Silica Containing Patents (Class 501/53)
  • Patent number: 8476353
    Abstract: Provided are an amorphous polyamide resin composition having high transparency, and is excellent in heat resistance and stiffness, and a molded product thereof. The glass filler contains, expressed in terms of oxides by mass %, 68 to 74% of silicon dioxide (SiO2), 2 to 5% of aluminum oxide (Al2O3), 2 to 5% of boron oxide (B2O3), 2 to 10% of calcium oxide (CaO), 0 to 5% of zinc oxide (ZnO), 0 to 5% of strontium oxide (SrO), 0 to 1% of barium oxide (BaO), 1 to 5% of magnesium oxide (MgO), 0 to 5% of lithium oxide (Li2O), 5 to 12% of sodium oxide (Na2O), and 0 to 10% of potassium oxide (K2O), where a total amount of lithium oxide (Li2O), sodium oxide (Na2O), and potassium oxide (K2O) is 8 to 12%.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 2, 2013
    Assignee: Asahi Fiber Glass Company, Limited
    Inventors: Hideyuki Higashiyama, Keiji Sekine
  • Publication number: 20130157026
    Abstract: The present invention provides a porous glass having excellent antireflection performance for visible light. A porous glass includes a porous layer which is mainly composed of silica and which has pores attributed to spinodal phase separation and pores attributed to binodal phase separation.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 20, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yoshinori Kotani, Zuyi Zhang, Kenji Takashima, Akira Sugiyama
  • Publication number: 20130154064
    Abstract: A glass composition for protecting a semiconductor junction contains at least SiO2, Al2O3, MO, and nickel oxide, and substantially contains none of Pb, P, As, Sb, Li, Na and K (M in MO indicates one of alkali earth metals).
    Type: Application
    Filed: August 29, 2011
    Publication date: June 20, 2013
    Applicant: SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Atsushi Ogasawara, Kazuhiko Ito, Koji Ito
  • Publication number: 20130122284
    Abstract: Alkali aluminosilicate glasses that are resistant to damage due to sharp impact and capable of fast ion exchange are provided. The glasses comprise at least 4 mol % P2O5 and, when ion exchanged, have a Vickers indentation crack initiation load of at least about 7 kgf.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 16, 2013
    Inventor: Timothy Michael Gross
  • Publication number: 20130123092
    Abstract: The present invention relates to a TiO2-containing quartz glass substrate, having a TiO2 concentration of from 3 to 8% by mass, an OH concentration of 50 ppm by mass or less, and an internal transmittance T365 per 1 mm thickness at a wavelength of 365 nm of 95% or more.
    Type: Application
    Filed: January 8, 2013
    Publication date: May 16, 2013
    Applicant: Asahi Glass Company, Limited
    Inventor: Asahi Glass Company, Limited
  • Publication number: 20130115422
    Abstract: Provided is a glass sheet, comprising, as a glass composition in terms of mass %, 40 to 80% of SiO2, 0 to 30% of Al2O3, 0 to 15% of B2O3, 0 to 25% of an alkali metal oxide (one kind or two or more kinds of Li2O, Na2O, and K2O), and 0 to 15% of an alkaline earth metal oxide (one kind or two or more kinds of MgO, CaO, SrO, and BaO), and being used as a viewing zone control member for covering partially or wholly a two-dimensional display.
    Type: Application
    Filed: June 3, 2011
    Publication date: May 9, 2013
    Inventor: Takashi Murata
  • Publication number: 20130090227
    Abstract: The technical task of the present invention is to provide a lead-free glass for semiconductor encapsulation, which is easy to automate an appearance inspection, and furthermore, has excellent refinability and encapsulatability of semiconductor devices. In the lead-free glass for semiconductor encapsulation according to the present invention, a temperature at which the viscosity of glass is 106 dPa·s is 670° C. or lower, and, as a glass composition, the content of CeO2 is from 0.01 to 6% by mass, and the content of Sb2O3 is 0.1% by mass or less.
    Type: Application
    Filed: June 17, 2011
    Publication date: April 11, 2013
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Koichi Hashimoto
  • Publication number: 20130085058
    Abstract: An object of the present invention is to provide a Li2O—Al2O3—SiO2 based crystallized glass with excellent bubble quality even without using As2O3 or Sb2O3 as a fining agent and a method for producing the same. The Li2O—Al2O3—SiO2 based crystallized glass of the present invention is a Li2O—Al2O3—SiO2 based crystallized glass which does not substantially comprise As2O3 and Sb2O3 and comprises at least one of Cl, CeO2 and SnO2, and has a S content of not more than 10 ppm in terms of SO3.
    Type: Application
    Filed: May 30, 2011
    Publication date: April 4, 2013
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Shingo Nakane, Kosuke Kawamoto
  • Patent number: 8404605
    Abstract: A method of loading at least one fused silica article with hydrogen. At least one fused silica article is first loaded with an amount of hydrogen so that the hydrogen concentration at the center of the article exceeds a minimum concentration upon completion of loading. An amount of hydrogen is the removed from the fused silica article so that the fused silica article has an average hydrogen concentration that is less than the maximum average concentration limit. The surface region of the fused silica article is then reloaded to ensure that the hydrogen concentration throughout the article is within a predetermined pressure range. A fused silica article comprising hydrogen is also described.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: March 26, 2013
    Assignee: Corning Incorporated
    Inventor: William Rogers Rosch
  • Publication number: 20130059717
    Abstract: Certain example embodiments relate to an improved method of strengthening glass substrates (e.g., soda lime silica glass substrates). In certain examples, a glass substrate may be chemically strengthened by creating an electric field within the glass. In certain cases, the chemical tempering may be performed by surrounding the substrate by a plasma including certain ions, such as Li+, K+, Mg2+, and/or the like. In some cases, these ions may be forced into the glass substrate due to the half-cycles of the electric field generated by the electrodes that formed the plasma. This may advantageously chemically strengthen a glass substrate on a substantially reduced time scale. In other example embodiments, an electric field may be set in a float bath such that sodium ions are driven from the molten glass ribbon into the tin bath, which may advantageously result in a stronger glass substrate with reduced sodium content.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Xuequn Hu, Glenn A. Cerny
  • Publication number: 20130045854
    Abstract: Methods are described for manufacturing silica-based glass, in which silica precursor material is supplied to a synthesis flame in the form of an emulsion. The methods involve the steps of: forming an emulsion of an aqueous phase in a non-aqueous liquid silica precursor material; supplying the emulsion as a spray of droplets into a synthesis flame, whereby the precursor material is converted in the flame into a silica-containing soot; and collecting the soot on a substrate, either as a porous soot body for subsequent consolidation to glass or directly as a substantially pore-free glass.
    Type: Application
    Filed: February 28, 2011
    Publication date: February 21, 2013
    Applicant: Heraeus Quartz UK Limited
    Inventors: Richard Benjamin Coapes, Alan Mundy, Ian George Sayce
  • Patent number: 8363313
    Abstract: An ytterbium-doped optical fiber of the present invention includes: a core which contains ytterbium, aluminum, and phosphorus and does not contain germanium; and a cladding which surrounds this core. The ytterbium concentration in the core in terms of ytterbium oxide is 0.09 to 0.68 mole percent. The molar ratio between the phosphorus concentration in the core in terms of diphosphorus pentoxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 30. The molar ratio between the aluminum concentration in the core in terms of aluminum oxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 32. The molar ratio between the above aluminum concentration in terms of aluminum oxide and the above phosphorus concentration in terms of diphosphorus pentoxide is 1 to 2.5.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Fujikura Ltd.
    Inventors: Teruno Nakaguma, Kentaro Ichii, Shoji Tanigawa
  • Publication number: 20130017387
    Abstract: Disclosed are a phase separable glass compositions used to produce chemically durable porous glass, e.g., porous glass powder, and the application of a sol gel coating to the glass to enhance chemical durability of the glass in alkaline solutions, and to the use of the glass, e.g., glass powder, as substrates for separation technology where harsh alkaline environments (pH?12 e.g., pH 12-14) are routinely prevalent.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 17, 2013
    Inventors: William H. JAMES, III, Sally Pucilowski, Eric H. Urruti, Matthias Bockmeyer
  • Publication number: 20130011607
    Abstract: Provided is a high refractive index glass, comprising, as a glass composition in terms of mass %, 0 to 10% of B2O2, 0.001 to 35% of SrO, 0.001 to 30% of ZrO2+TiO2, and 0 to 10% of La2O2+Nb2O5, having a mass ratio of BaO/SrO of 0 to 40 and a mass ratio of SiO2/SrO of 0.1 to 40, and having a refractive index nd of 1.55 to 2.3.
    Type: Application
    Filed: May 18, 2012
    Publication date: January 10, 2013
    Inventors: Atsushi MUSHIAKE, Takashi MURATA, Tomoki YANASE
  • Publication number: 20130004758
    Abstract: An aluminosilicate glass article having a high compressive stress layer. The glass article comprises at least about 50 mol % SiO2 and at least about 11 mol % Na2O, and has a layer under a compressive stress of at least about 900 MPa and the depth of layer that extends at least about 30 ?m from the surface of the glass article into the glass. A method of making such a glass article is also provided.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 3, 2013
    Inventors: Matthew John Dejneka, Adam James Ellison, John Christopher Mauro
  • Patent number: 8338524
    Abstract: Disclosed is a glass composition which can be suitably used as a glass filler to be blended into a polycarbonate resin. This glass composition contains, in mass %, 50?SiO2?60, 8?Al2O3?15, 0?MgO?10, 10?CaO?30, 0?Li2O+Na2O+K2O<2, and 5<TiO2?10, and does not substantially contain B2O3, F, ZnO, SrO, BaO and ZrO2.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 25, 2012
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Kosuke Fujiwara, Akihiro Koyama
  • Publication number: 20120318356
    Abstract: A photovoltaic cell, for example a thin-film photovoltaic cell, having a substrate glass made of aluminosilicate glass, has a glass composition which has SiO2 and Al2O3 as well as the alkaline oxide Na2O and the alkaline earth oxides CaO, MgO, and BaO, and optionally further components. The glass composition includes 10 to 16 wt.-% Na2O, >0 to <5 wt.-% CaO, and >1 to 10 wt.-% BaO, and the ratio of CaO:MgO is in the range of 0.5 to 1.7. The aluminosilicate glass used is crystallization stable because of the selected quotient of CaO/MgO and has a transformation temperature >580° C. and a processing temperature <1200° C. Therefore, it represents a more thermally stable alternative to soda-lime glass. The aluminosilicate glass is used as a substrate glass, superstrate glass, and/or cover glass for a photovoltaic cells, for example for thin-film photovoltaic cells, in particular those based on semiconductor composite material, such as CdTe, CIS, or CIGS.
    Type: Application
    Filed: July 27, 2012
    Publication date: December 20, 2012
    Inventors: Jörg Hinrich Fechner, Christof Kass, Franz Ott
  • Patent number: 8334013
    Abstract: The present disclosure provides a method for forming populations of monodisperse porous silica particles. Also provided are monodisperse populations of porous silica particles, an array of physically connected monodisperse porous silica particles and a microfluidic device for forming populations of monodisperse porous silica particles.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: December 18, 2012
    Assignee: STC.UNM
    Inventors: Dimiter N Petsev, Erin Derbins, Sergio Mendez, Shailendra Rathod, Nick Carroll, David A. Weitz
  • Publication number: 20120315410
    Abstract: An insulating unit having a neutral grey color and a solar heat gain coefficient less than 0.40 includes a clear glass sheet spaced from a coated glass sheet. The coated glass sheet includes a colored glass substrate having a solar infrared reflective coating. The composition of the coated substrate includes a base glass portion and a glass colorant portion, the glass colorant portion including total iron in the range of 0.04 to less than 0.28 weight percent; CoO in the range of 32 to 90 parts per million, and Se in the range of greater than 0 to less than 5.5 parts per million. In one non-limiting embodiment of the invention the glass substrate at a thickness of 0.223 inches has a* chromaticity coordinates of ?3.5 to +2.5 and b* chromaticity coordinates of ?1 to ?15, and a visible light transmittance of 40 to 80%.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 13, 2012
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Robert B. Heithoff, Glenn T. Miner
  • Patent number: 8329604
    Abstract: A silica glass containing TiO2, which has a fictive temperature of at most 1,200° C., a F concentration of at least 100 ppm and a coefficient of thermal expansion of 0±200 ppb/° C. from 0 to 100° C. A process for producing a silica glass containing TiO2, which comprises a step of forming a porous glass body on a target quartz glass particles obtained by flame hydrolysis of glass-forming materials, a step of obtaining a fluorine-containing porous glass body, a step of obtaining a fluorine-containing vitrified glass body, a step of obtaining a fluorine-containing formed glass body and a step of carrying out annealing treatment.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: December 11, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yasutomi Iwahashi, Akio Koike
  • Publication number: 20120308803
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Application
    Filed: August 17, 2012
    Publication date: December 6, 2012
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Publication number: 20120302422
    Abstract: A lithium-aluminosilicate glass or a corresponding glass ceramic that has a content of 0-0.4SnO2, 1.3-2.7% by weight of ?SnO2+TiO2, 1.3-2.5% by weight of ZrO2, 3.65-4.3% by weight of ?ZrO2+0.87 (TiO2+SnO2), ?0.04% by weight of Fe2O3, 50-4000 ppm of Nd2O3 and 0-50 ppm of CoO is described. The glass or the glass ceramic is color-neutral, has a turbidity of less than 1% HAZE and a high light transmission. The glazing time for conversion of the glass into glass ceramic is especially short with less than 2.5 hours.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: SCHOTT AG
    Inventors: Friedrich SIEBERS, Ulrich SCHIFFNER, Wolfgang SCHMIDBAUER, Klaus SCHÖNBERGER
  • Publication number: 20120289393
    Abstract: A TiO2—SiO2 glass ingot having a desired TiO2 concentration is fabricated, a sample is cut from the TiO2—SiO2 glass ingot, OH concentration C(OH), TiO2 concentration C(TiO2) and fictive temperature TF of the sample are measured, and zero-CTE temperature T(zero-CTE) is calculated from the measured C(OH), C(TiO2) and TF. A judgment is made as to whether the difference ?T between the zero-CTE temperature T(zero-CTE) and a target value is within a predetermined range. When the difference ?T is within the predetermined range, it is judged that the TiO2—SiO2 glass ingot has a desired zero-CTE temperature; when the difference ?T is not within the range, a production condition for the TiO2—SiO2 glass ingot is corrected on the basis of the difference ?T.
    Type: Application
    Filed: February 24, 2011
    Publication date: November 15, 2012
    Applicant: Tohoku University
    Inventors: Junichi Kushibiki, Mototaka Arakawa
  • Publication number: 20120289394
    Abstract: To provide a colored glass plate, which uses sodium sulfate (Na2SO3) as a refining agent and which is capable of stably maintaining the mass percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 at a high level, while suppressing development of an amber color that is derived from sodium sulfate. A colored glass plate made of alkali-containing silica glass containing elements of iron, tin and sulfur, wherein the percentage of the total sulfur calculated as SO3 is at least 0.025% as represented by mass percentage based on oxides, the percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 is from 60 to 80% as represented by mass percentage, and the percentage of divalent tin calculated as SnO2 in the total tin calculated as SnO2 is at least 0.1% as represented by mol percentage.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 15, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Kensuke NAGAI, Yuichi Suzuki, Terutaka Maehara
  • Patent number: 8304484
    Abstract: Disclosed is a glass composition having a stable quality, which can be easily obtained. This glass composition can be used as a glass filler to be blended into a polycarbonate resin, and enables to reduce the load imposed on a glass manufacturing apparatus. Specifically, this glass composition contains, in mass %, 50?SiO2?60, 8?Al2O3?15, 0?MgO?10, 5?CaO<21, 0<SrO+BaO?25, 10<MgO+SrO+BaO?30, 0?Li2O+Na2O+K2O<2, 2<TiO2?10 and 0?ZrO2<2 and does not substantially contain B2O3, F, and ZnO.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: November 6, 2012
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Kosuke Fujiwara, Akihiro Koyama
  • Publication number: 20120264583
    Abstract: A soda lime silica glass having a colourant portion falling within one of the following combinations of ranges: Oxide Composition Fe2O3 2.1-4.0 weight % 2.1-4.0 weight % Co3O4 0-1000 ppm 200-800 ppm NiO 10-1000 ppm 50-800 ppm Se 0-100 ppm 10-70 ppm Fe2O3 2.3-3.8 weight % 2.1-4.0 weight % Co3O4 0-1000 ppm 0-1000 ppm NiO 10-1000 ppm 10-1000 ppm Se 0-100 ppm 50-100 ppm The glass has low solar heat transmittance and low visible light transmittance. It may be used as a solar control glass or a privacy glass, and is particularly suitable for rooflights, i.e. sunroofs and roof windows, for vehicles. The glass may be manufactured by the float glass process.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 18, 2012
    Applicant: Pilkington Group Limited
    Inventor: Martin James Horsley
  • Publication number: 20120264584
    Abstract: The present invention relates to a substrate for EUV lithography optical member, comprising a silica glass containing TiO2, in which the substrate has two opposite surfaces, and the substrate has temperatures at which a coefficient of linear thermal expansion (CTE) is 0 ppb/° C. (Cross-Over Temperature: COT), and in which the two opposite surfaces have difference in the COTs of 5° C. or more.
    Type: Application
    Filed: June 25, 2012
    Publication date: October 18, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Junko Miyasaka, Akio Koike, Tomonori Ogawa
  • Patent number: 8282728
    Abstract: Embodiments of compositions comprising materials satisfying the general formula AM1?xM?xM?yO3+y are disclosed, along with methods of making the materials and compositions. In some embodiments, M and M? are +3 cations, at least a portion of the M cations and the M? cations are bound to oxygen in trigonal bipyramidal coordination, and the material is chromophoric. In some embodiments, the material forms a crystal structure having a hexagonal unit cell wherein edge a has a length of 3.50-3.70 ? and edge c has a length of 10-13 ?. In other embodiments, edge a has a length of 5.5-7.0 ?. In particular embodiments, M? is Mn, and Mn is bonded to oxygen with an apical Mn—O bond length of 1.80 ? to 1.95 ?. In some embodiments, the material is YIn1?xMnxO3, x is greater than 0.0 and less than 0.75, and the material exhibits a surprisingly intense blue color.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 9, 2012
    Assignee: State of Oregon Acting by and through the State Board of Higher Education on behalf of Oregon State University
    Inventors: Munirpallam A. Subramanian, Arthur W. Sleight, Andrew E. Smith
  • Publication number: 20120251743
    Abstract: A housing/enclosure/cover can include an ion-exchanged glass exhibiting the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa·m1/2; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (6) a Young's Modulus ranging between about 50 to 100 GPa;; (7) a thermal conductivity of less than 2.0 W/m° C., and (9) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
    Type: Application
    Filed: May 15, 2012
    Publication date: October 4, 2012
    Inventors: Jaymin Amin, Matthew John Dejneka, Linda Ruth Pinckney, Katherine Rose Rossington, Robert Sabia
  • Publication number: 20120244388
    Abstract: A process for producing a glass substrate for information recording media, comprising lapping a glass disk made of low alkali aluminosilicate glass that contains no alkali metal oxide or contains alkali metal oxides in a total amount of less than 4 mol %, and subsequently polishing the glass disk by using a slurry that contains cerium oxide abrasives, characterized by cleaning the glass disk by using a cleaning liquid that contains sulfuric acid at a concentration of from 20 mass % to 80 mass % and hydrogen peroxide at a concentration of from 0.5 mass % to 10 mass % at a liquid temperature of from 50° C. to 100° C., and thereafter polishing the main surface of the glass disk, by using a slurry that contains colloidal silica abrasives.
    Type: Application
    Filed: June 6, 2012
    Publication date: September 27, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Tetsuya NAKASHIMA, Katsuaki Miyatani
  • Publication number: 20120238435
    Abstract: To provide an inexpensive glass plate on the surface of which elution of Na+ is suppressed, and its production process. A glass plate comprising soda lime silica glass containing at least elements of Si, Al, Ca and Na, wherein when the Na amount at a depth of 2,000 nm from at least one surface of the glass plate is 100%, the Na amount at a depth of 20 nm from the above surface is at most 45%, the Na amount at a depth of 40 nm from the above surface is at most 70%, and the Na amount at a depth of 60 nm from the above surface is at most 80%.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yusuke Arai, Tomoyuki Kobayashi, Yuki Kondo
  • Publication number: 20120216574
    Abstract: A process for making soda-lime glass includes calcinating calcium carbonate in solid phase and at elevated temperature to form calcium oxide and release gases such as carbon dioxide. Sodium silicate glass is formed separately in liquid phase while releasing gaseous reaction products. The calcium oxide and the sodium silicate glass intermediate products are mixed in liquid phase to form a soda-lime glass melt. Formation of sodium silicate glass as an intermediate product before mixing with the calcium oxide has the advantage of promoting release of gaseous reaction products in the sodium silicate due at least in part to the relatively low viscosity of the sodium silicate glass. The calcination step and/or the sodium silicate-forming step and/or the final mixing step can be carried out under reduced pressure further to promote release of gases and reduce bubble formation.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 30, 2012
    Inventors: Dawid Dewet-Smith, Carl L. Fayerweather, Brett E. Hixson
  • Publication number: 20120207995
    Abstract: A vehicle roof window includes an uncoated glass transparency having an Lta in the range of greater than 0% to 10%, and a solar factor in the range of equal to or less than 30%, measured at a thickness in the range of 3.6-4.1 millimeters (‘mm”), e.g. at a thickness of 3.6 mm, 3.9 mm or 4.1 mm. The solar factor is determined in accordance to International Organization for Standardization (“ISO”) No. 13837.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Larry J. Shelestak, James P. Thiel
  • Publication number: 20120202677
    Abstract: To provide a heat-absorbing glass plate which comprises soda lime silica glass containing coloring components, the coloring components containing, as represented by mass % based on the following oxides, from 0.45 to 0.61% of total iron as calculated as Fe2O3 and from 0.2 to 0.6% of TiO2, which contains substantially no CoO, Cr2O3, V2O5, MnO nor CeO2, which has a mass proportion of bivalent iron as calculated as Fe2O3 in total iron as calculated as Fe2O3 of from 45 to 60%, which has a solar transmittance of at most 42% calculated as 4 mm thickness, which has a visible light transmittance (by illuminant A) of at least 70% calculated as 4 mm thickness, and which provides a transmitted light having a dominant wavelength of from 492 to 500 nm.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 9, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Yuya SHIMADA, Yuki KONDO
  • Patent number: 8217369
    Abstract: The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dPr2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 10, 2012
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Yugang Liu
  • Patent number: 8217370
    Abstract: The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dTm2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 10, 2012
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Yugang Liu
  • Publication number: 20120172190
    Abstract: Embodiments of the present invention provides fiberizable glass compositions formed from batch compositions comprising amounts of one or more glassy minerals, including perlite and/or pumice.
    Type: Application
    Filed: February 3, 2012
    Publication date: July 5, 2012
    Inventors: Hong Li, James C. Watson
  • Patent number: 8209998
    Abstract: SiO2 slurry for the production of quartz glass contains a dispersion liquid and amorphous SiO2 particles with particle sizes to a maximum of 500 ?m. The largest volume fraction is SiO2 particles with particle sizes of 1 ?m-60 ?m, as well as SiO2 nanoparticles with particle sizes less than 100 nm constituting 0.2-15% volume by weight of the entire solids content. To prepare the slurry for use and optimize its flow behavior for later processing by dressing or pouring the slurry mass, and for later drying and sintering without cracks, the slurry has SiO2 particles with a multimodal distribution of particle sizes, with a first maximum in the range 1 ?m-3 ?m and a second maximum in the range 5 ?m-50 ?m, and an 83%-90% solids content by weight of the SiO2 particles and the SiO2 nanoparticles together.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: July 3, 2012
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Waltraud Werdecker, Norbert Traeger, Juergen Weber
  • Patent number: 8202601
    Abstract: A honeycomb structure includes at least one honeycomb unit having opening ratio (P) of at least approximately 50% and at most approximately 65% and a cell density ? of at least approximately 31/cm2 and at most approximately 93/cm2. The honeycomb unit includes an inorganic binder and at least approximately 230 g/L of zeolite in which L represents an apparent volume. The honeycomb unit further includes and a plurality of cell walls extending from a first end to a second end of the honeycomb unit along a longitudinal direction of the honeycomb unit to define cells. The cell walls have a surface roughness Ra of at least approximately 1 ?m and at most approximately 30 ?m.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: June 19, 2012
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Masafumi Kunieda, Takahiko Ido
  • Publication number: 20120135226
    Abstract: Glasses comprising SiO2, Al2O3, and P2O5 that are capable of chemical strengthened by ion exchange and having high damage resistance. These phosphate-containing glasses have a structure in which silica (SiO2) is replaced by aluminum phosphate (AlPO4) and/or boron phosphate (BPO4).
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Inventors: Dana Craig Bookbinder, Timothy Michael Gross, Marcel Potuzak
  • Publication number: 20120135853
    Abstract: The present disclosure relates to glass articles for use as a touchscreen substrate for use in a portable electronic device, particularly comprising an alkali-free aluminosilicate glass exhibiting a high damage threshold of at least 1000gf, as measured by the lack of the presence of median/radial cracks when a load is applied to the glass using a Vickers indenter, a scratch resistance of at least 900gf, as measured by the lack of the presence of lateral cracks when a load is applied by a moving Knoop indenter and a linear coefficient of thermal expansion (CTE) over the temperature range 0-300° C. which satisfies the relationship: 25×10?7/° C.?CTE?40×10?7/° C.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 31, 2012
    Inventors: Jaymin Amin, Adam James Ellison, Gregory Scott Glaesemann, Timothy Michael Gross
  • Patent number: 8182603
    Abstract: Disclosed are cement compositions for applying to honeycomb bodies. The cement compositions can be applied as a plugging cement composition, segment cement, or even as after applied artificial skins or coatings. The cement compositions generally include an inorganic powder batch mixture consisting essentially of inorganic particles having a particle size greater than 100 nm. The cement compositions can further include an organic binder, a liquid vehicle, and one or more optional processing aids. Also disclosed are honeycomb bodies having the disclosed cement compositions applied thereto and methods for making same.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Corning Incorporated
    Inventors: Anthony Joseph Cecce, Thomas James Deneka, Kintu Odinga X Early, Jeffrey Donald Roche, Patrick David Tepesch
  • Publication number: 20120121857
    Abstract: The present invention relates to a process for production of a TiO2—SiO2 glass body, comprising a step of, when an annealing point of a TiO2—SiO2 glass body after transparent vitrification is taken as T1(° C.), holding the glass body after transparent vitrification in a temperature region of from T1?90(° C.) to T1?220(° C.) for 120 hours or more.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 17, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Akio Koike, Takahiro Mitsumori, Yasutomi Iwahashi, Tomonori Ogawa
  • Patent number: 8178450
    Abstract: The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion in the range of the time of irradiation with EUV light is substantially zero when used as an optical member of an exposure tool for EUVL and which has extremely high surface smoothness. The present invention relates to a TiO2-containing silica glass having a TiO2 content of from 7.5 to 12% by mass, a temperature at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 40 to 110° C., and a standard deviation (?) of a stress level of striae of 0.03 MPa or lower within an area of 30 mm×30 mm in at least one plane.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 15, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Akio Koike, Kenta Saito, Long Shao, Yasutomi Iwahashi, Shinya Kikugawa
  • Patent number: 8178595
    Abstract: Zirconium-containing BaO- and PbO-free X-ray opaque glasses having a refractive index nd of about 1.480 to about 1.517 and a high X-ray opacity with an aluminum equivalent thickness of at least about 180% are provided. Such glasses are based on a SiO2—B2O3—Cs2O—K2O—La2O3 system with additions of Al2O3, Li2O, Na2O and/or ZrO2. Such glasses may be used, in particular, as dental glasses or as optical glasses.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: May 15, 2012
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Oliver Hochrein, Sabine Pichler-Wilhelm
  • Patent number: 8174764
    Abstract: The near-field extinction ratio of a polarizing glass is increased. A polarizing glass contains anisotropically shaped metal particles oriented and dispersed in a glass substrate, which contains 0.40-0.85 wt % Cl relative to the entire glass substrate. The Vickers hardness ranges from 360 to 420, the Knoop hardness number ranges from 400 to 495, or the glass substrate contains at least one component selected from the group consisting of Y2O3, La2O3, V2O3, Ta2O3, WO3, and Nb2O5. The content of each of the selected components ranges from 0.05-4 mole percent, and if a plurality of the components are selected, the total content of the components is 6 mole percent or less.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: May 8, 2012
    Assignee: Hoya Candeo Optronics Corporation
    Inventor: Yoshitaka Yoneda
  • Publication number: 20120100341
    Abstract: The present invention relates to a process for production of a TiO2—SiO2 glass body, comprising: a step of, when an annealing point of a TiO2—SiO2 glass body after transparent vitrification is taken as T1 (° C.), heating the glass body after transparent vitrification at a temperature of T1+400° C. or more for 20 hours or more; and a step of cooling the glass body after the heating step up to T1?400 (° C.) from T1 (° C.) in an average temperature decreasing rate of 10° C./hr or less.
    Type: Application
    Filed: November 18, 2011
    Publication date: April 26, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Akio KOIKE, Takahiro Mitsumori, Yasutomi Iwahashi, Tomonori Ogawa
  • Patent number: 8158542
    Abstract: A known SiO2 slurry for the production of quartz glass contains a dispersion liquid and amorphous SiO2 particles with particle sizes to a maximum of 500 ?m, wherein the largest volume fraction is composed of SiO2 particles with particle sizes in the range 1 ?m-60 ?m, as well as SiO2 nanoparticles with particle sizes less than 100 nm in the range 0.2-15% volume by weight (of the entire solids content). In order to prepare such a slurry for use, and to optimize the flow behavior of such a slurry with regard to later processing by dressing or pouring the slurry mass, and with regard to later drying and sintering without cracks, the invention suggests a slurry with SiO2 particles with a multimodal distribution of particle sizes, with a first maximum of the sizes distribution in the range 1 ?m-3 ?m and a second maximum in the range 5 ?m-50 ?m, and a solids content (percentage by weight of the SiO2 particles and the SiO2 nanoparticles together) in the range 83%-90%.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: April 17, 2012
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Waltraud Werdecker, Norbert Traeger, Juergen Weber
  • Publication number: 20120056106
    Abstract: The invention relates to an optical filter material made of doped quartz glass, which at a low dopant concentration exhibits spectral transmission as high as possible of at least 80% cm?1 for operating radiation of 254 nm, transmission as low as possible in the wave range below approximately 250 nm, and an edge wavelength ?c within the wave range of 230 to 250 nm. It was found that this aim is achieved by doping comprising a gallium compound, which in the wave range below 250 nm has a maximum of an absorption band and thus determines the edge wave range ?c.
    Type: Application
    Filed: March 11, 2010
    Publication date: March 8, 2012
    Applicant: HERAEUS QUARZGLAS GMBH & CO. KG
    Inventor: Christian Neumann
  • Patent number: 8114797
    Abstract: To Provide a polarizing glass with better weatherability than conventional polarizing glasses, affording high long-term reliability without the above-described surface deterioration. To provide an optical isolator employing polarizing glass of improved weatherability, affording good weatherability and high reliability for extended periods. A polarizing glass comprising geometrically anisotropic particles dispersed in an oriented manner in at least one surface layer of a glass base body. The glass base body does not comprise an oxide of alkali earth metal and PbO, and consists of borosilicate glass comprising at least one additive component selected from the group consisting of Y2O3, ZrO2, La2O3, Ce O2, Ce2O3, Ti O2, V2O5, Ta2O5, WO3, and Nb2O5, and the geometrically anisotropic metal particles are metallic cupper particles. An optical isolator employing the polarizing glass.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: February 14, 2012
    Assignee: Hoya Candeo Optronics Corporation
    Inventors: Yoshitaka Yoneda, Sei-ichi Yokoyama