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: May 14, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Schmidt, Josef Bauer
  • Patent number: 8350290
    Abstract: Provided is a light-receiving device which has light-receiving sensitivity superior to that of a conventional Schottky diode type light-receiving device and also has sufficiently-strengthened junction of a Schottky electrode. A first contact layer formed of AlGaN and having conductivity, a light-receiving layer formed of AlGaN, and a second contact layer formed of AlN and having a thickness of 5 nm are epitaxially formed on a predetermined substrate in the stated order, and a second electrode is brought into Schottky junction with the second contact layer, to thereby form MIS junction. Further, after the Schottky junction, heat treatment is performed under a nitrogen gas atmosphere at 600° C. for 30 seconds.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: January 8, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Mitsuhiro Tanaka
  • Patent number: 8338241
    Abstract: Provided are a method of manufacturing a normally-off mode high frequency device structure and a method of simultaneously manufacturing a normally-on mode high frequency device structure and a normally-off mode high frequency device structure on a single substrate.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Sup Yoon, Byoung-Gue Min, Hokyun Ahn, Sang-Heung Lee, Hae Cheon Kim
  • Patent number: 8092721
    Abstract: Methods and compositions for the deposition of ternary oxide films containing ruthenium and an alkali earth metal.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: January 10, 2012
    Assignees: L'Air Liquide Societe Anonyme pour l'Etude Et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Satoko Gatineau, Julien Gatineau, Christian Dussarrat
  • Patent number: 7935620
    Abstract: Methods and apparatus are described for semiconductor devices. A method comprises providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor, and without removing the first mask, forming a Schottky contact of a first material on the exposed portion of the semiconductor, then removing the first mask, and using a further mask, forming a step-gate conductor of a second material electrically coupled to the Schottky contact and overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 3, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry, Chun-Li Liu, Karen E. Moore, Matthias Passlack
  • Patent number: 7923362
    Abstract: A method for manufacturing a metal-semiconductor contact in semiconductor Components is disclosed. There is a relatively high risk of contamination in the course of metal depositions in prior-art methods. In the disclosed method, the actual metal -semiconductor or Schottky contact is produced only after the application of a protective layer system, as a result of which it is possible to use any metals, particularly platinum, without the risk of contamination.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: April 12, 2011
    Assignee: TELEFUNKEN Semiconductors GmbH & Co. KG
    Inventors: Franz Dietz, Volker Dudek, Tobias Florian, Michael Graf
  • Patent number: 7902055
    Abstract: An embodiment of the invention is a Schottky diode 22 having a semiconductor substrate 3, a first metal 24, a barrier layer 26, and second metal 28. Another embodiment of the invention is a method of manufacturing a Schottky diode 22 that includes providing a semiconductor substrate 3, forming a barrier layer 26 over the semiconductor substrate 3, forming a first metal layer 23 over the semiconductor substrate 3, annealing the semiconductor substrate 3 to form areas 24 of reacted first metal and areas 23 of un-reacted first metal, and removing selected areas 23 of the un-reacted first metal. The method further includes forming a second metal layer 30 over the semiconductor substrate 3 and annealing the semiconductor substrate 3 to form areas 28 of reacted second metal and areas 30 of un-reacted second metal.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 8, 2011
    Assignee: Texas Instruments Incoprorated
    Inventors: Richard B. Irwin, Tony T. Phan, Hong-Ryong Kim, Ming-Yeh Chuang, Jennifer S. Dumin, Patrick J. Jones, Fredric D. Bailey
  • Publication number: 20100233836
    Abstract: A method for manufacturing a ZnO based compound semiconductor device including a contact for a p-type ZnO based compound semiconductor electrode is provided. The method includes forming a stacked body including a substrate, and an n-type ZnO based semiconductor layer and a p-type ZnO based semiconductor layer on the substrate, with the p-type ZnO based semiconductor layer exposed to outside. The stacked body is subjected to heat treatment so that a surface temperature of the p-type ZnO based semiconductor layer is in the range of 250° C. to 500° C. After the heat treatment, a p-side metal electrode is formed on the p-type ZnO based semiconductor layer at a temperature lower than 550° C. And an n-side metal electrode is formed on the n-type ZnO based semiconductor layer.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 16, 2010
    Applicant: Stanley Electric Co., Ltd.
    Inventors: Chizu KYOTANI, Michihiro Sano
  • Patent number: 7642121
    Abstract: A method is disclosed for fabricating an LED The method includes providing an LED chip having an epitaxial region comprising at least a p-type layer and an n-type layer, an ohmic contact formed on at least one of the p-type layer or the n-type layer, and a bond pad formed on the ohmic contact. The bond pad has a total volume less than about 3×10?5 mm3. The LED chip is bonded to a submount via thermocompression or thermosonic bonding.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 5, 2010
    Assignee: Cree, Inc.
    Inventors: David Beardsley Slater, Jr., John Adam Edmond
  • Patent number: 7553746
    Abstract: A method for manufacturing electrodes on a semiconducting material of type II-VI or on a compound of this material. The electrodes are preferably in gold or platinum and are formed by electrochemical deposition of gold or platinum from a solution of gold or platinum chloride in pure hydrochloric acid.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: June 30, 2009
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Gérard Petroz
  • Patent number: 7514344
    Abstract: A P+ base drawing diffusion region is formed on a substrate having an SOI structure. N+ emitter diffusion regions are formed on both sides of the P+ base drawing diffusion region through isolation insulating films interposed therebetween. A P type SOI layer, which serves as a base diffusion region, is formed so as to surround the N+ emitter diffusion regions, and conductive layers are formed thereon. Further, an N+ collector diffusion region is formed so as to surround the conductive layers.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 7, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Tatsuhiko Ikeda
  • Patent number: 7470605
    Abstract: Disclosed is a method for fabricating a MOS transistor. The present method includes the steps of: (a) forming a gate electrode including a gate insulating layer and a polysilicon gate conductive layer on an active region in a semiconductor substrate; (b) forming a metal layer over the substrate including the gate electrode; (c) heat-treating the substrate to form a polycide layer on a top surface and sidewalls of the gate electrode; (d) removing an unreacted portion of the metal layer; (e) removing the polycide layer from the top surface and sidewalls of the gate electrode, thus reducing a width of the gate electrode; and (f) forming source and drain regions in the active region adjacent to the gate electrode.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: December 30, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jong Min Kim
  • Patent number: 7393785
    Abstract: A method of forming a rhodium-containing layer on a substrate, such as a semiconductor wafer, using complexes of the formula LyRhYz is provided. Also provided is a chemical vapor co-deposited platinum-rhodium alloy barriers and electrodes for cell dielectrics for integrated circuits, particularly for DRAM cell capacitors. The alloy barriers protect surrounding materials from oxidation during oxidative recrystallization steps and protect cell dielectrics from loss of oxygen during high temperature processing steps. Also provided are methods for CVD co-deposition of platinum-rhodium alloy diffusion barriers.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Stefan Uhlenbrock, Eugene P. Marsh
  • Publication number: 20080146010
    Abstract: A semiconductor component (1) has a semiconductor chip (5) and a semiconductor component carrier (3) with external connection strips (12, 13, 15). The semiconductor chip (5) has a first electrode (6) and a control electrode (7) on its top side (8) and a second electrode (9) on its rear side (10). The semiconductor chip (5) is fixed by its top side (8) in flip-chip arrangement (11) on a first and a second external connection strip (12, 13) for the first electrode (6) and the control electrode (7). The second electrode (9) is electrically connected to at least one third external connection strip (15) via a bonding tape (14).
    Type: Application
    Filed: January 3, 2007
    Publication date: June 19, 2008
    Inventors: Khalil Hosseini, Alexander Koenigsberger, Ralf Otremba, Klaus Schiess
  • Patent number: 7378310
    Abstract: A method for manufacturing a memory device having a metal nanocrystal charge storage structure. A substrate is provided and a first layer of dielectric material is grown on the substrate. A layer of metal oxide having a first heat of formation is formed on the first layer of dielectric material. A metal layer having a second heat of formation is formed on the metal oxide layer. The second heat of formation is greater than the first heat of formation. The metal oxide layer and the metal layer are annealed which causes the metal layer to reduce the metal oxide layer to metallic form, which then agglomerates to form metal islands. The metal layer becomes oxidized thereby embedding the metal islands within an oxide layer to form a nanocrystal layer. A control oxide is formed over the nanocrystal layer and a gate electrode is formed on the control oxide.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: May 27, 2008
    Assignees: Spansion LLC, Advanced Micro Devices, Inc.
    Inventors: Connie Pin-Chin Wang, Zoran Krivokapic, Suzette Keefe Pangrle, Robert Chiu, Lu You
  • Patent number: 7226861
    Abstract: A method of forming a rhodium-containing layer on a substrate, such as a semiconductor wafer, using complexes of the formula LyRhYz is provided. Also provided is a chemical vapor co-deposited platinum-rhodium alloy barriers and electrodes for cell dielectrics for integrated circuits, particularly for DRAM cell capacitors. The alloy barriers protect surrounding materials from oxidation during oxidative recrystallization steps and protect cell dielectrics from loss of oxygen during high temperature processing steps. Also provided are methods for CVD co-deposition of platinum-rhodium alloy diffusion barriers.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: June 5, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Stefan Uhlenbrock, Eugene P. Marsh
  • Patent number: 7141498
    Abstract: A method of forming an ohmic contact on a substrate composed of a wide-band gap semiconductor material includes: depositing a transition metal group metal on the substrate; annealing the substrate at a high temperature to cause a solid state chemical reaction between the substrate and the deposited metal that forms a modified layer in the substrate having modified properties different than the substrate, and by-products composed of a silicide and a nanocrystalline graphite layer; selectively etching the substrate to remove one or more of the by-products of the solid state chemical reaction from a surface of the substrate; and depositing a metal film composed of a transition group metal over the modified layer on the substrate to form the ohmic contact. The modified layer permits formation of the ohmic contact without high temperature annealing after depositing the metal film.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: November 28, 2006
    Assignees: Denso Corporation, The University of Newcastle upon Tyne
    Inventors: Rajesh Kumar Malhan, Yuichi Takeuchi, Irina Nikitina, Konstantin Vassilevski, Nicholas Wright, Alton Horsfall
  • Patent number: 7064408
    Abstract: A power Schottky rectifier device having pluralities of trenches are disclosed. The Schottky barrier rectifier device includes field oxide region having p-doped region formed thereunder to avoid premature of breakdown voltage and having a plurality of trenches formed in between field oxide regions to increase the anode area thereto increase forward current capacity or to shrinkage the planar area for driving the same current capacity. Furthermore, the trenches have rounded corners to alleviate current leakage and LOCOS region in the active region to relief stress during the bonding process. The processes for power Schottky barrier rectifier device including termination region formation need only three masks and thus can gain the benefits of cost down.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: June 20, 2006
    Assignees: Chip Integration Tech Co., Ltd.
    Inventor: Shye-Lin Wu
  • Patent number: 7056841
    Abstract: A method for fabricating a semiconductor device for reducing coupling noise resulting from high integration of devices, comprises the steps of forming a plurality of metal wiring leads spaced from each other by a predetermined distance and arranged on a semiconductor substrate having a predetermined under layer; forming an insulating interlayer on an entire surface of the semiconductor substrate so that the metal wiring leads are covered with the insulating interlayer; and ion-implanting conductive impurities having a plurality opposite to each other into side end layers of the insulating interlayer disposed between the metal wiring leads so as to reduce the internal charges electrified due to an applied external electric field.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 6, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kang Tae Park
  • Patent number: 6927166
    Abstract: A method of manufacturing a semiconductor device having a metal layer is provided in which variation of surface morphology resulting from thermal oxidation is suppressed. The metal layer is pretreated at a first temperature so that an upper surface of the metal layer is changed into a mixed phase of metal and oxygen and becomes substantially resistant to further oxidation during a subsequent heating at a higher temperature in an oxygen atmosphere.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: August 9, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-ae Chung, Doo-sup Hwang, Cha-young Yoo
  • Patent number: 6852612
    Abstract: The semiconductor device of the present invention includes: a gallium nitride (GaN) compound semiconductor layer; and a Schottky electrode formed on the GaN compound semiconductor layer, wherein the Schottky electrode contains silicon.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: February 8, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Katsunori Nishii, Yoshito Ikeda, Hiroyuki Masato, Kaoru Inoue
  • Patent number: 6846731
    Abstract: In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 25, 2005
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Yicheng Lu, Haifeng Sheng, Sriram Muthukumar, Nuri William Emanetoglu, Jian Zhong
  • Patent number: 6825073
    Abstract: A Schottky diode structure and a method of making the same are disclosed. The method comprises following steps: firstly, a semiconductor substrate having a first conductive layer and an epi-layer doped with the same type impurities is provided. Then a first oxide layer is form on the epi layer. A patterning step to pattern first oxide layer and recess the epi layer (optional) is then followed to define guard rings. After stripping the photoresist pattern, a polycrystalline silicon layer formation is then followed. A boron and/or BF2+ ion implant is then performed. Subsequently, a high temperature drive in process and oxidation process to oxidize the polycrystalline silicon layer and drive ions is then carried out. A second mask and etch steps are then performed to open the active regions. A metallization process is then done. A third mask and etch steps are then implemented to define anode. Finally, a backside metal layer is then formed and serves as a cathode.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: November 30, 2004
    Assignee: Chip Integration Tech Co., Ltd.
    Inventor: Shye-Lin Wu
  • Publication number: 20040161891
    Abstract: A WN film serving as an adhesive layer is deposited over the sidewalls and bottom surface of a hole in a silicon oxide film where an information storage capacitor is to be formed. A Ru film to serve as a lower electrode for the information storage capacitor is formed above the WN film by CVD using Ru(HFAC)3, H2O and H2 as ingredients, so that a ratio of partial pressure of H2O to H2 is controlled to be in the area below a curve (a). When the Ru film is formed by CVD utilizing hydrolysis, the film quality of the Ru film can be enhanced. The ratio of partial pressure of H2O to H2 is controlled, whereby oxidation of the Ru film can be suppressed. When it is controlled to be in the area below a curve (b) to form the Ru film, oxidation of the WN film can be suppressed.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Inventor: Masayuki Suzuki
  • Patent number: 6734086
    Abstract: A WN film serving as an adhesive layer is deposited over the sidewalls and bottom surface of a hole in a silicon oxide film where an information storage capacitor is to be formed. A Ru film to serve as a lower electrode for the information storage capacitor is formed above the WN film by CVD using Ru(HFAC)3, H2O and H2 as ingredients, so that a ratio of partial pressure of H2O to H2 is controlled to be in the area below a curve (a). When the Ru film is formed by CVD utilizing hydrolysis, the film quality of the Ru film can be enhanced. The ratio of partial pressure of H2O to H2 is controlled, whereby oxidation of the Ru film can be suppressed. When it is controlled to be in the area below a curve (b) to form the Ru film, oxidation of the WN film can be suppressed.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: May 11, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Masayuki Suzuki
  • Patent number: 6683001
    Abstract: A method of manufacturing a semiconductor device having a metal layer is provided in which variation of surface morphology resulting from thermal oxidation is suppressed. The metal layer is pretreated at a first temperature so that an upper surface of the metal layer is changed into a mixed phase of metal and oxygen and becomes substantially resistant to further oxidation during a subsequent heating at a higher temperature in an oxygen atmosphere.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: January 27, 2004
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Eun-ae Chung, Doo-sup Hwang, Cha-young Yoo
  • Patent number: 6667196
    Abstract: High quality epitaxial layers of monocrystalline oxide materials (24) are grown overlying monocrystalline substrates such as large silicon wafers (22) using RHEED information to monitor the growth rate of the growing film. The monocrystalline oxide layer (24) may be used to form a compliant substrate for monocrystalline growth of additional layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (24) on a silicon wafer (22) spaced apart from the silicon wafer (22) by an amorphous interface layer of silicon oxide (28). The amorphous interface layer (28) dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer (24).
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: December 23, 2003
    Assignee: Motorola, Inc.
    Inventors: Zhiyi Yu, Ravindranath Droopad, Corey Overgaard
  • Patent number: 6656823
    Abstract: Method for forming a Schottky contact in a semiconductor device includes a step of preparing an n type GaN group compound semiconductor layer, such as AlxGa1-xN and InxGa1-xN. At least one metal layer including a ruthenium component layer is formed on the n type GaN group compound semiconductor layer as a rectifying junction metal. The rectifying junction metal may be used as a gate of a field effect transistor, or an electrode of a Schottky diode. The ruthenium oxide has a low cost, is stable to heat and chemical, and has excellent electric characteristics. The application of the ruthenium oxide to the rectifying junction metal enhances performances, such as UV ray detection, of electronic devices and optical devices operable at an elevated temperature.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: December 2, 2003
    Assignee: LG Electronics Inc.
    Inventors: Suk Hun Lee, Yong Hyun Lee, Jung Hee Lee, Sung Ho Hahm
  • Publication number: 20030119271
    Abstract: A method of fabricating a ferroelectric capacitor is disclosed. The method comprises the decreases a reduction in a bottom electrode material during formation of the ferroelectric dielectric portion of the capacitor. In the above manner, a fatigue resistance of the ferroelectric capacitor is increased substantially.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Sanjeev Aggarwal, Stephen R. Gilbert, Scott R. Summerfelt
  • Publication number: 20030113985
    Abstract: This invention has an objective to provide a field effect transistor semiconductor which has great adhesiveness between a gate metal and an insulating film defining a gate electrode end and to improve production yield thereof.
    Type: Application
    Filed: September 8, 1999
    Publication date: June 19, 2003
    Inventors: SHIGEYUKI MURAI, EMI FUJII, SHIGEHARU MATSUSHITA, HISAAKI TOMINAGA
  • Patent number: 6576524
    Abstract: A method of making a flat capacitor includes forming at least one recess on an inside surface of a metal foil blank, leaving a surrounding peripheral flange. A coating performing as an electrode of the capacitor is applied to the inside surface of the metal foil blank and an ion-permeable separator is placed on that inside surface of the metal foil blank. A substantially planar anode with a protruding lead is placed in the recess with the lead extending through a hole of the metal foil blank. Thereafter, the metal foil blank is folded along a line intersecting the hole so that the anode is sandwiched between parts of the separator and the separator is in contact with the coating on the inside surface of the metal foil blank. In the folding process, parts of the peripheral flange of the metal foil blank are brought into contact with each other and these parts are sealed to each other to form a hermetically sealed metal foil case of the capacitor.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: June 10, 2003
    Assignee: Evans Capacitor Company Incorporated
    Inventors: David A. Evans, Ross Blakeney
  • Patent number: 6576481
    Abstract: When films of Ru(C2H5C5H4)2 are formed on a substrate by means of a thermal CVD method, the films are also deposited on members around the substrate, resulting in the formation of particles on the substrate and hence a reduction in the manufacturing yield. Thus, it is necessary to clean the interior of the reaction chamber, but in a conventional cleaning process, a cleaning time is long and hence manufacturing efficiency is low, increasing manufacturing costs. To improve these, a method of manufacturing semiconductor devices according to the present invention includes: a deposition process for forming a film containing Ru on a substrate in a reaction chamber; and a cleaning process for supplying a ClF3 gas to the reaction chamber so as to remove films, which were deposited on an inner surface of the reaction chamber in the deposition process, through thermochemical reactions.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: June 10, 2003
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Hideharu Itatani, Masayuki Tsuneda, Atsushi Sano, Tsukasa Ohoka
  • Publication number: 20030013284
    Abstract: Power combining amplifiers using two different monocrystalline materials in a monolithic device are provided. High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
    Type: Application
    Filed: July 16, 2001
    Publication date: January 16, 2003
    Applicant: MOTOROLA, INC.
    Inventors: Rudy M. Emrick, Nestor J. Escalera
  • Patent number: 6448162
    Abstract: A method for producing a Schottky diode formed of a doped guard ring in an edge area of the Schottky contact is described. The guard ring is produced by depositing a high barrier material, especially made of platinum, on the surface of the semiconductor layer. The surface is provided with a structured masking layer beforehand, and which is subsequently etch-backing.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: September 10, 2002
    Assignee: Infineon Technologies AG
    Inventors: Reinhard Losehand, Hubert Werthmann
  • Publication number: 20020102826
    Abstract: A ruthenium electrode with a low amount of oxygen contamination and high thermal stability is formed by a chemical vapor deposition method. In the chemical vapor deposition method using an organoruthenium compound as a precursor, the introduction of an oxidation gas is limited to when the precursor is supplying, and the reaction is allowed to occur at a low oxygen partial pressure. Consequently, it is possible to form a ruthenium film with a low amount of oxygen contamination. Further, after formation of the ruthenium film, annealing at not less than the formation temperature is performed, thereby forming a ruthenium film with high thermal stability.
    Type: Application
    Filed: December 18, 2001
    Publication date: August 1, 2002
    Inventors: Yasuhiro Shimamoto, Masahiko Hiratani, Yuichi Matsui, Satoshi Yamamoto, Toshihide Nabatame, Toshio Ando, Hiroshi Sakuma, Shinpei Iljima
  • Patent number: 6388272
    Abstract: Ohmic and rectifying contacts to a TaC layer on an n-type or p-type area of an SiC substrate are formed by depositing a WC layer over the TaC layer, followed by a metallic W layer. Such contacts are stable to at least 1150° C. Electrodes connect to the contacts either directly or via a protective bonding layer such as Pt or PtAu alloy through a dielectric layer.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: May 14, 2002
    Assignee: Caldus Semiconductor, Inc.
    Inventor: Bruce Odekirk
  • Patent number: 6271131
    Abstract: A method of forming a rhodium-containing layer on a substrate, such as a semiconductor wafer, using complexes of the formula LyRhYz is provided. Also provided is a chemical vapor co-deposited platinum-rhodium alloy barriers and electrodes for cell dielectrics for integrated circuits, particularly for DRAM cell capacitors. The alloy barriers protect surrounding materials from oxidation during oxidative recrystallization steps and protect cell dielectrics from loss of oxygen during high temperature processing steps. Also provided are methods for CVD co-deposition of platinum-rhodium alloy diffusion barriers.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: August 7, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Stefan Uhlenbrock, Eugene P. Marsh
  • Patent number: 6268230
    Abstract: By providing an area where an Au film 28b is removed and a Ti film 28a is exposed along the plane tangent to the side where the p-n junction of a semiconductor chip is exposed, sticking of the Au film 28b to the chip side or protruding of the film as a flash from the side is prevented, which normally provides a starting place for creep of a solder 42 on the chip side, which in turn causes p-n junction short-circuiting when dividing of chips.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: July 31, 2001
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Toshiaki Kuniyasu
  • Patent number: 6229193
    Abstract: A Schottky rectifier has multiple stages with substantially identical or very similar structures. Each stage includes a nitride-based semiconductor layer, a Schottky contact formed on one surface of the semiconductor layer, and an ohmic contact formed on an opposite surface of the semiconductor layer. The Schottky layer is formed from a metallic material with a high metal work function, and the ohmic contact is formed from a metallic material with a low metal work function. At least one of the stages is a middle stage located between two adjacent stages, such that the Schottky contact of the middle stage and the ohmic contact of one of the adjacent stages are joined together, and such that the ohmic contact of the middle stage and the Schottky contact of another one of the adjacent stages are joined together.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: May 8, 2001
    Assignee: California Institute of Technology
    Inventors: Zvonimir Z. Bandic, Eric C. Piquette, Thomas C. McGill
  • Patent number: 6184564
    Abstract: A schottky diode is formed of a sintered barrier metal layer which contacts a lightly doped silicon surface. The barrier metal layer is formed of palladium as well as a small quantity of another metal whose choice is determined by the desired value of the barrier height of the resulting schottky diode. A small quantity of platinum is selected to increase the barrier height, and a small quantity of nickel is selected to decrease the barrier height. A contact metal, which may include a tri-metal layer of titanium, nickel and silver, is formed atop the sintered schottky barrier layer. The resulting process also allows for control of reverse hot leakage current.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: February 6, 2001
    Assignee: International Rectifier Corp.
    Inventor: Herbert J. Gould
  • Patent number: 6150246
    Abstract: Metallic osmium on SiC (either .beta. or .alpha.) forms a contact that remains firmly attached to the SiC surface and forms an effective barrier against diffusion from the conductive metal. On n-type SiC, Os forms an abrupt Schottky rectifying junction having essentially unchanged operating characteristics to at least 1050.degree. C. and Schottky diodes that remain operable to 1175.degree. C. and a barrier height over 1.5 ev. On p-type SiC, Os forms an ohmic contact with specific contact resistance of <10.sup.-4 ohm-cm.sup.2. Ohmic and rectifying contacts to a TiC layer on a SiC substrate are formed by depositing a WC layer over the TiC layer, followed by a metallic W layer. Such contacts are stable to at least 1150.degree. C. Electrodes connect to the contacts either directly or via a protective bonding layer such as Pt or PtAu alloy.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: November 21, 2000
    Assignee: 3C Semiconductor Corporation
    Inventor: James D. Parsons
  • Patent number: 6087702
    Abstract: A method for forming a Schottky diode structure is disclosed. The method includes the steps of: a) Providing a substrate; b) forming a rare-earth containing layer over the substrate; and c) forming a metal layer over the rare-earth containing layer. The Schottky diode structure with a rare-earth containing layer has the properties of high-temperature stability, high Schottky barrier height (SBH), and low reverse leakage current.
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: July 11, 2000
    Assignee: National Science Council
    Inventors: Liann-Be Chang, Hang-Thung Wang
  • Patent number: 6033929
    Abstract: A II-VI group compound semiconductor device includes a semiconductor substrate, a Zn.sub.X Mg.sub.1-X S.sub.Y Se.sub.1-Y (0.ltoreq.X.ltoreq.1, 0.ltoreq.Y.ltoreq.1) semiconductor layer formed on the semiconductor substrate, and an electrode layer formed on the semiconductor layer, the electrode layer containing an additive element of Cd or Te and a metal which can form a eutectic alloy with the additive element, thus achieving an electrode layer having a small contact resistance, especially an electrode layer with an ohmic contact.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: March 7, 2000
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masanori Murakami, Yasuo Koide, Nobuaki Teraguchi