Clay Patents (Class 502/80)
  • Patent number: 6743745
    Abstract: A process for the production of a molecular sieve adsorbent blend product with improved performance characteristics produced by preparing a zeolite powder, preparing a highly dispersed attapulgite fiber binder, mixing the zeolite powder with the highly dispersed attapulgite binder to form a mixture, forming molecular sieve adsorbent products into a shaped material and calcining the shaped material, wherein the tapped bulk density of the highly dispersed attapulgite fibers measured according to DIN/ISO 787 is more than about 550 g/ml.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: June 1, 2004
    Assignee: Zeochem
    Inventors: Dave Jaussaud, Kerry Weston, Armin Pfenninger, Beat Kleeb
  • Patent number: 6734131
    Abstract: A chromium containing catalyst wherein the chromium atom is in one of its higher valence states and is immobilized to a support-agglomerate composed of at least one inorganic oxide component and at least one ion-containing layered component.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: May 11, 2004
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Rimantas Glemza
  • Patent number: 6723296
    Abstract: The invention relates to a material for treating gaseous media containing volatile organic components. According to the invention, the material is porous and exhibits an absorption capacity of approximately 20-30% in relation to the dry weight thereof, containing approximately 47-52% by weight of a composite carbon and silicon structure, approximately 12-20 wt. % carbon, approximately 5-7 wt % hydroxyl, and approximately 1-2 wt % oxygen. The invention can be used in atmospheric treatment for the preservation of living matter.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: April 20, 2004
    Assignee: Ectium B.V.
    Inventor: Henri Louis Drean
  • Patent number: 6716337
    Abstract: The invention pertains to a carrier composition comprising (a) at least 30 wt % of a synthetic cracking component, based on the total weight of the carrier composition, which comprises oxidic compounds of one or more trivalent metallic elements, tetravalent metallic elements, and divalent metallic elements, said cracking component comprising elemental clay platelets with an average diameter of 1 &mgr;m or less and an average degree of stacking of 20 platelets per stack or less, and/or comprising a cogel with a saponite content CA of less than 60%, in which the total of sodium and potassium amounts to less than 1 wt %, based on the total weight of the cogel, and (b) 1-25 wt % of a zeolite Y, based on the total weight of the carrier composition, with a unit cell size below 24.35 Å. The invention further pertains to a catalyst comprising said carrier composition and at least a hydrogenation metal, and a process for converting heavy feedstock into middle distillates using said catalyst.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: April 6, 2004
    Assignee: Akzo Nobel NV
    Inventors: Jan Nieman, Johannes Wilhelmus Maria Sonnemans, Bas De Kroes
  • Patent number: 6716785
    Abstract: A process for the in-situ preparation of a composite comprising a cationic clay and binder/matrix material from sources comprising an aluminum containing source, a silicon containing source and a di-valent metal containing source comprising the steps of: a. preparing a precursor mixture by mixing the aluminum containing source, the silicon containing source and the di-valent metal containing source with seeding material, b. homogenizing the precursor mixture, and c. aging the precursor mixture to obtain the composite. One or two of the aluminum containing source, silicon containing source or di-valent metal containing source is to be in excess of the amount required for stoichiometry of the three sources with respect to the formation of the cationic clay. The excess source or sources will form the binder/matrix material of the composite. The invention also includes a body comprising a composite obtained by this process having binding/matrix material present in a discontinuous phase.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: April 6, 2004
    Assignee: Akzo Nobel NV
    Inventors: Dennis Stamires, Paul O'Connor
  • Patent number: 6712974
    Abstract: This invention relates to filterable composite adsorbents comprising one or more adsorbent components and one or more filtration components, and methods for preparing and using same. More particularly, this invention pertains to filterable composite adsorbents and filterable composite adsorbent products which are suitable for use in filtration applications, and which comprise one or more microparticulate or colloidal adsorbent components selected from the group consisting of silica gel, fumed silica, neutral clay, alkaline clay, zeolite, solid catalyst, alumina, adsorbent polymer, alkaline earth silicate hydrate, and combinations thereof, which bear the property of adsorption, which are intimately bound to one or more functional filtration components selected from the group consisting of biogenic silica (e.g., diatomite, rice hull ash, sponge spicules), natural glass (e.g.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: March 30, 2004
    Assignee: Advanced Minerals Corporation
    Inventors: Scott K. Palm, Timothy R. Smith, Jerome C. Shiuh, John S. Roulston
  • Patent number: 6710004
    Abstract: This invention relates to a process for the preparation of anionic clay and boehmite-containing compositions. These compositions may also contain unreacted trivalent metal source and/or divalent metal source. The process involves subjecting a precursor mixture comprising a divalent metal source and a trivalent metal source to at least two aging steps, wherein at least once between two aging steps an aluminum source is added. An advantage of the invention is that the crystallinity of the boehmite in the composition can be tuned.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: March 23, 2004
    Assignee: Akzo Nobel nv
    Inventors: Dennis Stamires, William Jones, Paul O'Connor
  • Patent number: 6696033
    Abstract: The invention concerns a microporous crystalline material, with a characteristic X-ray diffractogram, made up by oxygen tetrahedra and one metal (T+4 and T+3) with the possibility of introducing surface acidity produced by the substitution in the network of some T+4 cations (normally Si+4) by T+3 cations (normally Al+3), which gives rise to a structural charge deficiency which can be offset by protons, Brönsted acidity, and/or cations with a high charge-radium ratio, Lewis acidity. The method of preparation is based on the modification of the laminar structure of a mixed oxide (normally SiO2, Al2O3) synthesized from a gel treated under controlled hydrothermal conditions, intercalating organic molecules with a proton-acceptor group and a long hydrocarbonic chain between its laminae. The intercalated material has laminae with a significant separation between them due to the presence between them of the organic chains.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: February 24, 2004
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, Vicente Fornes Segui, Urbano Díaz Morales
  • Publication number: 20040029718
    Abstract: A dealuminized catalyst carrier, a method for producing a catalyst carrier having a lower aluminum content on the basis of naturally occurring sheet silicates, such as montmorilonite, and to a method for hydrating C2 or C3 olefins which uses the catalyst carrier having a lower aluminum content. For the acid-catalyzed hydration reaction the carrier is saturated with phosphoric acid. The improvement the invention provides for in comparison with known hydration methods is characterized in that the carrier is no longer subject to aluminum leaching in the presence of phosphoric acid. As a result, there is no further risk of aluminum phosphate blockages occurring in the apparatus positioned downstream of the reaction.
    Type: Application
    Filed: August 6, 2003
    Publication date: February 12, 2004
    Applicant: Degussa AG
    Inventors: Michael Sakuth, Dietrich Maschmeyer, Gregor Lohrengel, Guido Stochniol
  • Patent number: 6677411
    Abstract: A catalyst component for olefin polymerization, which comprises an ion-exchange layered silicate having the following features 1 and 2: feature 1: in a pore size distribution curve calculated from desorption isotherm by nitrogen adsorption-desorption method, a pore diameter Dm showing a maximum peak intensity DVM is from 60 to 200 Å; and feature 2: in a pore size distribution curve calculated from desorption isotherm by nitrogen adsorption-desorption method, a pore diameter Dm1/2 (Å) on the smaller pore size side corresponding to a ½ peak intensity of the maximum peak intensity DVM has a relation of Dm1/2/Dm of at least 0.65 and less than 1, provided that the largest value is employed when there are a plurality of Dm1/2 values.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: January 13, 2004
    Assignee: Japan Polychem Corporation
    Inventors: Hideshi Uchino, Hiroshi Nakano, Shuuichi Toriu, Takao Tayano, Hirotugu Niwa, Yoshiyuki Ishihama, Toshihiko Sugano
  • Patent number: 6652828
    Abstract: This patent describes economical and environment-friendly processes for the synthesis of Mg-containing non-Al anionic clays. It involves a one-step process wherein a suspension comprising a trivalent metal source and at least a magnesium containing source as a divalent metal source is reacted to obtain a magnesium-containing non-Al anionic clay. The anionic clay has interlayers containing anions comprising hydroxycarbonate, carbonate, bicarbonate, acetate, hydroxyacetate, oxalate, nitrate, hydroxyl, and/or formate or mixtures thereof. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products that contain anionic clays.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: November 25, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, William Jones
  • Patent number: 6652626
    Abstract: A description is given of agglomerates of faujasite X with an Si/Al ratio of 1, the inert binder of which, on the one hand, has been converted to active zeolite by conversion to zeolite in an alkaline liquor, and which have been subjected, on the other hand, to an exhaustive lithium exchange. These adsorbents develop a nitrogen adsorption capacity (1 bar/25° C.) of at least 26 cm3/g, which makes them excellent adsorbents for the non-cryogenic separation of gases from air and for the purification of hydrogen.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: November 25, 2003
    Assignee: CECA, S.A.
    Inventor: Dominique Plee
  • Patent number: 6649713
    Abstract: The present invention relates to a process for preparation of polyolefin/inorganic component nanocomposite by in-situ polymerization, in which, a clay is first organically modified and then silica or titanium dioxide nanometer particles are incorporated into the layers of crystal sheets of the clay by sol-gel method. And a metallocene catalyst is then loaded on the above-mentioned material and a finished catalyst is obtained. The said catalyst is used for in-situ polymerization of ethylene or propylene, and polyolefin/clay nanocomposite is finally obtained. The process for preparation of the catalyst according to the present invention is simple, and the mechanical properties of the nanocomposite are high. For example, the Young's modulus and the tensile strength thereof are in the ranges of 700-2600 Mpa, and 20-55 MPa respectively.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: November 18, 2003
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Science
    Inventors: Tao Tang, Liangming Wei, Baolong Huang
  • Publication number: 20030209203
    Abstract: An improved animal litter with granules having high hardness coupled with high absorbency, thereby rendering the animal litter long lasting and durable, dust and odor free, easy to clean and maintain, and inexpensive in contrast to conventional animal litters. The improved animal litter is a composition comprising granules having calcium bentonite clay, illite clay, and/or kaolinite clay. A method of fabricating the improved animal litter includes the step of providing a composition comprising granules having calcium bentonite clay, illite clay, and/or kaolinite clay. Additional steps may also be included, namely: crushing the composition; screening the composition; kilning the composition; and washing the composition.
    Type: Application
    Filed: April 10, 2002
    Publication date: November 13, 2003
    Inventor: William Opfel
  • Patent number: 6638892
    Abstract: A process for the conversion of syngas by contact of syngas under conversion conditions with catalyst having as components zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay in which (A) in a one step process for conversion of syngas to dimethyl ether, the catalyst has as components an extruded mixture of zinc oxide, copper oxide, gamma aluminum oxide, Y zeolite and clay; (B) in a two step process for conversion of syngas to light olefins, a catalyst system is employed that has in the first step a catalyst mixture of zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay and the catalyst employed in the second step is SAPO-34; SAPO-34 modified with lanthanum(III) nitrate hexahydrate; SAPO-34 modified with magnesium nitrate hexahydrate; SAPO-34 modified with tributyl borate or SAPO-34 modified with triethyl phosphate or (C) in a two step process for conversion of syngas to light olefins, the pressure on the effluent from the contact of syngas with a mixture of zinc oxide, copper oxide, aluminum
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 28, 2003
    Assignee: ConocoPhillips Company
    Inventors: An-hsiang Wu, Jianhua Yao, Charles A. Drake
  • Patent number: 6627084
    Abstract: The current invention describes organoclay compositions and methods of using them for removing impurities from contaminated liquids. The compositions are formed by contacting an attapulgite, sepiolite, or zeolite clay mineral with an alkylamine base. The method of use involves contacting the organoclay composition with a contaminated liquid, such as oil in water, allowing the organoclay to absorb the contaminants. The organoclay can be in the form of a granular solid for inline filter applications, or it can be a finely divided powder for other applications.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: September 30, 2003
    Assignee: Polymer Ventures, Inc.
    Inventors: Christopher B. Murphy, Jonathan M. Fabri, Robert P. Mahoney
  • Publication number: 20030171205
    Abstract: A process for the production of a molecular sieve adsorbent blend product with improved performance characteristics produced by preparing a zeolite powder, preparing a highly dispersed attapulgite fiber binder, mixing the zeolite powder with the highly dispersed attapulgite binder to form a mixture, forming molecular sieve adsorbent products into a shaped material and calcining the shaped material, wherein the tapped bulk density of the highly dispersed attapulgite fibers measured according to DIN/ISO 787 is more than about 550 g/ml.
    Type: Application
    Filed: January 22, 2002
    Publication date: September 11, 2003
    Applicant: ZEOCHEM LLC
    Inventors: Dave Jaussaud, Kerry Weston, Armin Pfenninger, Beat Kleeb
  • Patent number: 6613711
    Abstract: The present invention provides a clay-titanium tetrachloride catalyst used for the preparation of polyolefine/clay composite materials, comprising: 1) a phyllosilicate; 2) a magnesium compound selected from the group consisting of MgCl2, Mg(OR)2 and MgR2, wherein R is an alkyl group having 1-8 carbon atoms; 3) an aliphatic alcohol which is capable of dissolving the magnesium compound; 4) titanium tetrachloride TiCl4; and optionally 5) an electron-donor reagent selected from the group consisting of an aromatic ester and an aromatic group substituted or cycloalkyl group substituted alkoxy silane. The present invention also provide a method for the prepare of the catalyst. The nanocomposite materials obtained by using the catalyst have tensile strength of 32-50 MPa and Vicat temperature of 131-220° C.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: September 2, 2003
    Assignee: Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
    Inventors: Xuequan Zhang, Feng Yang, Haichao Zhao
  • Patent number: 6605558
    Abstract: A method for producing chlorine dioxide by activating zeolite crystals (which have been impregnated with metal chlorite such as sodium chlorite, and optionally also a water-retaining substance such as magnesium sulfate, potassium chloride, potassium hydroxide, or calcium chloride) with excess protons, or activating an aqueous solution of metal chlorite and such a water-retaining substance with excess protons. Proton generating species useful for the activation are acids such as acetic, phosphoric, and citric acid, and metal salts such as ferric chloride, ferric sulfate, ZnSO4, ZnCl2, CoSO4, CoCl2, MnSO4, MnCl2, CuSO4, CuCl2, and MgSO4. The activation can be performed by causing fluid to flow through a bed of zeolite crystals impregnated with calcium chloride (or other water-retaining substance) and sodium chlorite, and a bed of zeolite crystals impregnated with a proton generating species. The two beds can be physically mixed together or the fluid can flow sequentially through separate beds.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: August 12, 2003
    Inventor: Fred Klatte
  • Patent number: 6602816
    Abstract: Activated regular-shaped clay particles forming macropores therein, preserving fine structure of the dioctahedral smectite clay minerals, and having particle diameters controlled to lie within a range in which they exhibit excellent filtering property. The invention further provides method of producing activated regular-shaped clay particles comprising the steps of adjusting the particle size of the dioctahedral smectite clay minerals to possess a volume-based median diameter (D50) of from 1 to 10 &mgr;m as found by a laser diffraction method, mixing an acid-soluble or acid-decomposing inorganic compound to the milled product thereof, granulating the mixture into regular particles having a volume-based median diameter (D50) of from 10 to 60 &mgr;m as found by a laser diffraction method, and treating the regular-shaped particles with an acid while maintaining the particle shapes.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: August 5, 2003
    Assignee: Mizusawa Industrial Chemicals Ltd
    Inventors: Masashi Hatano, Hitoshi Yamamoto, Daisuke Kuse
  • Publication number: 20030134991
    Abstract: A catalyst which is able to express a high oligomerizing activity of ethylene and a method for the production of &agr;-olefin where ethylene is oligomerized using said catalyst are provided.
    Type: Application
    Filed: February 21, 2003
    Publication date: July 17, 2003
    Applicant: IDEMITSU PETROCHEMICAL CO., LTD.
    Inventors: Shinji Tanaka, Yasushi Shiraki, Takao Tamura, Masahiko Kuramoto, Haruhito Sato, Masami Watanabe
  • Patent number: 6593265
    Abstract: A process for preparing a 3R1-type crystalline anionic clay comprising the steps of: a) preparing an aqueous precursor mixture comprising aluminum trihydrate or a thermally treated form thereof and a magnesium source, the magnesium source is milled before use or when present in the precursor mixture, b) aging the precursor mixture at temperatures in the range 30°-100° C. to obtain the crystalline clay product, and c) optionally shaping the product of step b). Milling of the magnesium source, either alone or in combination with the (thermally treated) aluminum trihydrate, results in a faster reaction and higher conversion to anionic clay. The resulting anionic clay can be obtained by simply drying the slurry retrieved from the reactor. There is no need for washing or filtering, and a wide range of ratios of Mg/Al in the reaction product is possible.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: July 15, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, William Jones, Sjoerd Daamen
  • Patent number: 6589902
    Abstract: The present invention is directed to a process for the preparation of crystalline anionic clay-containing bodies from sources comprising an aluminum source and a magnesium source comprising the steps of: a) preparing a precursor mixture, b) shaping the precursor mixture to obtain shaped- bodies, c) optionally thermally treating the shaped bodies, and d) aging to obtain crystalline anionic clay-containing bodies. The quintessence of the present invention is that the bodies are shaped prior to the forming of the crystalline anionic clay in said bodies. This results in very attrition resistant bodies, without the need to add a binder material.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: July 8, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor
  • Publication number: 20030109376
    Abstract: Catalyst for steam cracking reactions consisting of pure mayenite having the general formula:
    Type: Application
    Filed: December 4, 2002
    Publication date: June 12, 2003
    Applicants: ENICHEM S.p.A, ENITECNOLOGIE S.p.A.
    Inventors: Paolo Pollesel, Caterina Rizzo, Carlo Perego, Renato Paludetto, Gastone Del Piero
  • Patent number: 6569798
    Abstract: A process for the production of a bleaching clay product which includes the steps of selecting a naturally occurring, acidic hormite clay product, cleaning and crushing the hormite clay products to form clay clumps, selecting a naturally occurring less acidic, clay product which contains a higher level of montmorillonite than does the acidic hormite clay, aging the crushed hormite clay, blending the aged hormite clay with the less acidic clay product either before or after aging and activating the clay with small quantities of acid. An acceptable bleaching clay product can be produced without activation with acid.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: May 27, 2003
    Assignee: Sud-Chemie Adsorbents, Inc.
    Inventors: Jorge Bello, Christian Fabry
  • Publication number: 20030096697
    Abstract: Anionic clay compounds such as hydrotalcite-like compounds can be made by a process wherein a non-hydrotalcite-like compound (or a hydrotalcite-like compound) are heat treated and then hydrated to form hydrotalcite-like compounds having properties (e.g., increased hardness and/or density) that differ from those of hydrotalcite-like compounds made by prior art methods wherein non-hydrotalcite-like compounds (or hydrotalcite-like compounds) are not similarly heat treated and hydrated to form such hydrotalcite-like compounds.
    Type: Application
    Filed: November 7, 2002
    Publication date: May 22, 2003
    Applicant: Intercat, Inc.
    Inventor: Albert A. Vierheilig
  • Publication number: 20030095906
    Abstract: Selected smectites may be synthesized from a wide variety of components. Morphology, purity, size, and/or shape of the selected smectite may be controlled by mixing the clay smectite formatives, and selectively controlling the pH during mixing. The selected smectites may be used in any applications in which naturally occurring smectite may be used. The selected smectite may also be formulated into an organoclay.
    Type: Application
    Filed: August 22, 2002
    Publication date: May 22, 2003
    Inventors: Patricia M. Bauer, Necip Guven, Robert G. Briell, Milburn I. Knudson
  • Patent number: 6555633
    Abstract: A catalyst which is able to express a high oligomerizing activity of ethylene and a method for the production of &agr;-olefin where ethylene is oligomerized using said catalyst are provided. The present invention relates to a catalyst for the production of &agr;-olefin obtained by contacting (a) clay, clay mineral or ion-exchange layer compound with (b-1) a transition metal complex of Groups 4 to 6 of the Periodic Table and also relates to a method for the production of &agr;-olefin by oligomerization of ethylene using said catalyst. The present invention further relates to a catalyst for the production of &agr;-olefin obtained by contacting (a) clay, clay mineral or ion-exchange layer compound with (b-2) a transition metal complex of Groups 8 to 10 of the Periodic Table and also relates to a method of the production of &agr;-olefin by oligomerization of ethylene using said catalyst.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: April 29, 2003
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Shinji Tanaka, Yasushi Shiraki, Takao Tamura, Masahiko Kuramoto, Haruhito Sato, Masami Watanabe
  • Publication number: 20030069446
    Abstract: Maghnia or Mostaganem bentonites, are activated by contacting the Maghnia or Mostaganem bentonite with an acid solution of selected concentration and then drying the Maghnia or Mostaganem bentonite to form an activated bentonite catalyst. This activated bentonite catalyst may be used to polymerize a vinyl, acrylic, cyclic ether, aldehyde, lactone or olefin monomer. In a further embodiment, a perflourinated amine or diamine is synthesized by contacting a Maghnia or Mostaganem bentonite with an acid solution of selected concentration, drying the Maghnia or Mostaganem bentonite, and absorbing a secondary amine with the Maghnia or Mostaganem bentonite to form a perflouroamide iodide salt. The perflouramide idodide salt can then be extracted with a polar solvent and neutralized by the use of a basic solution.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 10, 2003
    Inventors: Mohammed Belbachir, Abdelhak Bensaoula
  • Patent number: 6541409
    Abstract: An economical and environment-friendly processes for the synthesis of anionic clays and the products made therefrom. It involves reacting a slurry comprising non-peptized boehmite with a magnesium source. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products that contain anionic clays.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: April 1, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: William Jones, Dennis Stamires, Michael Brady
  • Patent number: 6533923
    Abstract: The present invention relates to stevensite or kerolite type trioctahedral phyllosilicates 2:1 containing fluorine, fluorinated in synthesis in an acid medium and modified post-synthesis to bring about Si/Al and/or Mg/Al substitutions which impart acid properties to the solid. These phyllosilicates may be incorporated in the composition of catalysts used to convert hydrocarbons, in particular for hydrocracking.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: March 18, 2003
    Assignee: Institut Francais du Pétrole
    Inventors: Sylvie Lacombe, Véronique Schlussel, Jacques Baron, Ronan Le Dred
  • Patent number: 6531552
    Abstract: An olefin polymerization catalyst comprising the following components (A) and (B): Component (A): an ion-exchange layered silicate having an acid site of at most −8.2 pKa, the amount of the acid site is equivalent to at least 0.05 mmol/g of 2,6-dimethylpyridine consumed for neutralization; and Component (B): a compound of a transition metal belonging to Group 3 to Group 12 of the Periodic Table.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: March 11, 2003
    Assignee: Japan Polychem Corporation
    Inventors: Hiroshi Nakano, Takao Tayano, Hideshi Uchino, Tadashi Takahashi
  • Publication number: 20030027711
    Abstract: The present invention provides a clay-titanium tetrachloride catalyst used for the preparation of polyolefine/clay composite materials, comprising: 1) a phyllosilicate; 2) a magnesium compound selected from the group consisting of MgCl2, Mg(OR)2 and MgR2, wherein R is an alkyl group having 1-8 carbon atoms; 3) an aliphatic alcohol which is capable of dissolving the magnesium compound; 4) titanium tetrachloride TiCl4; and optionally 5) an electron-donor reagent selected from the group consisting of an aromatic ester and an aromatic group substituted or cycloalkyl group substituted alkoxy silane. The present invention also provide a method for the prepare of the catalyst. The nanocomposite materials obtained by using the catalyst have tensile strength of 32-50 MPa and Vicat temperature of 131-220° C.
    Type: Application
    Filed: January 31, 2002
    Publication date: February 6, 2003
    Inventors: Xuequan Zhang, Feng Yang, Haichao Zhao
  • Publication number: 20030027713
    Abstract: The present invention is directed to a process for preparing a catalyst which comprises combining catalyst components or precursors thereof in an aqueous medium to form a catalyst precursor mixture, feeding the mixture to a shaping apparatus, and shaping the mixture to form particles wherein just before the shaping step the mixture is destabilized. It was found that with this process catalysts can be prepared which have both a good attrition resistance and a high accessibility. The invention further relates to catalysts obtainable by this process.
    Type: Application
    Filed: June 4, 2002
    Publication date: February 6, 2003
    Inventors: Paul O'Connor, Edwin Mark Berends
  • Publication number: 20030027716
    Abstract: The catalyst for polymerizing vinyl compounds according to the present invention comprises (A) a complex of Group 4 to 10 transition metal of the Periodic Table, (B) a clay, clay mineral or ion-exchangeable layered compound, and (C) at least one aluminoxy compound represented by Formula (1): 1
    Type: Application
    Filed: August 20, 2002
    Publication date: February 6, 2003
    Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
  • Publication number: 20030010679
    Abstract: A process for producing a solid acid catalyst, which comprises: adding a pseudoboehmite as a binder to a sulfated zirconium hydroxide, followed by kneading with an aqueous solution containing at least one metal of the Group VIII, or loading at least one metal of the Group VIII on a sulfated zirconium hydroxide, and then adding a pseudoboehmite as a binder thereto, followed by kneading with water, further followed by molding and calcining at a temperature of from 550 to 800° C.; a solid acid catalyst produced by the production process; and a method for hydrodesulfurizing and isomerizing a light hydrocarbon oil using the catalyst.
    Type: Application
    Filed: January 30, 2002
    Publication date: January 16, 2003
    Applicant: PETROLEUM ENERGY CENTER
    Inventors: Katsuya Watanabe, Takahito Kawakami, Koji Baba, Takao Kimura
  • Patent number: 6495511
    Abstract: A process for treating a bentonite having a montmorillonite content of at least 85% which, when activated with sodium ions dried and ground, does not swell more than about 2.5-fold when gradually added to deionised water at room temperature and when crushed dried and calcined to an LoI of less than 4% at 190° C. absorbs 16 to 22% by weight of water in a controlled environment at 25° C. and a relative humidity of 40% by weight, which process comprises the following steps in the following order: i) drying to a moisture content from 25 to 35% by weight; ii) conditioning by crushing, mixing and/or extruding; iii) addition of water to form an extrudable paste having a moisture content of 25 to 40% by weight; iv) extrusion through a die preferably from 4 to 10 mm in diameter; v) drying to a moisture content from 10 to 14% by weight; vi) calcining at 120 to 250° C. to an LoI of less than 4% at 190° C.; and vii) reduction to particles.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: December 17, 2002
    Assignee: Colin Stewart Minchem, Ltd.
    Inventor: Peter Jeffrey Kitching
  • Publication number: 20020179490
    Abstract: The invention pertains to a carrier composition comprising (a) at least 30 wt % of a synthetic cracking component, based on the total weight of the carrier composition, which comprises oxidic compounds of one or more trivalent metallic elements, tetravalent metallic elements, and divalent metallic elements, said cracking component comprising elemental clay platelets with an average diameter of 1 &mgr;m or less and an average degree of stacking of 20 platelets per stack or less, and/or comprising a cogel with a saponite content CA of less than 60 %, in which the total of sodium and potassium amounts to less than 1 wt %, based on the total weight of the cogel, and (b) 1 −25 wt % of a zeolite Y, based on the total weight of the carrier composition, with a unit cell size below 24.35 å. The invention further pertains to a catalyst comprising said carrier composition and at least a hydrogenation metal, and a process for converting heavy feedstock into middle distillates using said catalyst.
    Type: Application
    Filed: January 31, 2001
    Publication date: December 5, 2002
    Inventors: Jan Nieman, Johannes Wilhelmus Maria Sonnemans, Bas De Kroes
  • Publication number: 20020183193
    Abstract: A process for preparing a silicate porous product, which comprises a step of forming a clay mineral into a dispersion by means of a dispersant, a step of removing gases dissolved in the dispersion, a step of freezing the dispersion and drying it in its frozen state under reduced pressure, and a step of firing the dried product obtained by the drying.
    Type: Application
    Filed: March 27, 2002
    Publication date: December 5, 2002
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yoshihisa Beppu, Shinji Kondoh
  • Patent number: 6489260
    Abstract: A process for the production of a bleaching clay product which includes the steps of selecting a naturally occurring hormite clay product, cleaning and crushing the clay product to form clay clumps less than 6 in. in diameter, aging the crushed hormite clay and activating the clay with extremely small amounts of acid, in the range of less than 1 percent, by weight. Also, an acceptable bleaching clay product can be produced without the addition of any acid to the aged hormite clay.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: December 3, 2002
    Assignee: Sud-Chemie Inc.
    Inventors: David Hill, Christian P. Fabry, Jorge Bello
  • Publication number: 20020169100
    Abstract: A process for treating a bentonite having a montmorillonite content of at least 85% which, when activated with sodium ions dried and ground, does not swell more than about 2.5-fold when gradually added to deionised water at room temperature and when crushed dried and calcined to an LoI of less than 4% at 190° C. absorbs 16 to 22% by weight of water in a controlled environment at 25° C. and a relative humidity of 40% by weight, which process comprises the following steps in the following order: i) drying to a moisture content from 25 to 35% by weight; ii) conditioning by crushing, mixing and/or extruding; iii) addition of water to form an extrudable paste having a moisture content of 25 to 40% by weight; iv) extrusion through a die preferably from 4 to 10 mm in diameter; v) drying to a moisture content from 10 to 14% by weight; vi) calcining at 120 to 250° C. to an LoI of less than 4% at 190° C.; and vii) reduction to particles.
    Type: Application
    Filed: January 16, 2001
    Publication date: November 14, 2002
    Inventor: Peter Jeffrey Kitching
  • Patent number: 6479421
    Abstract: Anionic clay compounds such as hydrotalcite-like compounds can be made by a process wherein a non-hydrotalcite-like compound (or a hydrotalcite-like compound) are heat treated and then hydrated to form hydrotalcite-like compounds having properties (e.g.., increased hardness and/or density) that differ from those of hydrotalcite-like compounds made by prior art methods wherein non-hydrotalcite-like compounds (or hydrotalcite-like compounds) are not similarly heat treated and hydrated to form such hydrotalcite-like compounds.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: November 12, 2002
    Assignee: Intercat, Inc.
    Inventor: Albert A. Vierheilig
  • Patent number: 6475945
    Abstract: The present invention relates to functionalized catalyst supports that are useful in the formation of supported polymerization catalysts, supported catalysts derived from such functionalized catalyst supports, methods for preparing such functionalized catalyst supports and supported catalysts, and polymerization processes utilizing such supported catalysts. The functionalized catalyst support comprises a particulated support material having chemically bonded thereto a plurality of aluminum-containing groups derived from a non-ionic Lewis acid, said aluminum-containing groups: containing at least one fluoro-substituted hydrocarbyl ligand containing from 1 to 20 carbons, said hydrocarbyl ligand being bonded to aluminum, and being bonded to said support material, optionally through a bridging moiety, said composition being capable of activating a Group 3-10 metal complex for the addition polymerization of one or more addition polymerizable monomers.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: November 5, 2002
    Assignee: The Dow Chemical Company
    Inventors: Edmund M. Carnahan, Grant B. Jacobsen
  • Patent number: 6468488
    Abstract: The present invention pertains to Mg—Al anionic clay having 3R2 stacking. This new polytype of anionic clay has a three-layer repeat, but it has a different interlayer arrangement than the conventional 3R1 hydrotalcite. Said new polytype can be applied in all applications described before for the conventional 3R1 polytype anionic clay such as in catalyst compositions, catalyst additive compositions, catalyst supports, absorbent compositions, stabilizer compositions and in medicaments.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: October 22, 2002
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor, William Jones
  • Patent number: 6444601
    Abstract: A method for producing an Attapulgite clay (Fuller's Earth) that significantly removes other types of clays and minerals, resulting in improved performance. A unique dispersant is used that will fully disperse the individual Attapulgite particles in water such that the particles remain in suspension, and allow the non-Attapulgite clay particles to be liberated, which then can be easily separated through various techniques. The Attapulgite clay may be recovered from the dispersion and dried in such a manner to produce a finely sized powder from ore, without the need for any grinding or milling operation. The dried Attapulgite clay has a free moisture content of 2-3%. The dried Attapulgite clay with adsorbed dispersant is redispersed in water and retains thixotropic properties.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: September 3, 2002
    Assignee: ITC, Inc.
    Inventors: Robert Joseph Purcell, Jr., Dennis Clay Parker
  • Patent number: 6444188
    Abstract: This patent describes economical and environment-friendly processes for the synthesis of Mg-containing non-Al anionic clays. It involves (hydro)thermally reacting a slurry comprising a Mg metals source with a trivalent metals source to directly obtain Mg-containing non-Al anionic clay, the Mg sources being an oxide, hydroxide or a carbonate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products that contain anionic clays.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: September 3, 2002
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, William Jones
  • Publication number: 20020119088
    Abstract: A process for preparing pillared chromium phyllosilicate clay &agr;-olefin catalysts is disclosed This process utilizes palygorskite and sepiolite clays. The pillaring of said clays comprise the steps of: (a) preparing a hydrolyzed first solution by dissolving a chromium salt and a base in water, heating said first solution to a temperature in the range of about 20° C. to about 100° C. while stirring continuously until the solution reaches a pH in the range of about 1.5 to about 2.
    Type: Application
    Filed: February 28, 2002
    Publication date: August 29, 2002
    Applicant: Phillips Petroleum Company
    Inventor: Joseph S. Shveima
  • Patent number: 6440887
    Abstract: A continuous process for the synthesis of anionic clays with carbonate and/or hydroxide anions as the charge-balancing interlayer species is disclosed. The process involves reacting a slurry comprising aluminum trihydrate and/or its calcined form, with a magnesium source. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or it can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: August 27, 2002
    Assignee: Akzo Nobel NV
    Inventors: Dennis Stamires, Michael F. Brady, William Jones, Fathi Kooli
  • Patent number: 6440888
    Abstract: This patent describes economical and environment-friendly processes for the synthesis of Al-containing non-Mg anionic clays. It involves hydrothermally reacting a slurry comprising a divalent metals source with a trivalent metals source to directly obtain Al-containing non-Mg anionic clay, at least one of the metal sources being an oxide, hydroxide or a carbonate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products that contain anionic clays.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: August 27, 2002
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, William Jones
  • Patent number: 6426312
    Abstract: The present invention is an air purifying matrix to remove, reduce or detoxify organic pollutants. The matrix has an inert substrate, a photoreactive semiconductor material, and aqueous particles. The inert substrate is water absorbent, transparent to ultraviolet light, able to withstand extended periods of exposure to all wavelengths of ultraviolet light side of the spectrum without decomposing or altering the structure thereof, able to withstand high concentrations of hydroxyl radicals without decomposing or altering the structure thereof, and in the form of an expanded granular type with spaces therein. The photoreactive semiconductor material is crystallized within the spaces. And the aqueous particles are within the spaces to form photoreactive metal semiconductor material nano-reactors within the matrix. These nano-reactors generate high concentrations of hydroxyl radicals which surround and diffuse through the matrix, and remove, reduce or detoxify organic pollutants within and surrounding the matrix.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: July 30, 2002
    Inventor: Donald Lawrence Lush