Germanium Containing Patents (Class 501/42)
  • Patent number: 11254602
    Abstract: An optical glass includes La3+, Zn2+, Nb5+, and Ti4+ as a cation configuring glass. La3+, Zn2+, Nb5+, and Ti4+ which satisfy 10 cat %?La3+?20 cat %, 10 cat %?Zn2+?60 cat %, 20 cat %?Nb5+?60 cat %, and 0 cat %?Ti4+?40 cat % expressed by cation %.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 22, 2022
    Assignee: Canon Kabushiki Kaisha
    Inventor: Michio Endo
  • Patent number: 9767566
    Abstract: A method of analyzing the dimensions of an interior. The method comprises capturing a first image of the interior with a first camera of a mobile communication device and capturing a second image of the interior with a second camera of the mobile communication device. The method further comprises analyzing the first image and the second image by the mobile communication device and, based at least in part on the analysis of the first image and the second image, determining a three-dimensional model of the interior. The method further comprises transmitting a transaction by a radio transceiver of the mobile communication device, wherein the transaction is based on the three-dimensional model of the interior and wherein the transaction is one of an insurance claim estimate, a contractor material order, or a real-estate broker listing.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: September 19, 2017
    Assignee: Sprint Communications Company L.P.
    Inventors: Lyle W. Paczkowski, James V. Ralston, Dale S. Schempp, Jennifer P. Tarwater
  • Patent number: 9434636
    Abstract: The invention including phosphate optical glass with refractivity ranging from 1.93 to 1.95 and the Abbe number ranging from 16 to 19, with a low liquidus temperature. The phosphate optical glass, including: 5 to 25 wt % of NaPO3, 1 to 20 wt % of KPO3, 2 to 15 wt % of P2O5, 0 to 5 wt % of BaO, 0 to 10 wt % of Ba(PO3)2, more than 0 but less than 2 wt % of B2O3, 5 to 25 wt % of TiO2, 35 to 55 wt % of Nb2O5, and 0 to 5 wt % of SiO2. Refractivity of phosphate optical glass can reach 1.93 to 1.95, the Abbe number can reach 16 to 19, the liquidus temperature is below 1,120° C., the processing property during melting is good, the glass surface is unlikely to be devitrified during the processing of the glass, and can be formed easily.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: September 6, 2016
    Assignee: CDGM GLASS CO., LTD
    Inventor: Wei Sun
  • Patent number: 9145328
    Abstract: The present invention is aimed to provide a cost-effective optical glass with refractive index of 1.74-1.80 and Abbe number of 47-51 but containing no Gd2O3 and an optical element made hereof. The optical glass contains the following components according to percentage by weight: more than 2.7% but less than 10% of SiO2, 20-31% of B2O3, 38-49% of La2O3, more than 12% but less than 20% of Y2O3, more than 1% but less than 4% of ZnO, more than 0.5% but less than 3% of Nb2O5, wherein the content of ZnO is more than that of Nb2O5, 0-5% of Ta2O5, 0-5% of RO, wherein the RO is one or more of CaO, SrO and MgO, and content of ZrO2 is more than 6.7% but less than 15%. The present invention is a lanthanum borate glass containing no Gd2O3. A stable glass can be obtained by adjusting the content of La2O3, B2O3 and Y2O3.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: September 29, 2015
    Assignee: CDGM GLASS CO., LTD
    Inventor: Wei Sun
  • Patent number: 9040439
    Abstract: An optical glass including B3+, La3+ and Nb5+ as cationic components constituting the glass, wherein the optical glass satisfies the following expressions represented in cation percentages: 10 cat. %?B3+?50 cat. %; 40 cat. %?La3+?65 cat. %; 0 cat. %?Nb5+?40 cat. %; 80 cat. %?(total amount of B3++La3++Nb5+)?100 cat. %; and 0 cat. %?Si4+?10 cat. %; 0 cat. %?Ge4+?5 cat. %; 0 cat. %?Mg2+?5 cat. %; 0 cat. %?Ba2+?10 cat. %; 0 cat. %?Ca2+?10 cat. %; 0 cat. %?Sr2+?10 cat. %; 0 cat. %?Zn2+?20 cat. %; 0 cat. %?W6+?5 cat. %; 0 cat. %?Zr4+?5 cat. %; 0 cat. %?Ti4+?5 cat. %; 0 cat. %?Bi3+?5 cat. %; 0 cat. %?Ta5+?10 cat. %; 0 cat. %?(total amount of Y3++Gd3+)?20 cat. %; and 0 cat. %?(total amount of Yb3++Lu3+)?10 cat. %.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: May 26, 2015
    Assignees: Canon Kabushiki Kaisha, The University of Tokyo
    Inventors: Michio Endo, Shingo Eguchi, Hiroyuki Inoue, Atsunobu Masuno
  • Publication number: 20150126640
    Abstract: Disclosed herein are compositions and methods for making germanium-based glass polyalkenoate cements. Also disclosed are methods for their use as bone cements for bone augmentation procedures.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 7, 2015
    Inventors: Victoria Dickinson, Daniel Boyd, Brett Dickey, Sharon Kehoe
  • Publication number: 20150119228
    Abstract: The optical glass is described that may be an oxide glass including, denoted as cation %, a total of 5 to 60% of B3+ and Si4+ (with 5 to 50% of B3+), a total of equal to or higher than 5% of Zn2+ and Mg2+, a total of 10 to 50% of La3+, Gd3+, Y3+, and Yb3+, and a total of 6 to 45% of Ti4+, Nb5+, Ta5+, W6+, and Bi3+ (a total content of Ti4+ and Ta5+ being higher than 0% and a content of W6+ being higher than 5%).
    Type: Application
    Filed: April 24, 2013
    Publication date: April 30, 2015
    Applicant: HOYA CORPORATION
    Inventors: Tomoaki Negishi, Yasuhiro Fujiwara
  • Publication number: 20150094198
    Abstract: An optical glass is provided. The optical glass is suitable for use in optical elements including lenses, prisms, light guide rods, arrays, optical fibres, gradient components and optical windows in the fields of imaging, sensor technology, microscopy, medical technology, digital projection, telecommunication, optical messaging technology/information transmission, optics/illumination in the automotive sector, for solar technology, photolithography, steppers, excimer lasers, wafers, computer chips and/or integrated circuits and electronic instruments which contain such circuits and chips. The optical glass contains the components La2O3, B2O3, GeO2, HfO2 and In2O3 and in which the following components are present in the following proportions, in % by weight on an oxide basis: SiO2O2 1-8; Sb2O3 0-<2; SiO2+B2O3 1-<20; and SiO2+B2O3+GeO2+HfO2+In2O3 15-25.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: Silke Wolff, Simone Monika Ritter
  • Patent number: 8995802
    Abstract: An IR supercontinuum source for generating supercontinuum in the MIR or possibly LWIR spectral bands comprises a supercontinuum fiber formed from a heavy metal oxide host glass having low optical loss and high non-linearity over the spectral band that is stable, strong and chemically durable. The supercontinuum fiber is suitably a depressed inner clad fiber configured to support only single transverse spatial mode propagation of the pump signal and supercontinuum. The source suitably includes a tapered depressed inner clad fiber to couple the pump signal into the supercontinuum fiber. The source may be configured as an “all-fiber” source.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: March 31, 2015
    Assignee: NP Photonics, Inc.
    Inventors: Arturo Chavez-Pirson, Daniel Larry Rhonehouse, Dan T. Nguyen
  • Publication number: 20150064576
    Abstract: A lithium-ion conductive glass-ceramic article has a crystalline component characterized by the formula MA2(XO4)3, where M represents one or more monovalent or divalent cations selected from Li, Na and Zn, A represents one or more trivalent, tetravalent or pentavalent cations selected from Al, Cr, Fe, Ga, Si, Ti, Ge, V and Nb, and X represents P cations which may be partially substituted by B cations.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Inventors: Bruce Gardiner Aitken, Nadja Teresia Lonnroth
  • Publication number: 20140256531
    Abstract: An optical glass including B3+, La3+ and Nb5+ as cationic components constituting the glass, wherein the optical glass satisfies the following expressions represented in cation percentages: 10 cat. %?B3+?50 cat. %; 40 cat. %?La3+?65 cat. %; 0 cat. %?Nb5+?40 cat. %; 80 cat. %?(total amount of B3++La3++Nb5+)?100 cat. %; and 0 cat. %?Si4+?10 cat. %; 0 cat. %?Ge4+?5 cat. %; 0 cat. %?Mg2+?5 cat. %; 0 cat. %?Ba2+?10 cat. %; 0 cat. %?Ca2+?10 cat. %; 0 cat. %?Sr2+?10 cat. %; 0 cat. %?Zn2+?20 cat. %; 0 cat. %?W6+?5 cat. %; 0 cat. %?Zr4+?5 cat. %; 0 cat. %?Ti4+?5 cat. %; 0 cat. %?Bi3+?5 cat. %; 0 cat. %?Ta5+?10 cat. %; 0 cat. %?(total amount of Y3++Gd3+)?20 cat. %; and 0 cat. %?(total amount of Yb3++Lu3+)?10 cat. %.
    Type: Application
    Filed: February 26, 2014
    Publication date: September 11, 2014
    Applicants: CANON KABUSHIKI KAISHA, THE UNIVERSITY OF TOKYO
    Inventors: Michio Endo, Shingo Eguchi, Hiroyuki Inoue, Atsunobu Masuno
  • Patent number: 8818160
    Abstract: An IR supercontinuum source for generating supercontinuum in the MIR or possibly LWIR spectral bands comprises a supercontinuum fiber formed from a heavy metal oxide host glass having low optical loss and high non-linearity over the spectral band that is stable, strong and chemically durable. The supercontinuum fiber is suitably a depressed inner clad fiber configured to support only single transverse spatial mode propagation of the pump signal and supercontinuum. The source suitably includes a tapered depressed inner clad fiber to couple the pump signal into the supercontinuum fiber. The source may be configured as an “all-fiber” source.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: August 26, 2014
    Assignee: NP Photonics, Inc.
    Inventors: Arturo Chavez-Pirson, Daniel Larry Rhonehouse, Dan T. Nguyen
  • Patent number: 8805133
    Abstract: A tellurium oxide glass that is stable, strong and chemically durable exhibits low optical loss from the UV band well into the MIR band. Unwanted absorption mechanisms in the MIR band are removed or reduced so that the glass formulation exhibits optical performance as close as possible to the theoretical limit of a tellurium oxide glass. The glass formulation only includes glass constituents that provide the intermediate, modifiers and any halides (for OH— reduction) whose inherent absorption wavelength is longer than that of Tellurium (IV) oxide. The glass formulation is substantially free of Sodium Oxide and any other passive glass constituent including hydroxyl whose inherent absorption wavelength is shorter than that of Tellurium (IV) oxide. The glass formulation preferably includes only a small residual amount of halide.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: August 12, 2014
    Assignee: NP Photonics, Inc.
    Inventors: Daniel Larry Rhonehouse, Arturo Chavez-Pirson
  • Publication number: 20140045675
    Abstract: The invention provides an optical glass for press molding which can satisfy all of the following requirements: (1) it contains no environmentally undesirable components; (2) it can easily achieve a low glass transition point; (3) it has a high refractive index and high dispersion; (4) it can easily provide a glass having an excellent visible light transmittance; and (5) it has excellent resistance to devitrification during preparation of a preform. The optical glass for press molding has a refractive index nd of 1.925 or more, an Abbe's number ?d of 10 to 30, and a glass composition, in % by mass, of 20 to 80% Bi2O3, 10 to 30% B2O3, and 0 to 5.5% GeO2 and is substantially free of lead component, arsenic component, and F component.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takahiro MATANO, Fumio SATO, Yoko USUI
  • Publication number: 20130178354
    Abstract: An optical glass that is an oxide glass having a very high refractive index in spite of its low-dispersion property, having excellent glass stability and having less susceptibility to coloring.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 11, 2013
    Applicant: HOYA CORPORATION
    Inventor: HOYA CORPORATION
  • Publication number: 20120309605
    Abstract: The present invention relates to an optical glass with a high refractive index and good precision press moldability, and a preform for precision press molding and an optical element that are comprised of the optical glass. The present invention further relates to a method of manufacturing an optical element, a lens unit being equipped with an optical element and an image pickup device being equipped with a lens unit.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: HOYA CORPORATION
    Inventors: Yasuhiro FUJIWARA, Shuhei MIKAMI, Hiroki TAKAZAWA
  • Publication number: 20120270719
    Abstract: An aspect of the present invention relates to optical glass, which is oxide glass comprising various cationic components in prescribed amounts without Pb, with a refractive index nd of 1.750 to 1.850, an Abbé number ?d of 29.0 to 40.0, and a glass transition temperature of less than 630° C.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Applicant: HOYA CORPORATION
    Inventor: Tomoaki NEGISHI
  • Patent number: 8282728
    Abstract: Embodiments of compositions comprising materials satisfying the general formula AM1?xM?xM?yO3+y are disclosed, along with methods of making the materials and compositions. In some embodiments, M and M? are +3 cations, at least a portion of the M cations and the M? cations are bound to oxygen in trigonal bipyramidal coordination, and the material is chromophoric. In some embodiments, the material forms a crystal structure having a hexagonal unit cell wherein edge a has a length of 3.50-3.70 ? and edge c has a length of 10-13 ?. In other embodiments, edge a has a length of 5.5-7.0 ?. In particular embodiments, M? is Mn, and Mn is bonded to oxygen with an apical Mn—O bond length of 1.80 ? to 1.95 ?. In some embodiments, the material is YIn1?xMnxO3, x is greater than 0.0 and less than 0.75, and the material exhibits a surprisingly intense blue color.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 9, 2012
    Assignee: State of Oregon Acting by and through the State Board of Higher Education on behalf of Oregon State University
    Inventors: Munirpallam A. Subramanian, Arthur W. Sleight, Andrew E. Smith
  • Publication number: 20120100981
    Abstract: An optical glass that is an oxide glass having a very high refractive index in spite of its low-dispersion property, having excellent glass stability and having less susceptibility to coloring.
    Type: Application
    Filed: December 29, 2011
    Publication date: April 26, 2012
    Applicant: HOYA CORPORATION
    Inventors: Tomoaki NEGISHI, Xuelu Zou
  • Publication number: 20120065051
    Abstract: The invention provides an optical glass for press molding which can satisfy all of the following requirements: (1) it contains no environmentally undesirable components; (2) it can easily achieve a low glass transition point; (3) it has a high refractive index and high dispersion; (4) it can easily provide a glass having an excellent visible light transmittance; and (5) it has excellent resistance to devitrification during preparation of a preform. The optical glass for press molding has a refractive index nd of 1.925 or more, an Abbe's number ?d of 10 to 30, and a glass composition, in % by mass, of 20 to 80% Bi2O3, 10 to 30% B2O3, and 0 to 5.5% GeO2 and is substantially free of lead component, arsenic component, and F component.
    Type: Application
    Filed: June 14, 2010
    Publication date: March 15, 2012
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takahiro Matano, Fumio Sato, Yoko Usui
  • Publication number: 20120033694
    Abstract: Disclosed are the use of phosphate-based glasses as a solid state laser gain medium, in particular, the invention relates to broadening the emission bandwidth of rare earth ions used as lasing ions in a phosphate-based glass composition, where the broadening of the emission bandwidth is believed to be achieved by the hybridization of the glass network.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 9, 2012
    Applicant: SCHOTT AG
    Inventors: Hong LI, Sally PUCILOWSKI, Joseph S. HAYDEN
  • Publication number: 20120028785
    Abstract: The invention provides a novel optical glass which has a refractive index (nd) of 1.78 to 2.2 and an Abbe value (?d) of 16 to less than 40 and is suitable for precision mold press molding by virtue of its having a low glass transition temperature, namely, an optical glass which contains by mole in terms of oxides 25 to 60% B2O3, 2 to 45% (in total) TiO2 and Nb2O5 and 1 to 25% WO3 and has a refractive index (nd) of 1.78 to 2.2 and an Abbe value (?d) of 16 to less than 40. Further, the glass contains 5 to 35% La2O3 and 1 to 40% ZnO and has a glass transition temperature (Tg) of 700° C. or below. The optical glass is excellent in meltability, stability and devitrification resistance and has a high refractive index, high light-dispersive power and excellent precision press moldability.
    Type: Application
    Filed: September 30, 2011
    Publication date: February 2, 2012
    Applicant: OHARA INC.
    Inventor: Jie Fu
  • Publication number: 20110287264
    Abstract: A glass composition having high refractive index, softening property at low temperature and small average thermal expansion coefficient, and a member provided with the composition on a substrate, are provided. The glass composition of the present invention has a refractive index (nd) of from 1.88 to 2.20, a glass transition temperature (Tg) of from 450 to 490° C., and an average thermal expansion coefficient at temperatures from 50° C. to 300° C. (?50-300) of from 60×10?7/K to 90×10?7/K, and includes Bi2O3 in an amount of from 5 to 25% in terms of mol % on the basis of oxides.
    Type: Application
    Filed: July 25, 2011
    Publication date: November 24, 2011
    Inventors: Naoya Wada, Nobuhiro Nakamura, Nao Ishibashi
  • Patent number: 8056370
    Abstract: Methods of melt spinning to make amorphous and ceramic materials.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: November 15, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Ahmet Celikkaya, Thomas J. Anderson
  • Publication number: 20110257001
    Abstract: The present invention relates to an optical glass having a refractive index nd of 1.86 or higher and an Abbé number v(nu)d of 28 to 36; a preform for precision press molding and an optical element that are comprised of this glass; and a method for manufacturing the optical element.
    Type: Application
    Filed: February 25, 2011
    Publication date: October 20, 2011
    Applicant: HOYA CORPORATION
    Inventor: Tomoaki Negishi
  • Publication number: 20110206078
    Abstract: A glass composition for use as a laser medium, a method for producing the glass composition, and a laser apparatus including the glass composition are provided. The glass composition includes a host glass; a 3p component having a concentration of about 5 mole percent to about 10 mole percent; and at least one of a 6p component having a concentration of about 1 mole percent to about 5 mole percent and a 5p component having a concentration of about 1 mole percent to about 5 mole percent.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 25, 2011
    Inventors: Robert R. ALFANO, Alexei Bykov, Mikhail Sharonov
  • Publication number: 20110160032
    Abstract: An object of the present invention is to provide optical glass having improved glass-devitrification resistance and moldability without causing reduction in refractive index, and also provide an optical element using the optical glass as a raw material. Specifically, the present invention provides an optical glass containing components of, by mol %: B2O3: over 60% through 75%; Bi2O3: 24% to 39%; La2O3: 7% or lower; Gd2O3: 7% or lower; and ZrO2: 7% or lower.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Inventor: Yoshinori Yamamoto
  • Publication number: 20110143907
    Abstract: The present invention relates to an optical glass with a high refractive index and good precision press moldability, and a preform for precision press molding and an optical element that are comprised of the optical glass. The present invention further relates to a method of manufacturing an optical element, a lens unit being equipped with an optical element and an image pickup device being equipped with a lens unit.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 16, 2011
    Applicant: HOYA CORPORATION
    Inventors: Yasuhiro Fujiwara, Shuhei Mikami, Hiroki Takazawa
  • Publication number: 20110124485
    Abstract: A glass composition being suitable for precision mold press forming, having superior resistance to devitrification, having optical constants (a refractive index, an Abbe number, and the like) required for aspherical lenses, and a low glass transition temperature. There is provided an optical glass comprising 5 mol % to 60 mol % of a B2O3 component, and 0.2 mol % to 60 mol % of a TeO2 component, by mol % on the basis of oxides. Further, there is provided an optical glass mentioned above having optical constants with a refractive index (nd) of 1.80 to 2.20, and an Abbe number (?d) of 16 to 40. Still further, there is provided an optical glass mentioned above having a glass transition temperature (Tg) of no more than 680° C.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 26, 2011
    Applicant: OHARA INC.
    Inventor: Jie FU
  • Patent number: 7943540
    Abstract: An optical glass for precision molding having a high refractive index (nd) and a low yield temperature (At). The optical glass comprises, as glass components in wt %, 64 to 83% of Bi2O3; 4 to 17% of B2O3; 0 to 12% of GeO2 (wherein the total of B2O3 and GeO2 is 10 to 20%); 0 to 7% of La2O3; 0 to 7% of Gd2O3 (wherein the total of La2O3 and Gd2O3 is 1 to 13%); 0 to 4% of ZrO2; 0 to 5% of Ta2O5; 0 to 15% of ZnO; 0 to 2% of Sb2O3; and 0 to 1% of In2O3. The optical glass has optical constants, that is, a refractive index (nd) of 2.05 to 2.25 and an Abbe number (vd) of 15 to 22, and a yield temperature (At) of 510° C. or less.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: May 17, 2011
    Assignee: Sumita Optical Glass, Inc.
    Inventor: Yoshinori Yamamoto
  • Publication number: 20110105294
    Abstract: [Problems to be Solved] To provide a high-refractivity low-dispersion optical glass that enables the stable production of high-quality optical elements. [Means to Solve the Problems] An optical glass comprising, as essential components, 20 to 50% of B3+, 5 to 35% of La3+, 1 to 30% of Nb5+, 0.5 to 15% of Ta5+, and 11 to 40% of Zn2+, the total content of B3+ and Si4+ being 20 to 50%, the total content of La3+, Gd3+ and Y3+ being 5 to 35%, the cationic ratio of ((B3++Si4+)/(La3++Gd3++Y3+)) being from 1 to 5, the total content of Ti4+, Nb5+, Ta5+ and W6+ being 10 to 35%, the cationic ratio of ((Nb5++Ta5+)/(Ti4++Nb5++Ta5++W6+)) being from 0.7 to 1, the cationic ratio of ((B3++Si4+)/(Ti4++Nb5++Ta5++W6+)) being from 0.5 to 4, the cationic ratio of ((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+)) being from 0.2 to 3, the cationic ratio of Zn2+/Zn2++Mg2++Ca2++Sr2++Ba2+) being from 0.8 to 1, the optical glass having a refractive index nd of 1.89 or more and an Abbe's number ?d of 27 to 37.
    Type: Application
    Filed: September 29, 2010
    Publication date: May 5, 2011
    Applicant: HOYA CORPORATION
    Inventors: Tomoaki NEGISHI, Yasuhiro Fujiwara
  • Publication number: 20110065564
    Abstract: The invention provides a novel optical glass which has a refractive index (nd) of 1.78 to 2.2 and an Abbe value (?d) of 16 to less than 40 and is suitable for precision mold press molding by virtue of its having a low glass transition temperature, namely, an optical glass which contains by mole in terms of oxides 25 to 60% B2O3, 2 to 45% (in total) TiO2 and Nb2O5 and 1 to 25% WO3 and has a refractive index (nd) of 1.78 to 2.2 and an Abbe value (?d) of 16 to less than 40. Further, the glass contains 5 to 35% La2O3 and 1 to 40% ZnO and has a glass transition temperature (Tg) of 700° C. or below. The optical glass is excellent in meltability, stability and devitrification resistance and has a high refractive index, high light-dispersive power and excellent precision press moldability.
    Type: Application
    Filed: October 3, 2007
    Publication date: March 17, 2011
    Inventor: Jie Fu
  • Publication number: 20100317503
    Abstract: Embodiments of compositions comprising materials satisfying the general formula AM1?xM?xM?yO3+y are disclosed, along with methods of making the materials and compositions. In some embodiments, M and M? are +3 cations, at least a portion of the M cations and the M? cations are bound to oxygen in trigonal bipyramidal coordination, and the material is chromophoric. In some embodiments, the material forms a crystal structure having a hexagonal unit cell wherein edge a has a length of 3.50-3.70 ? and edge c has a length of 10-13 ?. In other embodiments, edge a has a length of 5.5-7.0 ?. In particular embodiments, M? is Mn, and Mn is bonded to oxygen with an apical Mn—O bond length of 1.80 ? to 1.95 ?. In some embodiments, the material is YIn1?xMnxO3, x is greater than 0.0 and less than 0.75, and the material exhibits a surprisingly intense blue color.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Munirpallam A. Subramanian, Arthur W. Sleight, Andrew E. Smith
  • Publication number: 20100317504
    Abstract: A P2O5—BaO—ZnO—Nb2O5 type optical glass contains 25-50 wt. % P2O5, 15-35 wt. % BaO, 1-25 wt. ZnO, and 3-10 wt. % Nb2O5. The optical glass has a high refractive index (particularly preferably the refractive index nd of 1.6 or more), low dispersion (an Abbe number ?d of 42 or more), a low deformation point, and improved resistance to devitrification upon molding, and is suitable for precision-mold press molding or other molding processes and also suitable for transfer of a fine structure.
    Type: Application
    Filed: February 9, 2009
    Publication date: December 16, 2010
    Applicant: National Institute of Advanced Industrial Sciences and Technology
    Inventors: Tatsuo Hidaka, Junichi Nakamura, Yoshitaka Mayumi, Hidekazu Hashima, Kohei Fukumi, Naoyuki Kitamura, Junji Nishii
  • Publication number: 20100227753
    Abstract: The lead- and arsenic-free optical glass has a refractive index nd of 1.55?nd?1.64, an Abbe number ?d of 42??d?65, and a low transition temperature Tg?460° C., good producibility and processability, and crystallization stability. The optical glass has a composition within the following range, in wt. % based on oxide content: P2O5 40-58 ZnO 20-34 Li2O 0.5-5?? GeO2 0.1-11. The glass may also have a total content of SiO2, B2O3 and Al2O3 that is less than 9 wt. %. The glass may contain MgO, SrO, CaO and BaO, but the sum of these oxides is preferably at least 2 wt. % and at most 12 wt. %. The glass may contain at most 5 wt. % of each of La2O3, TiO2, Nb2O5, at most 2 wt. % Ta2O5 and less than 1 wt. % fluorine.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 9, 2010
    Inventors: Silke Wolff, Stefanie Hansen, Ute Woelfel
  • Patent number: 7670973
    Abstract: Lead and arsenic free, and preferably gadolinium and further preferably also fluorine free, optical glasses for the application fields mapping, projection, telecommunication, optical communication engineering, mobile drive, laser technology and/or micro lens arrays have a refractive index of 1.91?nd?2.05, an Abbe number of 19??d?25 and have a low transformation temperature, namely of less than or equal to 470° C. and preferably of less than or equal to 450° C., as well as good producability and processability and crystallization stability.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: March 2, 2010
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Ute Woelfel, Bianca Schreder, Stefanie Hansen
  • Publication number: 20100029459
    Abstract: The present invention provides novel glasses, methods of formulating glasses having a reduced stress-optic coefficient at visible wavelengths under anisotropic stress, and novel optical systems comprising a such glass.
    Type: Application
    Filed: July 26, 2007
    Publication date: February 4, 2010
    Inventors: Josef Wilson Zwanziger, Marie Helene Guignard
  • Publication number: 20100004112
    Abstract: An object of the present invention is to provide an optical glass having optical constants of a refractive index of 1.70 to 1.89 and an Abbe number of 20 to 30 and being excellent in chemical durability. The invention relates to an optical glass containing P2O5: 10 to 30, Nb2O5: 25 to 50, B2O3: 0.1 to 30, BaO: 0.1 to 2, Li2O: 0 to 10, Na2O: 0.1 to 4, K2O: 0 to 10, Bi2O3: 1 to 20, GeO2: 0 to 14, TiO2: 0.1 to 5, and WO3: 1 to 14, in terms of % by mass.
    Type: Application
    Filed: September 11, 2009
    Publication date: January 7, 2010
    Applicant: Asahi Glass Company, Limited
    Inventors: Hiroyuki OHKAWA, Naoki Sugimoto
  • Patent number: 7605099
    Abstract: The optical glass has an index of refraction (nd) greater than or equal to 1.70, an Abbé number (?d) greater than or equal to 35 and a density (?) less than or equal to 4.5 g/cm3. Optical elements made with this optical glass are especially desirable in optical data transfer applications, particularly in read-write devices with movable read-write heads. The glass compositions required to make optical glass with these properties are described.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: October 20, 2009
    Assignee: Schott AG
    Inventors: Silke Wolff, Ute Woelfel, Ulrich Siepe
  • Publication number: 20090239731
    Abstract: A zinc and bismuth containing, water-soluble glass composition comprising from 10 to 75 mole % P205, 5-50 mole % alkali metal oxide, up to 40 mole % Zn0 and up to 40 mole % Bi203.
    Type: Application
    Filed: May 29, 2009
    Publication date: September 24, 2009
    Applicant: RECKITT BENCKISER N.V.
    Inventors: Karlheinz Ulrich Gerhard Hahn, KARIN WERNER
  • Publication number: 20090197754
    Abstract: Provided is an optical glass having optical constants, a refractive index (nd) of more than 1.9 and an Abbe number (?d) of not more than 38, having a small partial dispersion ratio and capable of being produced from inexpensive materials. The optical glass has a partial dispersion ratio (?g, F) of at most 0.615, and contains, as indispensable ingredients, B203, La2O3, TiO2, Nb2O5 and Ta2O5, wherein the ratio, as % by mass, of TiO2/Nb2O5 is at most 0.26 and GeO2/Nb2O5 is at most 0.38. The optical glass contains, in terms of % by mass, the following ingredients: B2O3 ??5 to 22%, La2O3 ??15 to 50%, TiO2 0.01 to 15%, Nb2O5 ??5 to 40%, and Ta2O5 ?0.1 to 25%, and SiO2 0 to 10% and/or GeO2 0 to 10% and/or Al2O3 0 to 10% and/or Gd2O3 0 to 16% and/or ZrO2 0 to 15% and/or WO3 0 to 22% and/or Sb2O3 0 to 1%.
    Type: Application
    Filed: January 29, 2009
    Publication date: August 6, 2009
    Applicant: OHARA INC.
    Inventors: Susumu UEHARA, Kiyoyuki Momono
  • Patent number: 7553785
    Abstract: The lead-free, arsenic-free, preferably gadolinium-free and fluorine-free, optical glass has a refractive index of 1.86?nd?1.95, an Abbe number of 19?vd?24, a transformation temperature of ?595° C., preferably ?550° C., good crystallization stability, good processing properties and production properties. The optical glass is free of Na2O, frre of B2O3 and has a composition (based on oxide content in % by weight) of P2O5, 14-31; Nb2O5, 22-50; Bi2O3, 5-36; WO3, >10-25; GeO2, 0-14; Li2O, 0-6; K2O, 0-6; Cs2O, 1-7; MgO, 0-6; CaO, 0-6; SrO, 0-6; BaO, 0-6; ZnO, 0-6; TiO2, 0-4; ? alkali oxides, 2-12; ? alkaline earth oxides, 0-10; ? Nb2O5, WO3, Bi2O3?50 and fining agents, 0-2.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: June 30, 2009
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Ute Woelfel, Stefanie Hansen
  • Patent number: 7547652
    Abstract: The invention relates to vitreous compositions, in particular of the vitroceramic type, transparent to infrared, production and uses thereof. Said compositions comprise in mol. %: Ge 5-40, Ga<1, S+Se 40-85, Sb+As 4-40, MX 2-25, Ln 0-6, adjuncts 0-30, where M=at least one alkaline metal, selected from Rb, Cs, Na, K and Zn, X=at least one atom of chlorine, bromine or iodine, Ln=at least one rare earth and adjunct=at least one additive comprising at least one metal and/or at least one metal salt with the sum of all molar percentages of the components present in said composition being 100.
    Type: Grant
    Filed: July 5, 2004
    Date of Patent: June 16, 2009
    Assignees: Centre National De La Recherche Scientifique, Universite Rennes 1
    Inventors: Xianghua Zhang, Jacques Lucas, Hongli Ma, Jean-Luc Adam
  • Publication number: 20090069165
    Abstract: Optical glass having a refractive index (nd) of 1.75 or greater, and an Abbe number (?d) falling within the range of 15 to 40, which is suitable for molding by precision mold press is provided. The optical glass is characterized by including B2O3+SiO2 in an amount of 10 to 70%, Bi2O3 in an amount of 5% or more and less than 25%, RO+Rn2O in an amount of 5 to 60% (wherein R represents one or more selected from a group consisting of Zn, Ba, Sr, Ca, and Mg; and Rn represents one or more selected from a group consisting of Li, Na, K, and Cs), with each component in the range expressed in oxide-based mole, and is characterized in that transparency in the visible region is high, and that the transition point (Tg) is 520° C. or lower. The optical glass is characterized by having a spectral transmittance of 70% or greater at a wavelength of 550 nm, for a thickness of 10 mm.
    Type: Application
    Filed: April 27, 2006
    Publication date: March 12, 2009
    Inventor: Jie Fu
  • Publication number: 20090069166
    Abstract: Optical glass having a refractive index (nd) of 1.85 or greater, and an Abbe number (?d) falling within the range of 10 to 30, which is suited for molding by precision mold press is provided. The optical glass is characterized by including B2O3+SiO2 in an amount of 3 to 60%, Bi2O3 in an amount of 25 to 80%, RO+Rn2O in an amount of 5 to 60% (wherein R represents one or more selected from a group consisting of Zn, Ba, Sr, Ca, and Mg; and Rn represents one or more selected from a group consisting of Li, Na, K, and Cs), with each component in the range expressed in oxide-based mole percentage, and is characterized in that transparency in the visible region is high, and that the transition point (Tg) is 480° C. or lower. The optical glass is characterized by having a spectral transmittance of 70% or greater at a wavelength of 600 nm for a thickness of 10 mm.
    Type: Application
    Filed: April 27, 2006
    Publication date: March 12, 2009
    Inventor: Jie Fu
  • Patent number: 7482293
    Abstract: An optical glass suitable for mold forming at a low temperature including, in percent by weight, 9-25 percent of P2O5, 1-20 percent of GeO2, 12-28 percent of Nb2O5, 1-7 percent of TiO2, 0-55 percent of Bi2O3, 0-38 percent of WO3, 0-3 percent of SiO2, 0-5 percent of B2O3, 0-2 percent of Al2O3, 0-5 percent of Li2O, 0-11 percent of Na2O, 0-5 percent of K2O, 0-3 percent of Ta2O5, 0-1 percent of Sb2O3, at most 13 percent of at least one R2O selected from the group consisting of Li2O, Na2O and K2O, and at most 15 percent of at least one XO selected from the group consisting of CaO, SrO, BaO and ZnO. The optical glass essentially contains no environmental and human harmful components, facilitates mass production and is stable against devitrification near its softening temperature.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: January 27, 2009
    Assignee: Asia Optical Co., Inc
    Inventors: Tsung-yuen Tsai, Hsiang-jen Shih
  • Publication number: 20080242528
    Abstract: An optical glass comprises: germanium oxide (GeO2) content of 14 wt % to 21 wt %; niobium oxide (Nb2O5) content of 14 wt % to 23 wt %; bismuth oxide (Bi2O3) content of 40 wt % to 52 wt %; tungsten oxide (WO3) content of 0 wt % to 5 wt %; phosphoric acid (P2O5) content of 7 wt % to 14 wt %; potassium oxide (K2O) content of 0 wt % to 4 wt %; barium oxide (BaO) content of 0 wt % to 5 wt %; lithium oxide (Li2O) content of 0 wt % to 3 wt %; sodium oxide (Na2O) content of 0 wt % to 2 wt %; and titanium oxide (TiO2) content of 1 wt % to 5 wt %, wherein iron (Fe) content is less than 10 ppm based on the total weight of the titanium oxide.
    Type: Application
    Filed: March 24, 2008
    Publication date: October 2, 2008
    Inventor: Motoaki Saito
  • Publication number: 20080179294
    Abstract: A glass composition suitable for reactive ion etching.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 31, 2008
    Inventors: Joseph S. HAYDEN, Ulf Dahlmann, Ulrich Fotheringham, Wolfgang Pannhorst, Sally Pucilowski
  • Publication number: 20080096752
    Abstract: Optical glass containing bismuth oxide having good defoamability. The Optical glass contains, as % by mass, from 10 to less than 90% of a Bi2O3 component and at least 0.1% of a TeO2 and/or SeO2 component. The optical glass is on Grade 4 to Grade 1 in “JOGIS12-1994, Method for Measuring Bubbles in Optical Glass”. By controlling the amount of RO component (R is at least one selected from a group consisting of Zn, Ba, Sr, Ca, Mg) and Rn2O component (Rn=Li, Na, K, Cs), the clarifying time may be shortened.
    Type: Application
    Filed: October 22, 2007
    Publication date: April 24, 2008
    Applicant: OHARA INC.
    Inventor: Atsushi NAGAOKA
  • Publication number: 20080096753
    Abstract: An optical glass for precision molding having a high refractive index (nd) and a low yield temperature (At). The optical glass comprises, as glass components in wt %, 64 to 83% of Bi2O3; 4 to 17% of B2O3; 0 to 12% of GeO2 (wherein the total of B2O3 and GeO2 is 10 to 20%); 0 to 7% of La2O3; 0 to 7% of Gd2O3 (wherein the total of La2O3 and Gd2O3 is 1 to 13%); 0 to 4% of ZrO2; 0 to 5% of Ta2O5; 0 to 15% of ZnO; 0 to 2% of Sb2O3; and 0 to 1% of In2O3. The optical glass has optical constants, that is, a refractive index (nd) of 2.05 to 2.25 and an Abbe number (?d) of 15 to 22, and a yield temperature (At) of 510° C. or less.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 24, 2008
    Inventor: Yoshinori Yamamoto