Fluorine And Phosphorus Containing Patents (Class 501/44)
  • Patent number: 11465932
    Abstract: Alkali free fluorophosphate-based glass system that is highly radiation resistance (for example, they remain transparent and do not solarize before, during, and after application of high energy radiation of 105 Rad or (1 kGy) or greater) and hence, reusable and further, when used with Ce provide a mechanism for determining the existence of radiation.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: October 11, 2022
    Inventors: Ashot A. Margaryan, Alfred A. Margaryan
  • Patent number: 11334116
    Abstract: A screen protector comprises a glass-based substrate and an adhesive. The glass-based substrate comprises a first major surface, a second major surface, a thickness, and an edge. The first major surface comprises a first planar portion and a peripheral portion extending outwardly from the first planar portion. The second major surface comprises a second planar portion opposite the first planar portion and is parallel to the first planar portion. The edge comprises an outer peripheral surface that intersects the peripheral portion of the first major surface. The adhesive comprises a first major surface, a second major surface, a thickness, and an edge. The first major surface of the adhesive is adhered to the second major surface of the glass-based substrate.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: May 17, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Sean Michael Buono, Jacob Immerman, Chih Yuan Lu, James Edward Morrison, Jr., Santona Pal, Ananthanarayanan Subramanian, Chu Yu Yeh
  • Patent number: 10988406
    Abstract: Disclosed is fluorophosphate glasses for an active device, the fluorophosphate glasses including: a metaphosphate composition including Mg(PO3)2 of about 20 mol % to about 60 mol %; a fluoride composition including BaF2 of about 20 mol % to about 60 mol % and CaF2 of about 0 mol % to about 40 mol %; and dopants including rare earth elements, in which there is an effect of increasing a carrier lifetime at a metastable state energy level that is stimulated-emitted due to an efficient energy transfer phenomenon by composition optimization of dopants (e.g. Er and Yb).
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: April 27, 2021
    Assignee: KOREA PHOTONICS TECHNOLOGY INSTITUTE
    Inventors: Ju Hyeon Choi, Jung Whan In, June Park, Eui Sam Lee
  • Patent number: 10150693
    Abstract: To provide a near infrared cutoff filter glass which is excellent in optical properties such that the transmittance of light in the visible range is high and the transmittance of near infrared light is low. A near infrared cutoff filter glass comprising P, F, O, Cu and Ce, wherein by cation %, from 0.1 to 15% of Cu2+ is contained, and the ratio of Cu2+ to Ce4+ (Cu2+/Ce4+) is from 3.5 to 15.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 11, 2018
    Assignee: AGC Inc.
    Inventor: Makoto Shiratori
  • Patent number: 9988299
    Abstract: The invention provides a glass composition with stronger bending strength and excellent transmission property in the visible range, containing the following cations with a total weight of over 90%: P5+, Al3+, B3+, R1+, R2+ and Cu2+, wherein the content of Cu2+ is 0.1-15%; the ratio of Cu2+/(P5++Al3+) is 0.01-0.15; the content of the anion O2? contained in the glass composition is up to over 97%; the bending strength of the glass composition is over 110 MPa; when the thickness of the glass composition is 0.3 mm, the spectral transmittance is more than or equal to 80% at a wavelength of 400 nm, the spectral transmittance is less than or equal to 25% at a wavelength of 700 nm, and the spectral transmittance is less than or equal to 25% at a wavelength of 1200 nm.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: June 5, 2018
    Assignee: CDGM GLASS CO., LTD
    Inventor: Wei Sun
  • Patent number: 9581540
    Abstract: A spectral luminescence standard has bismuth in a light-transmissive inorganic matrix material and emits light in the near infrared region upon irradiation with excitation light. The bismuth acts as a luminescence emitter in the near infrared region. A method includes manufacturing such a spectral luminescence standard and a calibration medium which has the spectral luminescence standard in or on a carrier material.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: February 28, 2017
    Assignee: GIESECKE & DEVRIENT GMBH
    Inventors: Johann Kecht, Kai Uwe Stock
  • Patent number: 9321673
    Abstract: The invention provides a near-infrared absorption glass, a near-infrared absorption element and a near-infrared absorption filter each with good chemical stability and transmissivity property in the visible range. When such glass is 1 mm thick, the transmissivity of such glass is more than 80% at 400 nm, and more than 85% at 500 nm. The near-infrared absorption glass comprises cations such as P5+, Al3+, Li+, R2+ and Cu2+ as well as anions such as O2? and F?, wherein the R2+ refers to Mg2+, Ca2, Sr2+ and Ba2+, and wherein the content of the said Li+ is 1-15%. Furthermore, the water resistant stability DW of the said near-infrared absorption glass is Class 1 and the acid resistant stability DA is above Class 4.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: April 26, 2016
    Assignee: CDGM GLASS CO., LTD.
    Inventors: Wei Sun, Yu Deng
  • Patent number: 9165913
    Abstract: The application relates to a semiconductor component, a photo-reflective sensor, and also a method for producing a housing for a photo-reflective sensor, wherein the housing lower part is monolithic and has at least two cavities into which an emitter and a detector are introduced.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: October 20, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Michael Zitzlsperger, Thomas Zeiler
  • Patent number: 9127196
    Abstract: The invention provides a tin phosphate glass containing embedded luminescent material particles, wherein the luminescent material particles comprise luminescent material from the class of CaAlSiN 3:Eu 2+ and optionally other luminescent material particles. The invention further provides a method for the production of such glass as well as a lighting unit using such glass as (part of) a light conversion unit.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: September 8, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Lucas Johannes Anna Maria Beckers, Paulus Hubertus Gerardus Offermans
  • Publication number: 20150125823
    Abstract: The present application provides a glass composition comprising 10-50% by weight CaO, at least 15% and less than 50% by weight P2O5, less than 3% by weight Al2O3, less than 10% by weight Li2O, Na2O, and K2O combined, and 0-60% by weight of SrO, MgO, BaO, ZnO, or combinations thereof; dental compositions comprising the glass composition, and methods of making and using such dental compositions.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Richard P. Rusin, Kevin M. Cummings, Sumita B. Mitra, Paul A. Burgio, Tsi-Zong Tzou, David S. Arney
  • Patent number: 8785335
    Abstract: Glass having an optimized degree of cross-linking of the phosphate component in the glass matrix is provided so that excellent weatherability is achieved. These glasses are fluorophosphate glasses that contain copper oxide as coloring component. The glasses can further contain coloring components and are obtainable in a method that includes a bubbling step.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 22, 2014
    Assignee: Schott AG
    Inventors: Simone Ritter, Bianca Schreder, Ute Woelfel, Stefanie Hansen
  • Patent number: 8728962
    Abstract: Provided is a low-dispersion optical glass that is formed of a fluorophosphate glass in which the molar ratio of the content of O2? to the content of P5+, O2?/P5+, is 3.5 or more and that has an Abbe's number (?d) of over 70 or has an F? content of 65 anionic % or more, and the optical glass enables the suppression of the volatilization of a glass component when an optical glass formed of a fluorophosphate glass is produced or when an obtained glass in a molten state is caused to flow out to shape it into a glass shaped material, so that the variation of properties such as a refractive index, etc., involved in the fluctuations of a glass composition and the variation of quality such as the occurrence of striae can be suppressed.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 20, 2014
    Assignee: Hoya Corporation
    Inventor: Miko Ikenishi
  • Patent number: 8642490
    Abstract: The present invention provides a fluorophosphate glass containing more than 3 cationic % and 30 cationic % or less of a phosphorus ingredient in terms of P5+, the glass having a ratio I(1)/I(0) of equal to or less than 0.08 in which I(0) is a strength of a resonance peak generated near a reference frequency of 31P in a nuclear magnetic resonance spectrum and I(1) is a strength of a first-order side band peak of the resonance peak. The glass of the invention is reduced in volatility and erosiveness.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 4, 2014
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 8637415
    Abstract: The present invention provides a fluorophosphate glass containing 30 to 50 cationic % of a phosphorus ingredient in terms of P5+, the glass having, in a nuclear magnetic resonance spectrum, a resonance spectrum which is generated near a reference frequency of 31P and has a shape of Gaussian function. The glass of the invention is reduced in volatility and erosiveness.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: January 28, 2014
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 8633121
    Abstract: The present invention provide a fluorophosphate glass comprising 3 to 25 cation % of P5+, more than 30 cation % and 40 cation % or less of Al3+, 0.5 to 20 cation % of Li+ and 65 anion % or more of F? as glass ingredients, and having a liquid phase temperature of 700° C. or less. The fluorophosphate glass of the present invention has ultra low dispersibility and stability, and is preferably used for glass materials for press molding, optical element blanks and optical elements.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: January 21, 2014
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Publication number: 20140005025
    Abstract: Provided is a low-dispersion optical glass that is formed of a fluorophosphate glass in which the molar ratio of the content of O2? to the content of P5+, O2?/P5+, is 3.5 or more and that has an Abbe's number (?d) of over 70 or has an F? content of 65 anionic % or more, and the optical glass enables the suppression of the volatilization of a glass component when an optical glass formed of a fluorophosphate glass is produced or when an obtained glass in a molten state is caused to flow out to shape it into a glass shaped material, so that the variation of properties such as a refractive index, etc., involved in the fluctuations of a glass composition and the variation of quality such as the occurrence of striae can be suppressed.
    Type: Application
    Filed: December 7, 2012
    Publication date: January 2, 2014
    Applicant: Hoya Corporation
    Inventor: Hoya Corporation
  • Publication number: 20130344343
    Abstract: Coloured glasses are provided that include a following composition in percent by weight, based on oxide of: P2O5 25-75? Al2O3 0.5-15?? MgO 0-10 CaO 0-10 BaO 0-35 SrO 0-16 Li2O 0-12 Na2O 0-12 K2O 0-12 CuO 1-20 F/F2 0-20 Sum RO (R = Mg, Ca, Sr, Ba) 0-40 Sum R2O (R = Li, Na, K) 0.5-20.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 26, 2013
    Inventors: Bianca SCHREDER, Ute WOELFEL, Ralf BIERTUEMPFEL, Stefanie HANSEN
  • Patent number: 8592331
    Abstract: The technical problem to be solved by the invention is to provide a fluorophosphate optical glass which has low refraction, low dispersion and low density and is suitable for molding at a low temperature. The fluorophosphate optical glass has a refractive index of 1.45-1.52, an abbe number of 78-85, a transition temperature lower than 465° C., a density lower than 3.8 g/cm3, and a hardness higher than 360 (107 pa). The fluorophosphate optical glass consists of 18-25 mol % of AlF3, 5-20 mol % of Al(PO3)3, 7-12 mol % of MgF2, 15-25 mol % of CaF2, 18-25 mol % of SrF2, 8-20 mol % of BaF2, 0-8 mol % of Ba(PO3)2, 0-3 mol % of YF3 and 0-0.5 mol % of BaCl2. The fluorophosphate optical glass of the invention has the advantages of low refraction, low dispersion, low glass density, higher hardness, good processability, low tapping temperature, easy molding, and ability of effectively preventing stripes.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: November 26, 2013
    Assignee: CDGM Glass Co., Ltd.
    Inventors: Junhong Yuan, Yue Zhao, Jinwei Wu
  • Patent number: 8575047
    Abstract: The present invention relates to an optical glass with a high refractive index and good precision press moldability, and a preform for precision press molding and an optical element that are comprised of the optical glass. The present invention further relates to a method of manufacturing an optical element, a lens unit being equipped with an optical element and an image pickup device being equipped with a lens unit.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Hoya Corporation
    Inventors: Yasuhiro Fujiwara, Shuhei Mikami, Hiroki Takazawa
  • Publication number: 20130256598
    Abstract: Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 3, 2013
    Inventors: Bruce Gardiner Aitken, Michael Edward Badding, Nicholas Francis Borrelli, Nadja Teresia Lonnroth
  • Patent number: 8476176
    Abstract: A fluorophosphate glass having a fluorine content of 25% or more by anionic %, which is produced from a glass raw material containing 0.1 to 0.5%, by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine, and a phosphate glass having a fluorine content of less than 25% by anionic %, which is produced from a glass raw material containing 0.1 to 5%, by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 2, 2013
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 8431499
    Abstract: A fluorophosphate glass containing: P5+ in an amount of 20 to 45 cationic %; Al3+ in an amount of 15 to 35 cationic %; Ba2+ in an amount of 20 to 50 cationic %; B3+ in an amount of 0 to 5 cationic %; F? in an amount of 20 to 50 anionic %; and O2? in an amount of 50 to 80 anionic %. A molar ratio of O2?/P5+ is greater than or equal to 3.5. In addition, a molar ratio of Al3+/P5+ is less than or equal to 1. In addition, the Abrasion FA is less than or equal to 600, or the Knoop hardness number is greater than or equal to 300 MPa. Furthermore, the Abbe number (?d) of the glass is larger than or equal to 66. Moreover, a refractive index (nd) of the glass satisfies an expression (1): nd?2.0614?0.0071×?d. Finally, the fluorophosphate glass does not contain Cu in an amount by which Cu serves as a coloring agent.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 30, 2013
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 8404604
    Abstract: A P2O5—BaO—ZnO—Nb2O5 type optical glass contains 25-50 wt. % P2O5, 15-35 wt. % BaO, 1-25 wt. ZnO, and 3-10 wt. % Nb2O5. The optical glass has a high refractive index (particularly preferably the refractive index nd of 1.6 or more), low dispersion (an Abbe number ?d of 42 or more), a low deformation point, and improved resistance to devitrification upon molding, and is suitable for precision-mold press molding or other molding processes and also suitable for transfer of a fine structure.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: March 26, 2013
    Assignees: Nihon Yamamura Glass Co., Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Tatsuo Hidaka, Junichi Nakamura, Yoshitaka Mayumi, Hidekazu Hashima, Kohei Fukumi, Naoyuki Kitamura, Junji Nishii
  • Patent number: 8361914
    Abstract: Optical components that maintain transparency (remain clear) in high energy environments, including in applications of high-intensity gamma-ray radiation dosage of 1.29×109 rads and greater, and neutron energy at neutron fluxes ranging from 3×109 to 1×1014 n/cm2 sec and greater, and fluencies ranging from 2×1016 to 8.3×1020 n/cm2 and greater. Further, the optical components have a bulk laser damage threshold of 105+/?20 J/cm2, a surface laser damage threshold of 72+/?15 J/cm2, a Stokes shift of about 9%, and a fractional thermal loading of about 11%.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: January 29, 2013
    Inventors: Alfred A. Margaryan, Ashot A. Margaryan
  • Patent number: 8356493
    Abstract: New and improved compositions of doped fluorophosphate glasses for lasers have a high refractive index (nD) of approximately 1.6 to 1.7, high transmission in the near infrared part of the spectrum and a wide glass forming domain. These glass systems, Ba(PO3)2—Al(PO3)3—BaF2-Dopants, utilize dopants from the group of oxides or fluorides of the rare earth elements Sm, Eu, Nd, Er, Yb, Tm, Tb, Ho and Pr as well as MnO; and mixtures thereof. The composition of glass includes chemical durability, efficiency of laser use in the infrared spectrum and improved duration of luminescence.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: January 22, 2013
    Inventor: Alfred A. Margaryan
  • Patent number: 8354352
    Abstract: Provided is a low-dispersion optical glass that is formed of a fluorophosphate glass in which the molar ratio of the content of O2? to the content of P5+, O2?/P5+, is 3.5 or more and that has an Abbe's number (?d) of over 70 or has an F? content of 65 anionic % or more, and the optical glass enables the suppression of the volatilization of a glass component when an optical glass formed of a fluorophosphate glass is produced or when an obtained glass in a molten state is caused to flow out to shape it into a glass shaped material, so that the variation of properties such as a refractive index, etc., involved in the fluctuations of a glass composition and the variation of quality such as the occurrence of striae can be suppressed.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: January 15, 2013
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 8333089
    Abstract: New and improved compositions of doped fluorophosphate glasses for lasers have a high refractive index (nD) of approximately 1.6 to 1.7, high transmission in the near infrared part of the spectrum and a wide glass forming domain. These glass systems, Ba(PO3)2—Al(PO3)3—BaF2-Dopants, utilize dopants from the group of oxides or fluorides of the rare earth elements Sm, Eu, Nd, Er, Yb, Tm, Tb, Ho and Pr as well as MnO; and mixtures thereof. The composition of glass includes chemical durability, efficiency of laser use in the infrared spectrum and improved duration of luminescence.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: December 18, 2012
    Inventor: Alfred A. Margaryan
  • Patent number: 8334229
    Abstract: Optical components that maintain transparency (remain clear) in high energy environments, including in applications of high-intensity gamma-ray radiation dosage of 1.29×109 rads and greater, and neutron energy at neutron fluxes ranging from 3×109 to 1×1014 n/cm2 sec and greater, and fluencies ranging from 2×1016 to 8.3×1020 n/cm2 and greater. Further, the optical components have a bulk laser damage threshold of 105+/?20 J/cm2, a surface laser damage threshold of 72+/?15 J/cm2, a Stokes shift of about 9%, and a fractional thermal loading of about 11%.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: December 18, 2012
    Inventors: Alfred A. Margaryan, Ashot A. Margaryan
  • Patent number: 8288299
    Abstract: The present invention relates to an optical glass with a high refractive index and good precision press moldability, and a preform for precision press molding and an optical element that are comprised of the optical glass. The present invention further relates to a method of manufacturing an optical element, a lens unit being equipped with an optical element and an image pickup device being equipped with a lens unit.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 16, 2012
    Assignee: Hoya Corporation
    Inventors: Yasuhiro Fujiwara, Shuhei Mikami, Hiroki Takazawa
  • Publication number: 20120258848
    Abstract: A fluorophosphate glass having a fluorine content of 25% or more by anionic %, which is produced from a glass raw material containing 0.1 to 0.5%, by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine, and a phosphate glass having a fluorine content of less than 25% by anionic %, which is produced from a glass raw material containing 0.1 to 5%, by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 11, 2012
    Applicant: HOYA CORPORATION
    Inventor: Mikio IKENISHI
  • Publication number: 20120245015
    Abstract: A fluorophosphate glass containing: P5+ in an amount of 20 to 45 cationic %; Al3+ in an amount of 15 to 35 cationic %; Ba2+ in an amount of 20 to 50 cationic %; B3+ in an amount of 0 to 5 cationic %; F? in an amount of 20 to 50 anionic %; and O2? in an amount of 50 to 80 anionic %. A molar ratio of O2?/P5+ is greater than or equal to 3.5. In addition, a molar ratio of Al3+/P5+ is less than or equal to 1. In addition, the Abrasion FA is less than or equal to 600, or the Knoop hardness number is greater than or equal to 300 MPa. Furthermore, the Abbe number (?d) of the glass is larger than or equal to 66. Moreover, a refractive index (nd) of the glass satisfies an expression (1): nd?2.0614?0.0071×?d.
    Type: Application
    Filed: June 8, 2012
    Publication date: September 27, 2012
    Inventor: Mikio Ikenishi
  • Patent number: 8261579
    Abstract: Provided is an optically uniform and high-quality optical glass that is free from the occurrence of striae when a precision press-molding preform is produced therefrom, and that is a fluorine-containing glass having a refractive index nd(1) wherein the refractive index nd(1) and a refractive index nd(2) are substantially equivalent to each other, said refractive index nd(2) being a refractive index of the fluorine-containing glass after the fluorine-containing glass is re-melted in a nitrogen atmosphere at 900° C. for 1 hour, cooled to its glass transition temperature and then cooled to 25° C. at a temperature decrease rate of 30° C./hour.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 11, 2012
    Assignee: Hoya Corporation
    Inventors: Mikio Ikenishi, Xuelu Zou
  • Publication number: 20120165178
    Abstract: Glass having an optimized degree of cross-linking of the phosphate component in the glass matrix is provided so that excellent weatherability is achieved. These glasses are fluorophosphate glasses that contain copper oxide as colouring component. The glasses can further contain colouring components and are obtainable in a method that includes a bubbling step.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 28, 2012
    Applicant: SCHOTT AG
    Inventors: Simone Ritter, Bianca Schreder, Ute Woelfel, Stefanie Hansen
  • Patent number: 8198202
    Abstract: A fluorophosphate glass containing: P5+ in an amount of 20 to 45 cationic %; Al3+ in an amount of 15 to 35 cationic %; Ba2+ in an amount of 20 to 50 cationic %; F? in an amount of 20 to 50 anionic %; and O2? in an amount of 50 to 80 anionic %. A molar ratio of O2?/P5+ is larger than or equal to 3.5. In addition, a molar ratio of Al3+/P5+ is larger than or equal to 0.45. Furthermore, the Abbe number (?d) of the glass is larger than or equal to 66. Finally a refractive index (nd) of the glass satisfies an expression (1): nd?2.0614?0.0071×?d.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 12, 2012
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 8183169
    Abstract: A fluorophosphate glass having a fluorine content of 25% or more by anionic %, which is produced from a glass raw material containing 0.1 to 0.5%, by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine, and a phosphate glass having a fluorine content of less than 25% by anionic %, which is produced from a glass raw material containing 0.1 to 5%, by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 22, 2012
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Publication number: 20120090358
    Abstract: In order to produce a fluorophosphate glass including P5+ at a small content in the composition thereof, the composition is adjusted so as to provide well-balanced chemical durability and thermal stability. In the production of a fluorophosphate glass in which O2?/P5+?3.7, Al3+ content is in a predetermined amount or more and P5+ content is in a predetermined amount or less, a glass raw material is prepared by using an AlF3 in which the content of Al2O3 is limited to the range from 1 to 5% by mass, and the raw material is melted to produce the fluorophosphate glass.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 19, 2012
    Applicant: HOYA CORPORATION
    Inventor: Mikio IKENISHI
  • Patent number: 8158541
    Abstract: Provided is an optically uniform and high-quality optical glass that is free from the occurrence of striae when a precision press-molding preform is produced therefrom, and that is a fluorine-containing glass having a refractive index nd(1) wherein the refractive index nd(1) and a refractive index nd(2) are substantially equivalent to each other, said refractive index nd(2) being a refractive index of the fluorine-containing glass after the fluorine-containing glass is re-melted in a nitrogen atmosphere at 900° C. for 1 hour, cooled to its glass transition temperature and then cooled to 25° C. at a temperature decrease rate of 30° C./hour.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: April 17, 2012
    Assignee: Hoya Corporation
    Inventors: Mikio Ikenishi, Xuelu Zou
  • Publication number: 20120021891
    Abstract: The technical problem to be solved by the invention is to provide a fluorophosphate optical glass which has low refraction, low dispersion and low density and is suitable for molding at a low temperature. The fluorophosphate optical glass has a refractive index of 1.45-1.52, an abbe number of 78-85, a transition temperature lower than 465° C., a density lower than 3.8 g/cm3, and a hardness higher than 360 (107 pa). The fluorophosphate optical glass consists of 18-25 mol % of AIF3, 5-20 mol % of Al(PO3)3, 7-12 mol % of MgF2, 15-25 mol % of CaF2, 18-25 mol % of SrF2, 8-20 mol % of BaF2, 0-8 mol % of Ba(PO3)2, 0-3 mol % of YF3 and 0-0.5 mol % of BaCl2.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 26, 2012
    Applicant: CDGM GLASS CO., LTD.
    Inventors: Junhong Yuan, Yue Zhao, Jinwei Wu
  • Publication number: 20110287922
    Abstract: The present invention provide a fluorophosphate glass comprising 3 to 25 cation % of P5+, more than 30 cation % and 40 cation % or less of Al3+, 0.5 to 20 cation % of Li+ and 65 anion % or more of F? as glass ingredients, and having a liquid phase temperature of 700° C. or less. The fluorophosphate glass of the present invention has ultra low dispersibility and stability, and is preferably used for glass materials for press molding, optical element blanks and optical elements.
    Type: Application
    Filed: August 26, 2009
    Publication date: November 24, 2011
    Applicant: HOYA CORPORATION
    Inventor: Mikio Ikenishi
  • Patent number: 8008220
    Abstract: The present invention relates to the use of lead-free and phosphate-containing glasses, preferably colored and filter glasses which absorb light in the infrared region (IR-region), in a precision molding process. Preferably, the content of fluorine in the glass is low. Advantageously, so optical constituents can be produced without finishing, such as for example lenses for digital cameras. By the use according to the present invention, also other optical constituents can be produced which can be directly used for a corresponding technical purpose. For an advantageous use, the optical constituents produced by precision molding can be used in the fields imaging, projection, telecommunications, optical communications engineering and laser technology.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 30, 2011
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Christopher Klein, Christian Schenk, Frank-Thomas Lentes, Petra Auchter-Krummel, Rainer Jaschek, Steffen Reichel, Michael Waschulewski, Stephan Kuepper-Brennberger
  • Patent number: 7989377
    Abstract: Provided is an optical glasses that has high refractivity and low dispersion and anomalous partial dispersion capability and that has excellent processability and devitrification resistance and ensures that the occurrence of striae can be inhibited, the optical glass including an optical glass having a refractive index (nd) of 1.54 to 1.60, an Abbe's number (vd) of 65 to 78, a partial dispersion ratio of 0.530 or more, a specific gravity of 4.0 or less and a viscosity, measured at its liquidus temperature, of 4 dPa·s or more and an optical glass comprising as cationic components, by cationic %, 20 to 50% of p5+, 0.1 to 20% of Al3+, 0.1 to 20% of Mg2+, 0 to 20% of Ca2+, 0 to 20% of Sr2+, 0.1 to 30% of Ba2+ and 0 to 10% of Y3+, and further comprising, as anionic components, F? and O2?, wherein the ratio of the content of Mg2+ to the content of Al3+, Mg2+/Al3+, based on cationic %, is 1.2 or less.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: August 2, 2011
    Assignee: Hoya Corporation
    Inventor: Youichi Hachitani
  • Patent number: 7989376
    Abstract: New and improved compositions of doped fluorophosphate glasses for lasers have a high refractive index (nD) of approximately 1.6 to 1.7, high transmission in the near infrared part of the spectrum and a wide glass forming domain. These glass systems, Ba(PO3)2—Al(PO3)3—BaF2-Dopants, utilize dopants from the group of: oxides or fluorides of the rare earth elements: Sm, Eu, Nd, Er, Yb, Tm, Tb, Ho and Pr: as well as MnO; and mixtures thereof. The composition of glass includes chemical durability, efficiency of laser use in the infrared spectrum and improved duration of luminescence. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: January 21, 2002
    Date of Patent: August 2, 2011
    Assignee: AFO Research, Inc.
    Inventor: Alfred A. Margaryan
  • Publication number: 20100317504
    Abstract: A P2O5—BaO—ZnO—Nb2O5 type optical glass contains 25-50 wt. % P2O5, 15-35 wt. % BaO, 1-25 wt. ZnO, and 3-10 wt. % Nb2O5. The optical glass has a high refractive index (particularly preferably the refractive index nd of 1.6 or more), low dispersion (an Abbe number ?d of 42 or more), a low deformation point, and improved resistance to devitrification upon molding, and is suitable for precision-mold press molding or other molding processes and also suitable for transfer of a fine structure.
    Type: Application
    Filed: February 9, 2009
    Publication date: December 16, 2010
    Applicant: National Institute of Advanced Industrial Sciences and Technology
    Inventors: Tatsuo Hidaka, Junichi Nakamura, Yoshitaka Mayumi, Hidekazu Hashima, Kohei Fukumi, Naoyuki Kitamura, Junji Nishii
  • Patent number: 7838450
    Abstract: An optical glass having a refractive index (nd) within a range from 141 to 1.47 and an Abbe number (?d) within a range from 90 to 100 comprises in mass % on element basis: P ?0.1-5.0% Al ?1.0-20.0% F 30.0-60.0% and O ?1.0-20.0% and comprises, as an essential component, one or more elements selected from the group consisting of Ca, Sr and Ba. In this optical glass, the ratio (Si+B+P+Al)/F is within a range from 0.15 to 0.40.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: November 23, 2010
    Assignee: Ohara Inc.
    Inventors: Junko Suzuki, Masahiro Onozawa
  • Publication number: 20100113247
    Abstract: Provided is a low-dispersion optical glass that is formed of a fluorophosphate glass in which the molar ratio of the content of O2? to the content of P5+, O2?/P5+, is 3.5 or more and that has an Abbe's number (?d) of over 70 or has an F? content of 65 anionic % or more, and the optical glass enables the suppression of the volatilization of a glass component when an optical glass formed of a fluorophosphate glass is produced or when an obtained glass in a molten state is caused to flow out to shape it into a glass shaped material, so that the variation of properties such as a refractive index, etc., involved in the fluctuations of a glass composition and the variation of quality such as the occurrence of striae can be suppressed.
    Type: Application
    Filed: February 27, 2008
    Publication date: May 6, 2010
    Applicant: HOYA CORPORATION
    Inventor: Mikio Ikenishi
  • Patent number: 7645314
    Abstract: Di-ammonium phosphate, murate of potash and gypsum are the conventional phosphorous, potassium and sulfur fertilizers respectively. Application of gypsum to soil can cause an increase calcium load on soil and polluted surface and underground water. The most successful technique is application of phosphorous-potassium-sulfur glass which can be added directly to the soil. Main feature of the present invention is formulation and making of a composition of high phosphorous, potassium and sulfur containing glass free from alkali like Na2O, Li2O and ZnO, which are toxic to the plants. Such glasses are capable of slow release of phosphorous, potassium and sulfur required in the area of agriculture, fungicide, pesticide and weedicides etc. The present invention also emphasize optimization of nutrient content, reduction of calcium load on the soil, minimization of surface and under-ground water pollution and maintenance of acidic environment near the plant roots in the soil.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: January 12, 2010
    Assignee: Council of Scientific & Industrial Research
    Inventors: Nisha Biswas, Gour Krishna Das Mahapatra, Koushik Ghosh
  • Publication number: 20090325774
    Abstract: A fluorophosphate glass having a fluorine content of 25% or more by anionic %, which is produced from a glass raw material containing 0.1 to 0.5%, by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine, and a phosphate glass having a fluorine content of less than 25% by anionic %, which is produced from a glass raw material containing 0.1 to 5% by anionic %, of a halide containing a halogen element selected from chlorine, bromine or iodine.
    Type: Application
    Filed: June 29, 2007
    Publication date: December 31, 2009
    Applicant: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 7637124
    Abstract: New and improved compositions of doped and co-doped bismuth fluorophosphate glasses for lasers is disclosed that have a high refractive index (nD) of approximately 1.6 and higher, high transmission in the near infrared part of the spectrum, and a wide glass forming domain. The disclosed glass systems Al(PO3)3—Ba(PO3)2—Bi(PO3)3—BaF2+RFx+dopands use dopants from the group of oxides and or fluorides of rare earth elements Nd, Er, Yb, Tm, Tb, Ho, Sm, Eu and Pr as well as MnO and mixtures thereof over 100 percent (wt %) of the glass-base composition. These glasses have high chemical durability, radiation resistance, efficiency of laser use in the infrared and blue spectrum, and improved duration of luminescence.
    Type: Grant
    Filed: June 21, 2009
    Date of Patent: December 29, 2009
    Assignee: AFO Research, Inc.
    Inventors: Alfred A. Margaryan, Ashot A. Margaryan
  • Publication number: 20090317772
    Abstract: The present application provides dental compositions, and methods of making and using dental compositions that include a calcium and phosphorus releasing glass. Such dental compositions can be useful for delivering ions to the oral environment.
    Type: Application
    Filed: November 7, 2005
    Publication date: December 24, 2009
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Richard P. Rusin, Kevin M. Cummings, Sumita B. Mitra, Paul A. Burgio, Tsi-Zong Tzou, David S. Arney
  • Publication number: 20090314033
    Abstract: A glass material for mold pressing, comprising a core portion comprised of an optical glass with a degree of abrasion FA of 200 or higher and a covering portion comprised of a second glass covering at least a portion of the surface of said core portion. A method for manufacturing an optical glass element, wherein a glass material that has been preformed to a prescribed shape is heat softened and press molded with a pressing mold and the outer perimeter portion of the molded product obtained is removed by mechanical processing. The above-mentioned glass material for mold pressing is used as the glass material. To provide a means whereby an optical element does not bear scratches on optically functional surfaces through contact during handling after the press molding of press molded glass products despite being comprised of a glass material with a high degree of abrasion, and a means whereby even when scratched, the function of the optical element finally obtained is unaffected.
    Type: Application
    Filed: March 28, 2007
    Publication date: December 24, 2009
    Inventors: Xuelu Zou, Yasuhiro Fujiwara