Metal Compound Other Than Which Could Be Produced In Situ By Reaction Of A Group Ia, Iia, Or Group Iiia Metal Compound Present With A Titanium Or Vanadium Compound Present Patents (Class 502/129)
  • Patent number: 6214950
    Abstract: A process for preparation of polyolefins using an olefin polymerization catalyst comprising (A) a solid catalyst component and (B) an organometallic compound component. The solid catalyst component (A) is prepared by a process comprising the steps of: (I) obtaining a solid (A-1) by reacting: (i) an organomagnesium component soluble in a hydrocarbon solvent and represented by the formula (M1)&agr;(Mg)&bgr;(R1)p(R2)q(OR3)r; and (ii) an Si—H bond-containing chlorosilane compound represented by the formula: HaSiClbR44−(a+b), in a ratio of from 0.01 to 100 mol (ii) per mol (i); (II) reacting the solid (A-1) with an alcohol (A-2) in a ratio of from 0.05 to 20 mol of the alcohol per mol of C—Mg bonds contained in the solid (A-1), to form a reaction product; and (III) reacting the reaction product with a titanium compound (A-4). The solid catalyst component (A) is adjusted to have an alkoxy group/titanium molar ratio of 2.4 or lower and an alkoxy group/magnesium molar ratio of 0.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 10, 2001
    Inventor: Nozaki Takashi
  • Patent number: 6211106
    Abstract: A catalyst composition for preparing high-syndiotacticity polystyrene polymers which comprises: (a) a titanium complex represented by the following formula of TiR′1R′2R′3R′4 or TiR′1R′2R′3, wherein R′1, R′2, R′3, and R′4 are, independently, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a hydrogen atom, or a halogen atom; (b) a cyclopentadienyl complex represented by the following formula: wherein R1-R13 are, independently, alkyl group, aryl group, silyl group, halogen atom, or hydrogen atom; Ra and Rb are, independently, alkyl group, aryl group, alkoxy, aryloxy group, cyclopentadienyl group, hydrogen atom, or halogen atom; and Xa is a Group IIA element and Xb is a Group IIIA element.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: April 3, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Yi-Chun Chen, Sheng Te Yang, Meei-Hwa Wang, Shian-Jy Wang
  • Patent number: 6207607
    Abstract: Disclosed is the homogenous reaction at 40-200° C. of MgX12−nR1OH (where n=2.0-6.4) with TiX24 and a higher (C6-C20) alkyl ester of a carboxylic acid, optionally in the presence of a solvent. In such a completely homogenous reaction, no carrier appears. In order to obtain a product in the liquid stage, the molar ratio between the ester and the MgX12.nR1OH should be at least 0.8/j wherein j is the number of carboxyl groups in the ester. If the ester has two carboxyl groups, for instance, j is 2 and the molar ratio should be at least 0.8/2, that is, 0.4.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: March 27, 2001
    Assignee: Borealis A/S
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku
  • Patent number: 6184316
    Abstract: A catalyst for the polymerization of vinylaromatic monomers, and particularly styrene, with a high yield and a high syndiotacticity index, comprises the product consisting of the following two components in contact with each other: A) an &eegr;5-cyclopentadienyl complex of titanium; B) an organo-oxygenated compound of aluminum; and contains a sufficient amount of at least one carboxylated product having the following general formula: R—COO—G  (I) wherein R—COO is a carboxylic group comprising the organic radical R having from 1 to 30 carbon atoms, and G represents a hydrogen atom, an aliphatic or aromatic hydrocarbon group having from 1 to 20 carbon atoms or a metal atom, possibly substituted, linked to said carboxylic group.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: February 6, 2001
    Assignee: Enichem S.p.A.
    Inventors: Francesco Masi, Riccardo PO′, Francesco Menconi, Giuseppe Conti, Francesco Ciardelli, Angelina Altomare, Federico Orsini, Roberto Santi, Nicoletta Cardi
  • Patent number: 6177376
    Abstract: The present invention relates to a process for preparing a metallocene catalyst system, which comprises reacting a metallocene starting compound in a solvent with a compound capable of transferring hydrocarbon radicals and converting the resulting metallocene compound which is &sgr;-substituted by one or more hydrocarbon radicals in solution without isolation into a polymerization-active catalyst system by means of an activator.
    Type: Grant
    Filed: January 29, 1998
    Date of Patent: January 23, 2001
    Assignee: Targor GmbH
    Inventors: Cornelia Fritze, Hans Bohnen, Frank K{umlaut over (u)}ber
  • Patent number: 6165929
    Abstract: A process is provided to produce a composition of matter. The process comprises contacting at least one organometal compound, at least one solid mixed oxide compound, and at least one organoaluminum compound to produce the composition.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: December 26, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Shirley J. Martin, Kathy S. Collins, Marvin M. Johnson
  • Patent number: 6147025
    Abstract: A metallocene catalyst is provided which comprises the product obtained by combining (a) a metallocene procatalyst, preferably one containing a bridging group possessing at least two bulky groups, and (b) a cation-generating cocatalyst. A process for activating a metallocene procatalyst is also provided which comprises combining the metallocene procatalyst with the components of a cation-generating cocatalyst.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: November 14, 2000
    Assignee: Uniroyal Chemical Company, Inc,
    Inventors: Daniel J. Gillis, Richard Karpeles
  • Patent number: 6136744
    Abstract: A cation-generating cocatalyst is provided for activating a metallocene procatalyst. The cocatalyst comprises (1) a metal- and/or metalloid-containing first component, e.g., an aluminum compound, (2) a neutral metal- and/or metalloid-containing second component, e.g., a borane compound, and (3) an anionic metal- and/or metalloid-containing third component, e.g., a metal containing borate.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: October 24, 2000
    Assignee: Uniroyal Chemical Company, Inc.
    Inventors: Daniel J. Gillis, Richard Karpeles
  • Patent number: 6107230
    Abstract: This invention provides compositions for polymerizing at least one monomer to produce a polymer. The compositions are produced by a process comprising contacting at least one organometal compound, at least one organoaluminum compound, and at least one treated solid oxide compound. The treated solid oxide compound is produced by a process comprising contacting at least one solid oxide compound with at least one electron-withdrawing anion source compound and at least one metal salt compound.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: August 22, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Marvin M. Johnson, James L. Smith, Elizabeth A. Benham, Gil R. Hawley, Christopher E. Wittner, Michael D. Jensen
  • Patent number: 6103655
    Abstract: Procedure for the preparation of a solid carrier for olefin polymerization catalysts, comprising the steps:a) impregnating a silica with Mg-chloride solubilized in ethylbenzoate, in the presence of further electron donors,b) optionally drying the impregnated silica obtained in (a) and impregnating it with a solution of Mg-alkyls in SiCl.sub.4 at a temperature from -10 to 20.degree. C. and subsequently treating the obtained slurry at a temperature from 40.degree. C. to reflux temperature, optionally adding a further amount of electron donors,c) drying the obtained carrier.The carrier which is obtained according to the above procedure is advantageously used for the preparation of supported catalysts for the polymerization of olefins.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: August 15, 2000
    Assignee: Borealis GmbH
    Inventors: Luciano Luciani, Wolfgang Neissl, Norbert Hafner
  • Patent number: 6100353
    Abstract: Supported catalyst systems are obtainable bya) application of a mixture ofA) at least one metallocene complex andB) at elast one metal compoundto a carrier which, if required, may have been pretreated, andb) subsequent activation by reaction with a solution or suspension of a compound forming metallocenium ions.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: August 8, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: John Lynch, David Fischer, Franz Langhauser, Hans-Helmut Gortz, Jurgen Kerth, Gunther Schweier
  • Patent number: 6071845
    Abstract: A catalyst obtained by contacting (A) a compound of a transition metal of the group V of the Periodic Table represented by formula (I):R.sub.n M(O).sub.m X.sub.p .cndot.L.sub.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: June 6, 2000
    Assignee: Ube Industries, Ltd.
    Inventors: Nobuhiro Tsujimoto, Michinori Suzuki, Kei Tsukahara, Shigeru Ikai, Koji Imaoka, Yoshiyuki Kai, Jun Yamashita
  • Patent number: 6017842
    Abstract: Catalyst compositions that are highly tolerant of catalyst poisons comprising a catalytic derivative of a Group 4 metallocene metal complex and an Group 13 metal compound according to the formula R.sup.1.sub.2 M"(NR.sup.2.sub.2),wherein R.sup.1 and R.sup.2 independently each occurrence is a hydrocarbyl, silyl, halocarbyl, halohydrocarbyl, hydrocarbyl-substituted silyl, halocarbyl-substituted silyl, or halohydrocarbyl-substituted silyl group, said R.sup.1 and R.sup.2 having from 1 to 30 carbon, silicon, or mixtures of carbon and silicon atoms, andM" is a Group 13 metal,the molar ratio of complex to Group 13 compound being from 1:0.1 to 1:100.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: January 25, 2000
    Assignee: The Dow Chemical Company
    Inventors: Robert K. Rosen, James C. Stevens
  • Patent number: 5990034
    Abstract: An olefin polymerization catalyst comprising (A) a solid catalyst component and (B) an organometallic compound component. The solid catalyst component (A) is prepared by a process comprising the steps of:(I) obtaining a solid (A-1) by reacting:(i) an organomagnesium component soluble in a hydrocarbon solvent and represented by the formula (M.sup.1).sub..alpha. (Mg).sub..beta. (R.sup.1).sub.p (R.sup.2).sub.q (OR.sup.3).sub.r ; and(ii) an Si--H bond-containing chlorosilane compound represented by the formula: H.sub.a SiCl.sub.b R.sup.4.sub.4-(a+b), in a ratio of from 0.01 to 100 mol (ii) per mol (i);(II) reacting the solid (A-1) with an alcohol (A-2) in a ratio of from 0.05 to 20 mol of the alcohol per mol of C--Mg bonds contained in the solid (A-1), to form a reaction product; and(III) reacting the reaction product with a titanium compound (A-4). The solid catalyst component (A) is adjusted to have an alkoxy group/titanium molar ratio of 2.4 or lower and an alkoxy group/magnesium molar ratio of 0.15 or lower.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: November 23, 1999
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventor: Takashi Nozaki
  • Patent number: 5962361
    Abstract: A method of making a solid, substantially dry olefin polymerization procatalyst precursor is disclosed whereby a solid precursor containing magnesium and titanium is formed in a slurry or solution, the solid then is separated from the solution and then dried at a temperature above 50.degree. C. for over an hour. Solid, substantially dry olefin polymerization procatalyst precursors made by the method also are disclosed, whereby the precursors are easier to handle, have better flowability, reduced clumpness and provide catalysts that can be used to produce polymers having improved extrudability, less filter clogging, less "talc"-like polymer particles of <10 micron in size and reduced polymer product segregation in storage.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: October 5, 1999
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Michael Philip Zum Mallen
  • Patent number: 5948869
    Abstract: Catalytic composition effective in the selective hydrogenation of olefinic double bonds prepared by the reaction between:(A) at least one bis(cyclopentadienyl)Titanium derivative having the general formula (I) (C.sub.5 H.sub.5).sub.2 Ti(R) (R.sub.1) wherein R and R.sub.1, the same or different, are halogens; the above compound (I) being solid or dispersed in one or more non-solvent diluents;(B) at least one organo derivative having general formula (II) M(R.sub.2) (R.sub.3) wherein M is selected from Zinc and Magnesium, and R.sub.2 and R.sub.3, the same or different, are selected from C.sub.1 -C.sub.16 alkyls;(C) at least one modifier.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: September 7, 1999
    Assignee: Enichem S.p.A.
    Inventors: Andrea Vallieri, Claudio Cavallo, Gian Tommaso Viola
  • Patent number: 5936049
    Abstract: Disclosed is a process for preparing a solid titanium catalyst component, comprising contacting (a) a liquid magnesium compound, (b) a liquid titanium compound, (c) an electron donor and (d) a solid divalent metallic halide. In this process, the solid divalent metallic halide is one having a crystalline structure of the cadmium chloride type. The contact of the component (a) with the component (b) is preferably carried out in the presence of the solid divalent metallic halide (d). According to this process, there can be obtained a solid titanium catalyst component capable of polymerizing olefins with an extremely high activity and capable of producing polyolefins of high stereoregularity when .alpha.-olefins of 3 or more carbon atoms are polymerized.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: August 10, 1999
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shinichi Kojoh, Masao Nakano
  • Patent number: 5922631
    Abstract: Olefin polymerization catalysts are described that comprise the reaction product of (a) a metallocene and/or a Ziegler-Natta catalyst compound (TICl.sub.4, etc.,) and (b) a liquid clathrate composition formed from (i) an aluminoxane, (ii) an organic, inorganic or organometallic compound, and (iii) an aromatic solvent. These liquid clathrates are obtained by the reaction, in aromatic solvents, of aluminoxanes such as, methylaluminoxane, with organic, inorganic or organometallic compounds that form stable clathrates with the aluminoxane and the solvent.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: July 13, 1999
    Assignee: Albemarle Corporation
    Inventor: Samuel A. Sangokoya
  • Patent number: 5914375
    Abstract: An catalyst composition for preparing high-syndiotacticity polystyrene polymers which comprises: (a) a titanium complex represented by the following formula of TiR'.sub.1 R'.sub.2 R'.sub.3 R'.sub.4 or TiR'.sub.1 R'.sub.2 R'.sub.3, wherein R'.sub.1, R'.sub.2, R'.sub.3, and R'.sub.4 are, independently, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a hydrogen atom, or a halogen atom; (b) a cyclopentadienyl complex of silicon (Si), germanium (Ge), or tin (Sn) represented by the following formula: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: June 22, 1999
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cheng Cheng Tsai, Shian-Jy Wang, Shu-Ling Peng, Mickey Sue
  • Patent number: 5858904
    Abstract: A catalyst for the production of a vinyl polymer, which comprises: in combination, (A) a transition metal complex of the formula: ##STR1## wherein each of T.sup.1, T.sup.2, T.sup.3 and T.sup.4, independently of each other, is C.sub.1-20 -alkyl or C.sub.6-20 -aryl, M is a Group IV-VI transition metal and Q is C.sub.1-20 -alkoxy, (B) an aluminoxane or ionic compound having a non-coordinating anion and a cation and (C) a Lewis acid.Component (B) can be a combination of an aluminoxane and an ionic compound having a non-coordinating anion and a cation.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: January 12, 1999
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Mizutomo Takeuchi, Hajime Shouzaki, Norio Tomotsu
  • Patent number: 5834393
    Abstract: A supported catalyst component comprising (a) a support material, an organometal compound, and (b) an activator compound comprising b.1) a cation which is capable of reacting with a transition metal metallocene compound to form a catalytically active transition metal complex, and b.2) a compatible anion having up to 100 nonhydrogen atoms and containing at least one substituent comprising an active hydrogen moiety; a supported catalyst comprising the supported catalyst component and a transition metal compound; process for making the same; an addition polymerization process using the supported catalyst; complex compounds, and a method for preparing the same.
    Type: Grant
    Filed: March 4, 1996
    Date of Patent: November 10, 1998
    Assignee: The Dow Chemical Company
    Inventors: Grant Berent Jacobsen, Peter Wijkens, Johann T. B. H. Jastrzebski, Gerard Van Koten
  • Patent number: 5824618
    Abstract: A catalyst component is disclosed for use in the homo- or copolymerization of olefinic hydrocarbons. The catalyst component is comprised of a first compound of the formula M.sup.1 (OR.sup.1).sub.p R.sup.2.sub.q X.sup.1.sub.4-p-q, M.sup.1 being titanium a second compound of the formula M.sup.2 (OR.sup.3).sub.m R.sup.4.sub.n X.sup.2.sub.z-m-n, with M.sup.2 being a metal of Groups Ia-IIIa or IIb of the Periodic Table, and a third compound which is an organocyclic compound having two or more conjugated double bonds. A process is also disclosed for the production of hydrocarbon polymers in which the above catalyst component is combined with a modified organoaluminum compound to form a catalyst composition capable of providing controlled molecular weight, wide distribution thereof and other desirable qualities in the polymer product.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: October 20, 1998
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Yoshio Tajima, Naoki Kataoka, Yosuke Numao, Takashi Seki, Kazuo Matsuura
  • Patent number: 5814709
    Abstract: The invention provides a catalyst composition suitable for hydrogenation of polymers containing ethylenic unsaturation, which comprise:(a) a titanium compound of the formula, ##STR1## wherein A.sub.1 and A.sub.2 are the same or different and each represents a substituted or unsubstituted cyclopentadienyl or indenyl group,wherein X.sub.1 and X.sub.2 are the same or different and each represents hydrogen, halogen, a lower alkyl or lower alkoxy, optionally substituted phenyl or phenoxy, or aralkyl having from 7 to 10 carbon atoms, or phenylalkoxy having from 7 to 10 carbon atoms, carboxyl, carbonyl, a --CH.sub.2 P(Phenyl).sub.2, --CH.sub.2 Si(lower alkyl).sub.3, or --P(phenyl).sub.2 group.(b) an alkalimetal hydride, added as such or prepared in situ in the polymer solution from the alkalimetal terminated living polymer and/or from additionally added alkalimetal alkyl and hydrogen, the molar ratio of the alkalimetal:titanium in the polymer solution during hydrogenation being at least 2:1;(c) a borium compoundB(R.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: September 29, 1998
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Bart Hessen, Adriaan Albert Van Der Huizen, Wouter De Jong, Adrianus Johannes Van Der Linden, Bart Johan Ruisch, Lodewijk Schoon, Heleen Johanna Augusta De Smet, Frederik Hendrik Van Der Steen, Hubertus Cornelis Thomas Lucianes Van Strien, Alan Villena, Judith Johanna Berendina Walhof
  • Patent number: 5807940
    Abstract: The present invention provides a catalyst for polymerization comprising (A) a transition metal compound containing at least one linkage represented by the general formula (I):M.sup.1 --Z--C (I)wherein M.sup.1 represents a metal element of Groups 3 to 6 or the lanthanide series, and Z represents an element of Group 15, in one molecule, (B) (a) a compound which can form an ionic complex by the reaction with the transition metal compound or (b) a specific oxygen-containing compound, and (C) a metal compound containing alkyl group which is optionally used; and a process for producing a styrenic polymer, particularly a styrenic polymer having a highly syndiotactic configuration, comprising using this catalyst for polymerization.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: September 15, 1998
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Yoshiaki Aoyama, Norio Tomotsu
  • Patent number: 5770666
    Abstract: A novel organic transition metal compound is disclosed, which is represented by the following formula (1): ##STR1## wherein the all symbols are defined in the disclosure. A polymerization catalyst comprising the organic transition metal compound and a process for the preparation of a polyolefin using the polymerization catalyst are also disclosed.
    Type: Grant
    Filed: December 7, 1995
    Date of Patent: June 23, 1998
    Assignee: Tosoh Corporation
    Inventors: Satoshi Hamura, Toru Yoshida, Morihiko Sato
  • Patent number: 5767031
    Abstract: This invention relates to a process for making a catalyst in which a metallocene is included in the synthesis of a Ziegler-Natta catalyst and a process for using the catalyst in the polymerization of olefins, specifically, propylene, to produce a polymer product with broad polydisperisty.The catalyst may be synthesized by:1) selecting a solid component comprising a magnesium dialkoxide;2) adding a chlorinating agent;3) adding a titanating agent;4) adding a metallocene prior to step 2), after step 2), prior to step 3) or after step 3) and5) adding an aluminum alkyl cocatalyst.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 16, 1998
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David John Rauscher, Christopher G. Bauch
  • Patent number: 5767034
    Abstract: An olefin polymerization catalyst includes a halogen-containing magnesium compound; a titanium compound; and an additive selected from the group consisting of (a) a mixture of an aluminum alkoxide compound and polydimethylsiloxane, (b) an aluminosiloxane, (c) the reaction product of an aluminum alkyl and a calixarene, (d) the reaction product of an aluminum alkyl and a cyclodextrin, and mixtures of (a)-(d).
    Type: Grant
    Filed: May 31, 1996
    Date of Patent: June 16, 1998
    Assignee: Intevep, S.A.
    Inventors: Antonio Diaz-Barrios, Jose Liscano, Marianela Trujillo, Giuseppe Agrifoglio, Jose Orlando Matos
  • Patent number: 5759940
    Abstract: The present invention relates to components of catalysts for the polymerization of olefins comprising the product that can be obtained by bringing a compound of a transition metal M, containing at least one M--.pi. bond, into contact with an olefinic prepolymer obtained by polymerization of one or more olefins with a coordination catalyst comprising a compound of Ti or V supported on a magnesium halide.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: June 2, 1998
    Assignee: Montell Technology Company BV
    Inventors: Mario Sacchetti, Stefano Pasquali, Gabriele Govoni
  • Patent number: 5756609
    Abstract: An olefin homogeneous polymerization catalyst demonstrating increased activity is formed from a cyclopentadienyl metallocene component, a salt of a compatible cation and a non-coordinating anion, and a C.sub.3 -C.sub.6 trialkylaluminum, preferably triisobutylaluminum. A homogeneous polymerization process comprises controlling polymerization activity with such catalyst by controlling the aluminum/metal (Al/M) molar ratio to a minimal level within the effective range of Al/M ratios.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: May 26, 1998
    Assignee: Amoco Corporation
    Inventor: Steven A. Cohen
  • Patent number: 5744678
    Abstract: An oligomerization catalyst according to the invention comprises a nickel compound (A); an organophosphoric compound (B); an organoaluminum compound (C); and a compound of the group consisting of carbon-halogen bond-containing compounds, oxoacid and salts thereof, sulfonic acid and derivatives thereof, and compounds of any of the formulae QX.sup.4.sub.n, QR.sub.n, QR'.sub.n, QX.sup.4.sub.1 R.sub.m, QX.sup.4.sub.1 R'.sub.m, QR.sub.1 R'.sub.m, Q.sup.1 (BR.sub.4).sub.p and R"(BR.sub.4) wherein Q is an element of the group consisting of Mg, Ti, Zr, B and Sn, Q.sup.1 is an element of the group consisting of Li, Na, K, Ca and Zn, X.sup.4 is a halogen or hydrogen atom, R is a C.sub.1 -C.sub.12 hydrocarbon group, R' is a C.sub.1 -C.sub.12 oxygen-containing hydrocarbon group, R" is a C.sub.1 -C.sub.20 hydrocarbon group or an ammonium group, n is a valence of Q, l, m is a natural member that satisfied n=l+m, and p is a valence of Q.sup.1. This catalyst is useful for the production of alpha-olefinic oligomers.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: April 28, 1998
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Fuyuki Aida, Takashi Nakano, Yoshio Tajima, Kazuo Matsuura
  • Patent number: 5728641
    Abstract: According to the present invention there are provided a catalyst component, a catalyst using the catalyst component and a process using the catalyst, for the preparation of olefin polymers high in molecular weight and relatively wide in molecular weight distribution, using an extremely small amount of a modified organoaluminum compound such as methylaluminoxane and in high yield. The catalyst component is prepared by contacting at least the following constituents (1), (2), (3) and (4) with one another:(1) a compound represented by the general formula Me.sup.1 R.sup.1.sub.p (OR.sup.2).sub.q X.sub.4-p-q where R.sup.1 and R.sup.2 are each independently a hydrocarbon group having 1 to 24 carbon atoms, X is a halogen atom, Me is Zr, Ti or Hf, p and q are each an integer in the ranges of 0.ltoreq.p.ltoreq.4 and 0.ltoreq.q.ltoreq.4, provided 0.ltoreq.p+q.ltoreq.4;(2) at least one compound selected from the group consisting of compounds represented by the following general formulas 1 to 4:General formula 1: Me.sup.
    Type: Grant
    Filed: June 21, 1995
    Date of Patent: March 17, 1998
    Assignee: Nippon Oil Company, Limited
    Inventors: Fuyuki Aida, Yoshio Tajima, Kazuo Matsuura
  • Patent number: 5726115
    Abstract: A catalyst composition comprising a bis-amide compound represented by the formula ##STR1## wherein M is zirconium, hafnium or titanium; each N is a three coordinate nitrogen atom; each e is Si, Ge or Sn; each Z is, independently, a hydride or R; each R is, independently, a hydrocarbyl one or more carbon atoms of which may be substituted by an element selected from Si, O, P, N and S; L is a neutral Lewis base and m is a number from 0 to 2; or a dimer thereof and a second component. Preferably the second component is a compound which is capable of providing a bulky and labile anion ?A!.sup.-, which anion is substantially non-coordinating under the reaction conditions and contains at least one boron atom. Also provided is a process for oligomerizing or co-oligomerizing alpha olefins in the presence of this catalyst composition.
    Type: Grant
    Filed: March 11, 1996
    Date of Patent: March 10, 1998
    Assignee: Shell Oil Company
    Inventors: Andrew David Horton, Jan De With
  • Patent number: 5723712
    Abstract: A novel catalytic composition comprises a mixture of lithium halide, a hydrocarbylaluminium halide and at least one compound of a catalytic element, in particular a nickel complex. The invention also concerns a process for the oligomerisation and co-oligomerisation of olefins catalysed by said composition. The catalytic mixture, which is liquid at the start of the reaction, is gradually transformed into a solid which is then readily separated from the reaction products.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: March 3, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Yves Chauvin, Roberto de Souza, Helene Olivier
  • Patent number: 5691264
    Abstract: Components of bimetallic catalysts for the polymerization of olefins comprising a compound of a transition metal M selected from Ti, V, Zr and Hf containing at least one M-.pi. bond, a compound of Ti or V not containing metal-.pi. bonds and a support comprising a magnesium halide. The catalysts obtained from the components of the invention are particularly suitable for gas-phase polymerization processes.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: November 25, 1997
    Assignee: Spherilene S.p.A.
    Inventors: Mario Sacchetti, Stefano Pasquali, Gabriele Govoni
  • Patent number: 5670587
    Abstract: There are disclosed a catalyst for producing an aromatic vinyl compound-based polymer composition which catalyst comprises (A) at least two different transition metal compounds each having one .pi.-ligand and (B) an ionic compound comprising a noncoordinate anion and a cation and/or an aluminoxane, and (C) a Lewis acid to be used as the case may be; and a process for producing an aromatic vinyl compound-based polymer composition having a high degree of syndiotactic configuration in its aromatic vinyl chains which process comprises polymerizing an (a) aromatic vinyl compound and (b) an olefinic compound and/or a diolefinic compound in the presence of the above catalyst.
    Type: Grant
    Filed: January 23, 1996
    Date of Patent: September 23, 1997
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Mizutomo Takeuchi, Hajime Shouzaki, Norio Tomotsu, Masahiko Kuramoto
  • Patent number: 5644009
    Abstract: An catalyst composition for preparing high-syndiotacticity polystyrene polymers which comprises: (a) a titanium complex represented by the following formula of TiR'.sub.1 R'.sub.2 R'.sub.3 R'.sub.4 or TiR'.sub.1 R'.sub.2 R'.sub.3, wherein R'.sub.1, R'.sub.2, R'.sub.3, and R'.sub.4 are, independently, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a hydrogen atom, or a halogen atom; (b) a cyclopentadienyl complex of silicon (Si), germanium (Ge), or tin (Sn) represented by the following formula: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, and R.sub.
    Type: Grant
    Filed: November 27, 1995
    Date of Patent: July 1, 1997
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Shian-Jy Wang, Shu-Ling Peng, Mickey Sue
  • Patent number: 5604172
    Abstract: A process is provided for preparing a shape-shifted catalyst component comprising (1) contacting a dihydrocarbyloxide magnesium compound with carbon dioxide in the presence of a slurrying agent to form a slurry of a carboxylated dihydrocarbyloxide magnesium compound; (2) adding a filler to the slurry either before or after the carboxylation of step (1); (3) spray drying the slurry of step (2) to evaporate the slurrying agent and to produce solid particles of the carboxylated dihydrocarbyloxide magnesium compound incorporating the filler; and, optionally, (4) heating the solid particles to remove carbon dioxide to produce a shape-shifted dihydrocarbyloxide magnesium compound component. A catalyst system using the component and a polymerization process employing the catalyst system are also provided.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: February 18, 1997
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Burkhard E. Wagner, Daniel P. Zilker, Jr., Robert J. Jorgensen
  • Patent number: 5565397
    Abstract: Alkylaluminoxanes having improved catalytic activity such as when they are used in combination with metallocenes for the polymerization of alpha-olefins, are prepared by treating an organic solvent solution of an alkylaluminoxane, such as methylaluminoxane, with anhydrous lithium halide.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: October 15, 1996
    Assignee: Albemarle Corporation
    Inventor: Samuel A. Sangokoya
  • Patent number: 5523385
    Abstract: Carbon monoxide and ethylene are polymerized in the presence of a catalytically effective amount of a catalyst formed from a Group VIII metal source, such as palladium, a bidentate ligand containing a Group VA or VIA heteroatom, such as phosphorus, and an anion which is a non-coordinating, non-acidic tetrasubstituted anion containing a Group IIIA element, such as boron, with the anion preferably being either an unsubstituted or substituted boron tetraphenyl compound.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 4, 1996
    Assignee: Akzo Nobel N. V.
    Inventors: Paul K. Hanna, Andrzej M. Piotrowski, Kelly B. Triplett
  • Patent number: 5510434
    Abstract: There are disclosed a catalyst for producing an aromatic vinyl compound polymer which catalyst comprises a contact product between an (A) trivalent titanium compound and a (B) compound represented by the general formula (II) or (III)R.sup.1.sub.k M.sup.1 L.sup.2.sub.m (II)R.sup.1.sub.k M.sup.1 X.sup.2.sub.l L.sup.2.sub.m (III)a (C) an ionic compound comprising a noncoordinate anion and a cation, an aluminoxane or an organoboron compound; and optionally a (D) Lewis acid, and a process for producing an aromatic vinyl compound polymer having a high degree of syndiotactic configuration which process comprises polymerizing (a) an aromatic vinyl compound or (b) an aromatic vinyl compound together with an olefin or a diolefin in the presence of the above catalyst.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: April 23, 1996
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Mizutomo Takeuchi
  • Patent number: 5474962
    Abstract: The present invention provides a powder catalyst composition for producing by gas-phase polymerization olefin polymers having excellent polymer qualities and good particle properties in a high yield.The powder catalyst composition comprises fine particles of the following Component (B) coated with the following Component (A), and is characterized in that the ratio of the Component (A) to the Component (B) based on percent by weight ranges from 5:50 to 95:50: Component (A): an inorganic compound in the form of fine particles having an average particle diameter of 0,003-1 .mu.m and mainly comprising an inorganic oxide, and Component (B): a solution or dispersion in a hydrocarbon of the following Sub-components (i) and (ii): Sub-component (i): a compound of a transition metal belonging to the IVB group of the Periodic Table, and Sub-component (ii): an alumoxane, a Lewis acid, or an ionic compound which can convert the Sub-component (i) upon reaction therewith into a cation.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: December 12, 1995
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventors: Tadashi Takahashi, Kazuhiro Yamamoto, Katsumi Hirakawa
  • Patent number: 5340548
    Abstract: An exhaust gas cleaner comprising a heat-resistant, porous filter, a porous ceramic layer formed on the filter, and a catalyst supported by the ceramic layer, the catalyst consisting essentially of:(a) at least one of alkali metal elements;(b) copper and vanadium; and(c) at least one of rare earth elements.By using this exhaust gas cleaner, particulate matter in the exhaust gas is oxidized by the catalyst supported by the filter, and nitrogen oxides are reduced by the particulate matter serving as a reducing agent.
    Type: Grant
    Filed: February 11, 1993
    Date of Patent: August 23, 1994
    Assignee: Kabushiki Kaisha Riken
    Inventors: Akira Abe, Satoshi Sumiya, Yoshikazu Takahashi, Kiyohide Yoshida, Gyo Muramatsu
  • Patent number: 5204304
    Abstract: A vanadium-containing catalyst is prepared as the product of admixing an inorganic oxide, inorganic phosphate or mixtures thereof, a zinc-containing composition, and a vanadium-containing composition. An auxiliary compound such as, for example, an aluminum halide compound may optionally be admixed. The catalyst may be combined with a co-catalyst such as an aluminum alkyl and, optionally, a halocarbon promotor to yield an olefin polymerization catalyst system. The resulting catalyst system exhibits high activity, excellent hydrogen response and produces a polymer having a narrow to broad molecular weight distribution with a bimodal profile. The catalyst is especially useful in ethylene homopolymerization and co-polymerization.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: April 20, 1993
    Assignee: Quantum Chemical Corporation
    Inventors: Chi-I Kuo, Michael W. Lynch
  • Patent number: 5173464
    Abstract: An olefin polymerization catalyst is prepared from titanium tetrachloride and an organolithium compound wherein the gram atom ratio of lithium to titanium is in the range of about 20/1 to about 50/1 or from a rare earth metal halide, an organolithium compound and a transition metal compound selected from dicyclopentadienyl zirconium dichloride and TiX4 wherein each X is individually selected from halogen, alkyl, alkoxy and aryl radicals.
    Type: Grant
    Filed: November 18, 1991
    Date of Patent: December 22, 1992
    Inventors: Ted M. Pettijohn, Henry L. Hsieh
  • Patent number: 5153157
    Abstract: This invention relates to catalyst systems, and a method for using such system, for the enhanced production of homo and copolymer products of olefin, diolefin and/or acetylenically unsaturated monomers. This invention catalyst system comprises a Group III-A element compound for improving the productivity of an olefin polymerization catalyst which is the reaction product of a metallocene of a Group IV-B transition metal and an ionic activator compound comprising a cation capable of donating a proton or which will irreversibly react with at least one ligand contained in the Group IV-B metal compound and an anion which is bulky, labile and noncoordinateable with the Group IV transition metal cation produced upon reaction of the metallocene and activator compound to form the catalyst component of the catalyst system.
    Type: Grant
    Filed: March 20, 1990
    Date of Patent: October 6, 1992
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Gregory G. Hlatky, Howard W. Turner
  • Patent number: 5126301
    Abstract: A solid catalyst for polymerizing an olefin is prepared from an organometallic compound, a fine-particle carrier, an aluminoxane, a compound of group IVB transition metal in periodic table, and an olefin polymer produced in a preliminary polymerization. The catalyst has a high polymerization activity and is capable of producing an olefin polymer having a narrow molecular- weight distribution. When the catalyst is used for producing an olefin copolymer, the resulting copolymer has both narrow molecular-weight distribution and composition distribution.
    Type: Grant
    Filed: March 12, 1990
    Date of Patent: June 30, 1992
    Assignee: Mitsui Petrochemical Industries, Inc.
    Inventors: Toshiyuki Tsutsui, Ken Yoshitsugu, Akinori Toyota, Norio Kashiwa
  • Patent number: 5064796
    Abstract: A vanadium catalyst component for the polymerization of 1-olefins and a process for making said catalyst component are disclosed. The catalyst component is prepared by fluoriding a support comprising silica. Use of the catalyst component provides a catalyst with increased activity, increased response to hydrogen for chain termination, increased response to comonomer for resin density reduction, and allows the molecular weight distribution of the polymers to be independently controlled by controlling the amount of fluorination and the fluorination temperature.
    Type: Grant
    Filed: January 7, 1991
    Date of Patent: November 12, 1991
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Anthony N. Speca
  • Patent number: 4937299
    Abstract: Polyolefin reactor blends obtained by polymerization of ethylene and higher alpha-olefins in the presence of a catalyst system comprising two or more metallocenes and alumoxane.
    Type: Grant
    Filed: February 1, 1985
    Date of Patent: June 26, 1990
    Assignee: Exxon Research & Engineering Company
    Inventors: John A. Ewen, Howard C. Welborn, Jr.
  • Patent number: 4871704
    Abstract: A catalyst for olefin polymerization which comprises: (A) a catalyst component obtained by reacting (a) pentadiene or a derivative thereof with (b) an alkali metal and susequently reacting the reaction product with (c) a titanium compound or zirconium compound, and (B) aluminoxane.
    Type: Grant
    Filed: October 7, 1988
    Date of Patent: October 3, 1989
    Assignee: Toa Nenryo Kogyo K.K.
    Inventors: Tadanao Kohara, Satoshi Ueki
  • Patent number: 4847227
    Abstract: A solid catalyst component for olefin polymerization catalysts prepared by suspending diethoxymagnesium (a) in an aromatic hydrocarbon (b) which is liquid at normal temperature and bringing the suspension into a first contact with titanium tetrachloride (c) to form a product and bringing it into a second contact with tianium tetrachloride (c) in such manner that a diester (d) of an aromatic dicarboxylic acid and calcium chloride (e) are allowed to coexist at any stage of the above suspending and/or contacts, the calcium chloride (e) being used in an amount of 1-2 grams per gram of the diethoxymagnesium (a). This solid catalyst component exhibits, when applied to the polymerization of olefins, a surprisingly enhanced polymerization activity per titanium atom and a high stereospecific performance and scarcely necessitates any deashing treatment, thus affording a great economical advantage.
    Type: Grant
    Filed: October 8, 1987
    Date of Patent: July 11, 1989
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Atsushi Murai, Minoru Terano, Kohei Kimura, Masuo Inoue, Katsuyoshi Miyoshi