Utilizing Multilayered Mask Patents (Class 438/671)
  • Publication number: 20140065822
    Abstract: A method for forming a pattern according to an embodiment, includes forming a first film pattern having a wide width dimension above a processed film; forming a second film pattern covering a portion of the first film pattern and a third film pattern connected to the second film pattern together above the processed film, the third film pattern having a width dimension narrower than the first film pattern, and to be a line pattern of a line and space pattern; forming a fourth film pattern on a side face of the first film pattern and a plurality of film patterns by the fourth film to be a line pattern of a line and space pattern on both side faces of the third film pattern; and removing the second film pattern and the third film pattern.
    Type: Application
    Filed: December 7, 2012
    Publication date: March 6, 2014
    Inventor: Yuji KOBAYASHI
  • Patent number: 8658526
    Abstract: A method is provided that includes forming completely distinct first features above a substrate, forming sidewall spacers on the first features, filling spaces between adjacent sidewall spacers with filler features, and removing the sidewall spacers. Numerous other aspects are provided.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: February 25, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Huiwen Xu, Yung-Tin Chen, Steven J. Radigan
  • Patent number: 8652965
    Abstract: One object of the present invention is to provide a method for producing a thick film metal electrode that is able to form a positive-negative reverse type resist, which has a thickness of 7 ?m or more and excellent in-plane uniformity, on the circuit element formed on the silicon carbide substrate, and a method for producing a thick film resist, and the present invention provides a method for producing a thick film resist wherein a first positive-negative reverse type resist having a first viscosity is formed on an upper surface of a circuit element layer which is treated with HMDS, and a second positive-negative reverse type resist having a second viscosity, which is larger than the first viscosity, on the first positive-negative reverse type resist such that a total thickness of the first and second positive-negative reverse type resists constituting a thick film resist be 7 ?m or more.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 18, 2014
    Assignee: Showa Denko K.K.
    Inventor: Kenji Suzuki
  • Patent number: 8629052
    Abstract: Semiconductor devices and methods of forming semiconductor devices are provided in which a plurality of patterns are simultaneously formed to have different widths and the pattern densities of some regions are increased using double patterning.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: January 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-ju Park, Jae-ho Min, Myeong-cheol Kim, Dong-chan Kim, Jae-hwang Sim
  • Publication number: 20140008806
    Abstract: Apparatuses and methods for stair step formation using at least two masks, such as in a memory device, are provided. One example method can include forming a first mask over a conductive material to define a first exposed area, and forming a second mask over a portion of the first exposed area to define a second exposed area, the second exposed area is less than the first exposed area. Conductive material is removed from the second exposed area. An initial first dimension of the second mask is less than a first dimension of the first exposed area and an initial second dimension of the second mask is at least a second dimension of the first exposed area plus a distance equal to a difference between the initial first dimension of the second mask and a final first dimension of the second mask after a stair step structure is formed.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 9, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Chang Wan Ha, Graham R. Wolstenholme, Deepak Thimmegowda
  • Patent number: 8603884
    Abstract: A method of fabricating a substrate includes forming first and second spaced features over a substrate. The first spaced features have elevationally outermost regions which are different in composition from elevationally outermost regions of the second spaced features. The first and second spaced features alternate with one another. Every other first feature is removed from the substrate and pairs of immediately adjacent second features are formed which alternate with individual of remaining of the first features. After such act of removing, the substrate is processed through a mask pattern comprising the pairs of immediately adjacent second features which alternate with individual of the remaining of the first features. Other embodiments are disclosed.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sills, Gurtej S. Sandhu, Anton deVilliers
  • Patent number: 8598036
    Abstract: A method for forming a fine pattern having a variable width by simultaneously using an optimal focused electron beam and a defocused electron beam in a light exposure process Includes, after forming a first film on a substrate, forming a first film pattern including a first level area and a second level area having different distances from the substrate by changing a profile of an upper surface of the first film. A photoresist film having a first area covering the first level area and a second area covering the second level area is formed. To simultaneously light-expose the first area and the second area with the same width, a light exposure condition, in which an optimal focused electron beam is eradiated on the first area and a defocused electron beam is eradiated on the second area, is applied.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yong-ju Jung
  • Publication number: 20130309858
    Abstract: A method of forming a plurality of spaced features includes forming sacrificial hardmask material over underlying material. The sacrificial hardmask material has at least two layers of different composition. Portions of the sacrificial hardmask material are removed to form a mask over the underlying material. Individual features of the mask have at least two layers of different composition, with one of the layers of each of the individual features having a tensile intrinsic stress of at least 400.0 MPa. The individual features have a total tensile intrinsic stress greater than 0.0 MPa. The mask is used while etching into the underlying material to form a plurality of spaced features comprising the underlying material. Other implementations are disclosed.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 21, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Farrell Good, Baosuo Zhou, Xiaolong Fang, Fatma Arzum Simsek-Ege
  • Patent number: 8586478
    Abstract: An improved method of making interconnect structures with self-aligned vias in semiconductor devices utilizes sidewall image transfer to define the trench pattern. The sidewall height acts as a sacrificial mask during etching of the via and subsequent etching of the trench, so that the underlying metal hard mask is protected. Thinner hard masks and/or a wider range of etch chemistries may thereby be utilized.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 19, 2013
    Assignees: Renesas Electronics Corporation, IBM Corporation
    Inventors: Eiichi Soda, Yunpeng Yin, Sivananda Kanakasabapathy
  • Patent number: 8580697
    Abstract: The present invention meets these needs by providing improved methods of filling gaps. In certain embodiments, the methods involve placing a substrate into a reaction chamber and introducing a vapor phase silicon-containing compound and oxidant into the chamber. Reactor conditions are controlled so that the silicon-containing compound and the oxidant are made to react and condense onto the substrate. The chemical reaction causes the formation of a flowable film, in some instances containing Si—OH, Si—H and Si—O bonds. The flowable film fills gaps on the substrates. The flowable film is then converted into a silicon oxide film, for example by plasma or thermal annealing. The methods of this invention may be used to fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 12, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Chi-I Lang, Judy H. Huang, Michael Barnes, Sunil Shanker
  • Patent number: 8563431
    Abstract: In a manufacturing process of a semiconductor device, a manufacturing technique for reducing the number of lithography processes using a photoresist and simplifying the process is provided, and the throughput is improved. An etching mask for forming a pattern of a layer to be processed such as a conductive layer or a semiconductor layer is manufactured without using a lithography technique that uses a photoresist. The etching mask is formed of a stacked layer structure of a light absorption layer and an insulating layer utilizing laser ablation by laser beam irradiation through a photomask.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: October 22, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Eiji Higa
  • Patent number: 8563410
    Abstract: A method for fabricating a semiconductor device is disclosed. The method includes forming at least one material layer over a substrate; performing an end-cut patterning process to form an end-cut pattern overlying the at least one material layer; transferring the end-cut pattern to the at least one material layer; performing a line-cut patterning process after the end-cut patterning process to form a line-cut pattern overlying the at least one material layer; and transferring the line-cut pattern to the at least one material layer.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 22, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Te S. Lin, Meng Jun Wang, Ya Hui Chang, Hui Ouyang
  • Patent number: 8558385
    Abstract: An interconnection architecture, for a semiconductor device (having regions arranged to include at least an inner region, an intermediate region located at least aside the inner region, and an outer region located at least on a side of the intermediate region opposite to the inner region, includes: one or more pairs of first and second signal lines, each pair extending from the inner region into the intermediate region; first portions and second portions of the first and second signal lines being parallel, respectively, the first portions being located in the inner region; the first and second portion of at least the first signal line not being collinear; and an intra-pair line-spacing, d(i), for each pair including the following magnitudes, d2 in the inner region, and d2? in the intermediate region, where d2<d2?.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaeman Yoon, Yungi Kim, Kangyoon Lee, Youngwoong Son
  • Patent number: 8546258
    Abstract: Metal contacts are formed within a string overhead area using a double patterning technology (DPT) process thereby allowing for the reduction of a string overhead area and a concomitant reduction in the chip size of a semiconductor device. A first mask pattern is formed by etching a first mask layer, the first mask pattern including a first opening formed in a cell region and a first hole formed in a peripheral region. A first sacrificial pattern is formed on the first mask pattern and the exposed first insulating layer of the cell region using a double patterning technology process. Contact holes are formed by exposing the target layer by etching the first insulating layer using the first mask pattern and the first sacrificial pattern as an etch mask. Metal contacts are then formed in the contact holes.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-cheol Kim, Dae-youp Lee
  • Patent number: 8530352
    Abstract: Some embodiments include methods of forming openings. For instance, a construction may have a material over a plurality of electrically conductive lines. A plurality of annular features may be formed over the material, with the annular features crossing the lines. A patterned mask may be formed over the annular features, with the patterned mask leaving segments of the annular features exposed through a window in the patterned mask. The exposed segments of the annular features may define a plurality of openings, and such openings may be transferred into the material to form openings extending to the electrically conductive lines.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Baosuo Zhou, Ming-Chuan Yang
  • Patent number: 8513114
    Abstract: An improved method of forming a semiconductor device including an interconnect layer formed using multilayer hard mask comprising metal mask and dielectric mask is provided. To form the second opening pattern being aligned to the first pattern, after the multilayer hard mask is used at the first step, then the dielectric mask is used to form a damascene structure in an insulator layer at the second step followed by removing the metal mask.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 20, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Masayoshi Tagami
  • Patent number: 8492249
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Nano-Electronic And Photonic Devices And Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8486831
    Abstract: A miniaturized semiconductor device is provided by reducing the design thickness of a wiring line protecting film covering the surface of a wiring layer, and reducing the distance between the wiring layer and via plugs formed by a self-aligning process. Dummy mask layers extending in the same layout pattern as the wiring layer is formed above the wiring layer covered with a protecting film composed of a cap layer and side wall layers. In the self-aligning process for forming via plugs in a self-aligned manner with the wiring layer and its protecting film, the thickness of the cap layer is reduced and the design interval between the via plugs is reduced, whereby the miniaturization of the semiconductor device is achieved.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 16, 2013
    Assignee: Elpida Memory, Inc
    Inventor: Hirotaka Kobayashi
  • Patent number: 8481426
    Abstract: A method of forming a pattern structure and a method of fabricating a semiconductor device using the pattern structure, are provided the method of forming the pattern structure includes forming a mask on an underlying layer formed on a lower layer. The underlying layer is etched using the mask as an etching mask, thereby forming patterns on the lower layer. The patterns define at least one opening. A sacrificial layer is formed in the opening and the mask is removed. The sacrificial layer in the opening is partially etched when the mask is removed.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-In Kim, Jaehee Oh, Kiseok Suh
  • Publication number: 20130157461
    Abstract: A method for fabricating a semiconductor device includes forming an etch-target layer over a substrate having a first region and a second region, stacking first and second hard mask layers over the etch-target layer, forming spacer patterns over the second hard mask layer of the first area, etching the second hard mask layer using the spacer patterns as an etch barrier, forming a hard mask pattern over the first hard mask layer of the second region, etching the first hard mask layer using the second hard mask layer of the first region and the hard mask pattern of the second region as etch barriers, removing the hard mask pattern of the second region, and etching the etch-target layer using the first and second hard mask layers of the first region and the first hard mask layer of the second region as etch barriers.
    Type: Application
    Filed: May 23, 2012
    Publication date: June 20, 2013
    Inventor: Won-Kyu KIM
  • Publication number: 20130149862
    Abstract: A method for forming a fine pattern having a variable width by simultaneously using an optimal focused electron beam and a defocused electron beam in a light exposure process Includes, after forming a first film on a substrate, forming a first film pattern including a first level area and a second level area having different distances from the substrate by changing a profile of an upper surface of the first film. A photoresist film having a first area covering the first level area and a second area covering the second level area is formed. To simultaneously light-expose the first area and the second area with the same width, a light exposure condition, in which an optimal focused electron beam is eradiated on the first area and a defocused electron beam is eradiated on the second area, is applied.
    Type: Application
    Filed: February 1, 2013
    Publication date: June 13, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Samsung Electronics Co., Ltd.
  • Patent number: 8461044
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case, capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, can be used to form the masking layer. The capping layer can be formed of an conductive material, a semiconductor material, or an insulative material, and can be formed using any appropriate process, including conventional deposition processes such as electroless deposition, chemical vapor deposition, physical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: June 11, 2013
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Patent number: 8455312
    Abstract: In high frequency circuits, the switching speed of devices is often limited by the series resistance and capacitance across the input terminals. To reduce the resistance and capacitance, the cross-section of input electrodes is made into a T-shape or inverted L-shape through lithography. The prior art method for the formation of cavities for T-gate or inverted L-gate is achieved through several steps using multiple photomasks. Often, two or even three different photoresists with different sensitivity are required. In one embodiment of the present invention, an optical lithography method for the formation of T-gate or inverted L-gate structures using only one photomask is disclosed. In another embodiment, the structure for the T-gate or inverted L-gate is formed using the same type of photoresist material.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 4, 2013
    Inventors: Cindy X. Qiu, Ishiang Shih, Chunong Qiu, Yi-Chi Shih, Julia Qiu
  • Patent number: 8445379
    Abstract: A method of manufacturing a semiconductor device including a plurality of hole patterns is disclosed. The method includes: forming a plurality of first line patterns and a plurality of first space patterns extending in a first direction; forming a plurality of second line patterns and a plurality of second space patterns extending in a second direction, on the plurality of first line patterns and the plurality of first space patterns; forming a plurality of first hole patterns where the plurality of first space patterns and the plurality of second space patterns cross each other; and forming a plurality of second hole patterns where the plurality of first line patterns and the plurality of second line patterns cross each other.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 21, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-chul Park, Sang-sup Jeong, Bok-yeon Won
  • Patent number: 8431474
    Abstract: A method for forming three-dimensional multilayer circuit includes forming an area distributed CMOS layer configured to selectively address a set of first vias and a set of second vias. A template is then aligned with the first set of vias and lower crossbar segments are created using the template. The template is then removed, rotated, and aligned with the set of second vias. Upper crossbar segments which attach to the second set of vias are then created.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 30, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Qiangfei Xia, Wei Wu
  • Publication number: 20130102151
    Abstract: A NAND flash memory device includes a plurality of continuous conductors disposed on a common level of a multilayer substrate, the plurality of continuous conductors including respective conductive lines extending in parallel along a first direction, respective contact pads disposed at ends of the respective conductive lines and respective conductive dummy lines extending in parallel from the contact pads along a second direction
    Type: Application
    Filed: December 10, 2012
    Publication date: April 25, 2013
    Inventors: Jang-ho Park, Jae-kwan Park, Dong-hwa Kwak, So-wi Jin, Byung-jun Hwang, Nam-su Lim
  • Patent number: 8420499
    Abstract: A method of forming a concave-convex pattern according to an embodiment includes: forming a guide pattern on a base material, the guide pattern having a convex portion; forming a formative layer on the guide pattern, the formative layer including a stacked structure formed by stacking a first layer and a second layer, the first layer including at least one element selected from a first metal element and a metalloid element, the second layer including a second metal element different from the first metal element; selectively leaving the formative layer only at side faces of the convex portions by performing etching on the formative layer; removing the guide pattern; and forming the concave-convex pattern in the base material by performing etching on the base material, with the remaining formative layer being used as a mask.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomotaka Ariga, Yuichi Ohsawa, Junichi Ito, Yoshinari Kurosaki, Saori Kashiwada, Toshiro Hiraoka, Minoru Amano, Satoshi Yanagi
  • Patent number: 8399357
    Abstract: A method of manufacturing a semiconductor device is disclosed. The method forms a semiconductor device including a workpiece structure having a first region and second region located adjacent to the first region formed therein. The first region includes a first pattern and the second region includes a second pattern having at least a greater pattern width or a smaller aspect ratio than the first pattern. The method includes forming the first pattern by providing a first film having a first contact angle at a top portion thereof and the second pattern by providing a second film having a second contact angle less than the first contact angle at a top portion thereof; cleaning the first and the second regions by a chemical liquid; rinsing the cleaned first and the second regions by a rinse liquid; and drying the rinsed first and the second regions.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Ogawa, Tatsuhiko Koide, Shinsuke Kimura
  • Patent number: 8399359
    Abstract: A manufacturing method for a dual damascene structure includes providing a substrate having a dielectric layer, a first hard mask layer and a second hard mask layer sequentially formed thereon, performing a first double patterning process to sequentially form a plurality of first trench openings and a plurality of second trench openings in the second hard mask layer, performing a second double patterning process to sequentially form a plurality of first via openings and a plurality of second via openings in the fist hard mask layer, and transferring the first trench openings, the second trench openings, the first via openings, and the second via openings to the dielectric layer to form a plurality of dual damascene openings.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: March 19, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shougang Mi, Duan Quan Liao
  • Publication number: 20130059437
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device includes forming a film containing boron on a semiconductor substrate, forming a film containing silicon oxide on the film containing boron, patterning the film containing silicon oxide and etching the film containing boron with a gas containing chlorine by using the patterned film containing silicon oxide as a mask.
    Type: Application
    Filed: March 8, 2012
    Publication date: March 7, 2013
    Inventor: Yusuke KASAHARA
  • Patent number: 8389405
    Abstract: A method for forming a fine pattern having a variable width by simultaneously using an optimal focused electron beam and a defocused electron beam in a light exposure process Includes, after forming a first film on a substrate, forming a first film pattern including a first level area and a second level area having different distances from the substrate by changing a profile of an upper surface of the first film. A photoresist film having a first area covering the first level area and a second area covering the second level area is formed. To simultaneously light-expose the first area and the second area with the same width, a light exposure condition, in which an optimal focused electron beam is eradiated on the first area and a defocused electron beam is eradiated on the second area, is applied.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: March 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yong-ju Jung
  • Patent number: 8349630
    Abstract: The present invention provides methods for manufacturing a thin film transistor (TFT) array substrate and a display panel. The method for manufacturing the TFT array substrate comprises the following steps: forming a plurality of gate electrodes, a gate insulating layer, a semiconductor layer, an ohmic contact layer, an electrode layer and a photo-resist layer on a transparent substrate in sequence; using a multi tone mask to pattern the photo-resist layer; forming a plurality of source electrodes and a plurality of drain electrodes at both sides of the channels, respectively; heating the photo-resist layer; etching the semiconductor layer; removing the photo-resist layer; forming a passivation layer on the channels, the source electrodes and the drain electrodes; and forming a pixel electrode layer on the passivation layer. The present invention can reduce an amount of the required masks in the fabrication process, and only one wet etching is required to etch the metal material on the TFT array substrate.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: January 8, 2013
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Jehao Hsu, Jingfeng Xue, Xiaohui Yao
  • Patent number: 8324094
    Abstract: A semiconductor device includes a plurality of first interconnection layers which are provided in an insulating layer and formed in a pattern having a width and space smaller than a resolution limit of an exposure technique, and a second interconnection layer which is provided between the first interconnection layers in the insulating layer and has a width larger than that of a first interconnection layer. A space between the second interconnection layer and each of first interconnection layers adjacent to both sides of the second interconnection layer equals the space between the first interconnection layers.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Endo, Tatsuya Kato
  • Patent number: 8318520
    Abstract: The present invention provides a “microminiaturizing method of nano-structure” with fabricating process steps as follows: First deposit the material of molecule or atom state on the top-opening of the nano cylindrical pore, which having formed on the substrate, so that the diameter of said top-opening gradually reduce to become a reduced nano-aperture, whose opening diameter is smaller than that of said top-opening; Then, directly pass the deposit material of gas molecule or atom state through said reduced nano-aperture; thereby a nano-structure of nano quantum dot, nano rod or nano ring with smaller nano scale is directly formed on the surface of said substrate, which being laid beneath the bottom of said nano cylindrical pore.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: November 27, 2012
    Inventor: Ming -Nung Lin
  • Patent number: 8309460
    Abstract: Provided are methods of manufacturing semiconductor devices by which two different kinds of contact holes with different sizes are formed using one photolithography process. The methods include preparing a semiconductor substrate in which an active region is titled in a diagonal direction. A hard mask is formed on the entire surface of the semiconductor substrate. A mask hole is patterned not to overlap a word line. A first oxide layer is deposited on the hard mask, and the hard mask is removed to form a piston-shaped sacrificial pattern. A first polysilicon (poly-Si) layer is deposited on the sacrificial pattern and patterned to form a cylindrical first sacrificial mask surrounding the piston-shaped sacrificial pattern. A second oxide layer is coated on the first sacrificial mask to such an extent as to form voids. A second poly-Si layer is deposited in the voids and patterned to form a pillar-shaped second sacrificial mask. The second oxide layer is removed to expose the active region.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Ik Kim, Ho-Jun Yi
  • Patent number: 8298928
    Abstract: A method for manufacturing a semiconductor device of one embodiment of the present invention includes: forming an insulation layer to be processed over a substrate; forming a first sacrificial layer in a first area over the substrate, the first sacrificial layer being patterned to form in the first area a functioning wiring connected to an element; forming a second sacrificial layer in a second area over the substrate, the second sacrificial layer being patterned to form in the second area a dummy wiring; forming a third sacrificial layer at a side wall of the first sacrificial layer and forming a fourth sacrificial layer at a side wall of the second sacrificial layer, the third sacrificial layer and the fourth sacrificial layer being separated; forming a concavity by etching the insulation layer to be processed using the third sacrificial layer and the fourth sacrificial layer as a mask; and filling a conductive material in the concavity.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: October 30, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kosuke Yanagidaira, Chikaaki Kodama
  • Patent number: 8298931
    Abstract: A method for fabricating a 3-D monolithic memory device in which a via and trench are etched using an amorphous carbon hard mask. The via extends in multiple levels of the device as a multi-level vertical interconnect. The trench extends laterally, such as to provide a word line or bit line for memory cells, or to provide other routing paths. A dual damascene process can be used in which the via is formed first and the trench is formed second, or the trench is formed first and the via is formed second. The technique is particularly suitable for deep via applications, such as for via depths of greater than 1 ?m. A dielectric antireflective coating, optionally with a bottom antireflective coating, can be used to etch an amorphous carbon layer to provide the amorphous carbon hard mask.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 30, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Usha Raghuram, Michael W. Konevecki
  • Patent number: 8288272
    Abstract: A semiconductor device includes a plurality of first interconnection layers which are provided in an insulating layer and formed in a pattern having a width and space smaller than a resolution limit of an exposure technique, and a second interconnection layer which is provided between the first interconnection layers in the insulating layer and has a width larger than that of a first interconnection layer. A space between the second interconnection layer and each of first interconnection layers adjacent to both sides of the second interconnection layer equals the space between the first interconnection layers.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: October 16, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Endo, Tatsuya Kato
  • Patent number: 8288289
    Abstract: A method of fabricating a semiconductor device, the method including providing a substrate; forming an underlying layer on the substrate; forming a sacrificial layer on the underlying layer; forming an opening in the sacrificial layer by patterning the sacrificial layer such that the opening exposes a predetermined region of the underlying layer; forming a mask layer in the opening; forming an oxide mask by partially or completely oxidizing the mask layer; removing the sacrificial layer; and etching the underlying layer using the oxide mask as an etch mask to form an underlying layer pattern.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: October 16, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-Ho Jeong, Jang-Eun Lee, Se-Chung Oh, Suk-Hun Choi, Jea-Hyoung Lee, Woo-Jin Kim, Woo-Chang Lim
  • Patent number: 8283251
    Abstract: A method for manufacturing a wafer level package including: forming a redistribution line connected to a top surface of a die pad on a wafer with the die pad; additionally preparing a carrier film including a metal post with a concave central portion on one surface; bonding the metal post to a top surface of the redistribution line; molding a space between the metal posts with a molding resin; and removing the carrier film.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 9, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Seoup Lee, Sung Yi
  • Patent number: 8273634
    Abstract: A method of fabricating a substrate includes forming first and second spaced features over a substrate. The first spaced features have elevationally outermost regions which are different in composition from elevationally outermost regions of the second spaced features. The first and second spaced features alternate with one another. Every other first feature is removed from the substrate and pairs of immediately adjacent second features are formed which alternate with individual of remaining of the first features. After such act of removing, the substrate is processed through a mask pattern comprising the pairs of immediately adjacent second features which alternate with individual of the remaining of the first features. Other embodiments are disclosed.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 25, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sills, Gurtej S. Sandhu, Anton deVilliers
  • Publication number: 20120230134
    Abstract: The disclosed embodiments provide a sense amplifier for a dynamic random-access memory (DRAM). This sense amplifier includes a bit line to be coupled to a cell to be sensed in the DRAM, and a complement bit line which carries a complement of a signal on the bit line. The sense amplifier also includes a p-type field-effect transistor (PFET) pair comprising cross-coupled PFETs that selectively couple either the bit line or the complement bit line to a high bit-line voltage. The sense amplifier additionally includes an n-type field effect transistor (NFET) pair comprising cross-coupled NFETs that selectively couple either the bit line or the complement bit line to ground. This NFET pair is lightly doped to provide a low threshold-voltage mismatch between NFETs in the NFET pair. In one variation, the gate material for the NFETs is selected to have a work function that compensates for a negative threshold voltage in the NFETs which results from the light substrate doping.
    Type: Application
    Filed: November 19, 2010
    Publication date: September 13, 2012
    Applicant: RAMBUS INC.
    Inventors: Thomas Vogelsang, Gary B. Bronner
  • Patent number: 8241992
    Abstract: Methods for producing air gap-containing metal-insulator interconnect structures for VLSI and ULSI devices using a photo-patternable low k material as well as the air gap-containing interconnect structure that is formed are disclosed. More particularly, the methods described herein provide interconnect structures built in a photo-patternable low k material in which air gaps are defined by photolithography in the photo-patternable low k material. In the methods of the present invention, no etch step is required to form the air gaps. Since no etch step is required in forming the air gaps within the photo-patternable low k material, the methods disclosed in this invention provide highly reliable interconnect structures.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Maxime Darnon, Qinghuang Lin, Anthony D. Lisi, Satyanarayana V. Nitta
  • Patent number: 8236697
    Abstract: A method for manufacturing a semiconductor device which includes fine patterns having various critical dimensions (CDs) by adjusting a thickness of spacer used as an etching mask in Spacer Patterning Technology (SPT). The method for manufacturing a semiconductor device includes forming spacers at a different level over an etching target layer and etching the etching target layer exposed among the spacers.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong Sook Chang, Hyoung Soon Yune
  • Patent number: 8222051
    Abstract: There is disclosed a manufacturing method for exposure mask, which comprises acquiring a first information showing surface shape of surface of each of a plurality of mask substrates, and a second information showing the flatness of the surface of each of mask substrates before and after chucked on a mask stage of an exposure apparatus, forming a corresponding relation of each mask substrate, the first information and the second information, selecting the second information showing a desired flatness among the second information of the corresponding relation, and preparing another mask substrate having the same surface shape as the surface shape indicated by the first information in the corresponding relation with the selected second information, and forming a desired pattern on the above-mentioned another mask substrate.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: July 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masamitsu Itoh
  • Patent number: 8222140
    Abstract: Embodiments of the invention comprise pitch division techniques to extend the capabilities of lithographic techniques beyond their minimum pitch. The pitch division techniques described herein employ additional processing to ensure pitch divided lines have the spatial isolation necessary to prevent shorting problems. The pitch division techniques described herein further employ processing acts to increase the structural robustness of high aspect ratio features.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 17, 2012
    Assignee: Intel Corporation
    Inventors: Sanh D. Tang, Scott Sills, Haitao Liu
  • Patent number: 8216939
    Abstract: Some embodiments include methods of forming openings. For instance, a construction may have a material over a plurality of electrically conductive lines. A plurality of annular features may be formed over the material, with the annular features crossing the lines. A patterned mask may be formed over the annular features, with the patterned mask leaving segments of the annular features exposed through a window in the patterned mask. The exposed segments of the annular features may define a plurality of openings, and such openings may be transferred into the material to form openings extending to the electrically conductive lines.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Vishal Sipani, Baosuo Zhou, Ming-Chuan Yang
  • Patent number: 8203207
    Abstract: Provided are electronic device packages and their methods of formation. The electronic device packages include an electronic device mounted on a substrate, a conductive via and a locally thinned region in the substrate. The invention finds application, for example, in the electronics industry for hermetic packages containing an electronic device such as an IC, optoelectronic or MEMS device.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: June 19, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: James W. Getz, David W. Sherrer, John J. Fisher
  • Patent number: 8193090
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: June 5, 2012
    Assignee: Intermolecular, Inc.
    Inventors: David E. Lazovsky, Sandra G. Malhotra, Thomas R. Boussie
  • Patent number: 8183152
    Abstract: A method of fabricating a semiconductor device facilitates the forming of a conductive pattern of features having different widths. A conductive layer is formed on a substrate, and a mask layer is formed on the conductive layer. First spaced apart patterns are formed on the mask layer and a second pattern including first and second parallel portion is formed beside the first patterns on the mask layer. First auxiliary masks are formed over ends of the first patterns, respectively, and a second auxiliary mask is formed over the second pattern as spanning the first and second portions of the second pattern. The mask layer is then etched to form first mask patterns below the first patterns and a second mask pattern below the second pattern. The first and second patterns and the first and second auxiliary masks are removed. The conductive layer is then etched using the first and second mask patterns as an etch mask.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: May 22, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwang Sim, Yoon-Moon Park, Keon-Soo Kim, Min-Sung Song, Young-Ho Lee