Mixed With Reactant Containing More Than One 1,2-epoxy Group Per Mole Or Polymer Derived Therefrom Patents (Class 525/423)
  • Publication number: 20130267651
    Abstract: A polysiloxane-grafted polyimide resin composition includes a polysiloxane-grafted polyimide resin, and a solvent. The polysiloxane-grafted polyimide resin is represented by Formula (I): wherein W represents a tetravalent organic group, R represents a trivalent organic group, and X1 and X2 independently represent a polysiloxane-containing group.
    Type: Application
    Filed: December 21, 2012
    Publication date: October 10, 2013
    Applicant: CHI MEI CORPORATION
    Inventor: CHI MEI CORPORATION
  • Publication number: 20130261270
    Abstract: The present invention relates to novel polyamines having secondary amino groups, a process for producing them, adducts of these polyamines and their uses. The polyamines can be prepared in a simple way from readily available reactants. They and their adducts have, in particular, a low viscosity and are suitable as constituent of polyurethane and polyurea compositions having excellent processability and high flexibility, and also constituent of epoxy resin compositions, especially coatings.
    Type: Application
    Filed: December 13, 2011
    Publication date: October 3, 2013
    Applicant: SIKA TECHNOLOGY AG
    Inventors: Pierre-Andre Butikofer, Urs Burckhardt
  • Patent number: 8536284
    Abstract: The present invention provides N,N?-dimethyl secondary diamine polymers including methylamine-terminated poly-(N-methylazetidine) and methylamine-terminated poly-(N-methylazacycloheptane). Amine compositions and amine-epoxy compositions comprising N,N?-dimethyl secondary diamine polymers are also disclosed.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: September 17, 2013
    Assignee: Air Products & Chemicals, Inc.
    Inventors: Frederick Herbert Walker, Michael Ian Cook, Gamini Ananda Vedage, Robert Marjo Theodoor Rasing, Vipul P. Dholakia
  • Patent number: 8529928
    Abstract: Biodegradable polymers incorporating biomolecules and methods of their use are provided. Certain aspects provide biomolecules crosslinked with diglycidyl esters. The disclosed compositions have numerous applications including cellular regeneration, wound healing, and cellular differentiation.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: September 10, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Yadong Wang, Blaine Zern, Christiane Gumera
  • Patent number: 8530588
    Abstract: A liquid crystal (LC) alignment agent is disclosed, which comprises polymer (A), tertiary hydramine (B) and epoxy group-containing compound (C). The LC alignment agent is added with a tertiary hydramine (B) and has an epoxy value of 0.065 to 0.900. The LC alignment agent can be employed to form a LC alignment film for enhancing the resulted LC alignment film with better rubbing resistance. A LC display (LCD) device that uses the LC alignment film has better voltage holding ratio (VHR) and process stability.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 10, 2013
    Assignee: Chi Mei Corporation
    Inventor: Tsung-Pei Tsai
  • Patent number: 8519065
    Abstract: A problem to be solved by the invention is to provide a novel epoxy resin exhibiting excellent performance with respect to heat resistance and low thermal expansibility of a cured product, a curable composition using the same, and a cured product having excellent heat resistance and low thermal expansibility. The curable composition contains an epoxy compound and a curing agent as essential components, a calixarene-type novel epoxy compound being used as the epoxy compound. The novel epoxy compound has a resin structure represented by structural formula 1 below (in the formula, R1s each independently represent a hydrogen atom, an alkyl group, or an alkoxy group, and n is a repeat unit and an integer of 2 to 10).
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: August 27, 2013
    Assignee: DIC Corporation
    Inventor: Yutaka Satou
  • Publication number: 20130216803
    Abstract: A class of solvent resistant, flexible copolyimide substrates having high optical transparency (>80% from 400 to 750 nm) that is retained after brief exposure to 300° C., near-zero birefringence (<0.001) and a maximum CTE of approximately 60 ppm/° C. is disclosed. The copolyimides are prepared from alicyclic dianhydrides, aromatic cardo diamines, and aromatic diamines containing free carboxyl groups. The substrates are manufactured from solutions of the copolyimides containing multifunctional epoxides in the form of single layer films, multilayer laminates and glass fiber reinforced composite films. The substrates can be used in the construction of flexible optical displays, and other microelectronic and photovoltaic devices that require their unique combination of properties.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 22, 2013
    Applicant: AKRON POLYMER SYSTEMS, INC.
    Inventors: LIMIN SUN, DONG ZHANG, JIAOKAI JING, FRANK W. HARRIS
  • Patent number: 8513376
    Abstract: The present disclosure provides polyamides and amidoamine curing agents including the reaction product of (1) a modified amine component comprising at least one multifunctional amine of structure 1: wherein R1 is selected from C1-C16 linear, cyclic, and branched alkyl, alkenyl, and alkaryl groups; R2 and R4 are hydrogen, R3 is R1 or hydrogen, X, Y, and Z are independently selected from C2-C10 alkylene, hexylene and cycloalkylene groups, n=0, 1, 2, 3, 4, 5, 6, or 7; and (2) a fatty acid component. Exemplary fatty acid components include at least one of monomer fatty acids, dimer fatty acids, trimer fatty acids, polymer fatty acids, esters of monomer, dimer, trimer, and polymer fatty acids and combinations thereof. The method for making the curing agents and articles formed therefrom are also disclosed.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 20, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Williams Rene Edouard Raymond, David Alan Dubowik, Gamini Ananda Vedage
  • Patent number: 8512594
    Abstract: The present invention discloses both amine compositions and amine-epoxy compositions containing N,N?-dimethyl-meta-xylylenediamine. A novel process for producing amines such as N,N?-dimethyl-meta-xylylenediamine, and structurally similar amines, is also disclosed.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 20, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Frederick Herbert Walker, Robert Marjo Theodoor Rasing, Gamini Ananda Vedage, Michael Ian Cook, Peter Andrew Lucas
  • Patent number: 8501874
    Abstract: The present invention relates to thermosetting resin compositions which are suitably used for manufacturing circuit boards, such as flexible printed circuit boards (FPCs) and build-up circuit boards, and to multilayer bodies and circuit boards manufactured using such thermosetting resin compositions. A thermosetting resin composition contains a polyimide resin component (A), a phenol resin component (B), and an epoxy resin component (C). The mixing ratio by weight (A)/[(B)+(C)] is in a range of 0.4 to 2.0, the mixing ratio by weight being the ratio of the weight of the component (A) to the total weight of the component (B) and the component (C). By using such a thermosetting resin composition, it is possible to manufacture multilayer bodies and circuit boards which are excellent in dielectric characteristics, adhesiveness, processability, heat resistance, flowability, etc. A thermosetting resin composition contains a polyimide resin (A), a phosphazene compound (D), and a cyanate ester compound (E).
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 6, 2013
    Assignee: Kaneka Corporation
    Inventors: Shigeru Tanaka, Kanji Shimoohsako, Takashi Itoh, Koji Okada, Mutsuaki Murakami
  • Patent number: 8475925
    Abstract: A coating is a mixture of polybenzimidazole polymer and an epoxy. The coating may further include a primer underlying the coating. The coating may further include an adhesion promoter. A solution includes a polybenzimidazole polymer, an epoxy resin, an initiator, and a carrier solvent. The solution may further include a stabilizer and/or an adhesion promoter.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: July 2, 2013
    Assignee: PBI Performance Products, Inc.
    Inventors: John C. Moore, Gregory S. Copeland, Michael Gruender
  • Patent number: 8470936
    Abstract: A liquid epoxy resin composition for semiconductor encapsulation comprising: (A) at least one epoxy resin, (B) at least one curing accelerator and (C) at least one acid anhydride terminated polyamic acid. The liquid epoxy resin composition provides a cured material that has an excellent adhesiveness to a semiconductor chip surface and has an excellent moisture resistance.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: June 25, 2013
    Assignee: Namics Corporation
    Inventors: Pawel Czubarow, Osamu Suzuki, Toshiyuki Sato, Kazuyoshi Yamada, Kaori Matsumura
  • Patent number: 8461275
    Abstract: Compounds having the formula (I) wherein L is a linking group, at least one of R1 to R10 comprises the group C?N, at least one of R1 to R5 and at least one of R6 to R10 comprise the group NH2 for use as curing agents in an epoxy resin, together with a process for their synthesis and composites comprising the curing agents.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: June 11, 2013
    Assignee: Hexcal Composites Limited
    Inventor: John Cawse
  • Patent number: 8450433
    Abstract: Provided are a resin composition for the manufacture of marble chips including a halogenated epoxy resin binder and showing high heat resistance, high chemical resistance, high impact resistance, high specific gravity and high transparency, a marble chip manufacturing method using the resin composition and an artificial marble made from marble chips.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: May 28, 2013
    Inventor: Young-Min Kim
  • Patent number: 8435609
    Abstract: The present invention provides a liquid crystal alignment agent and a liquid crystal alignment film formed therefrom, as well as a liquid crystal display element provided with the liquid crystal alignment film. More specifically, the present invention provides a liquid crystal alignment agent and liquid crystal alignment film formed therefrom, as well as a liquid crystal display element provided with the liquid crystal alignment film without image sticking problems and having superior voltage holding ratio. The liquid crystal alignment agent includes: a polymer (A) obtained from a reaction between tetracarboxylic dianhydride compound and diamine compounds, an epoxy compound (B), and an organic solvent (C). Wherein the liquid crystal alignment agent is coated on a glass substrate, and heated for 15 minutes at 220° C. to forth a hard coating film. The hard coating film is extracted for 72 hours by using acetone at 60° C.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 7, 2013
    Assignee: Chi Mei Corporation
    Inventor: Huai-Pin Hsueh
  • Patent number: 8426504
    Abstract: The epoxy resin composition of the present invention is characterized in that a polyamide compound having a moiety derived from a hydroxyl substituted aromatic amine having a phenolic hydroxyl group adjacent to an amino group is used as an epoxy resin hardener.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: April 23, 2013
    Assignee: Adeka Corporation
    Inventors: Takahiro Mori, Setsuko Hirakawa, Yoshihiro Fukuda, Seiichi Saito, Yoshinori Takahata, Mitsunori Ide
  • Publication number: 20130079474
    Abstract: Disclosed herein is a composition comprising a compatible blend of i) 24 to less than 84.5 weight percent of a linear poly(arylene sulfide), ii) 14 to 75 weight percent of a polysiloxane/polyimide block copolymer; and iii) 0.1 to less than 2.5 weight percent of a polymeric compatibilizer having 2 or more epoxy groups per molecule. Weight percent is based on the total weight of the composition. An article made from the composition has tensile elongation greater than or equal to 60% as determined by ASTM D638 and a Notched Izod impact strength greater than 50 joules per meter as determined by ASTM D256 at room temperature.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Hariharan Ramalingam, Yashpal Bhandari, Gautam Chatterjee, Siva Kumar Sreeramagiri, Sanjay Braj Mishra
  • Publication number: 20130079438
    Abstract: Disclosed herein is a composition comprising a compatible blend of i) 60 to 85 weight percent of a linear poly(arylene sulfide), ii) 15 to 40 weight percent of a polyetherimide sulfone; and iii) 1 to 3 weight percent of a novolac resin having an average of 2 or more epoxy groups per molecule. Weight percent is based on the total weight of the composition. An article made from the composition has a tensile strength greater than or equal to 70 megaPascals (MPa), as determined by ASTM D638, an impact strength of greater than or equal to 3 kiloJoules per square meter (kJ/m2), as determined by ASTM D256, and an elongation at break greater than or equal to 3% as determined by ASTM D638. Methods of making the composition are also disclosed.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Hariharan Ramalingam, Gurulingamurthy M. Haralur, Siva Kumar Sreeramagiri, Gautam Chatterjee, Kapil Chandrakant Sheth, Sanjay Braj Mishra
  • Patent number: 8404339
    Abstract: Prepreg that contains epoxy resin compositions that include an epoxy resin component and a curative powder comprising particles of 4,4?-diaminobenzanilide (DABA) wherein the size of the DABA particles is less than 100 microns and wherein the median particle size is below 20 microns.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: March 26, 2013
    Assignee: Hexcel Corporation
    Inventor: Yen-Seine Wang
  • Publication number: 20130071930
    Abstract: Polyester compositions and functionalized polyester compositions are provided along with methods of making the compositions as well as methods of using the compositions, for example as a tissue engineering bioscaffold and as a drug-delivery vehicle.
    Type: Application
    Filed: January 25, 2011
    Publication date: March 21, 2013
    Applicant: University of Pittsburgh - of the Commonwealth System of Higher Education
    Inventors: Hunghao Chu, Yadong Wang, Zhengwei You
  • Patent number: 8399577
    Abstract: A curable epoxy resin composition including at least an epoxy resin component and a hardener component, and optionally further additives, wherein: (a) the epoxy resin component is an epoxy resin compound or a mixture of such compounds; (b) the hardener component includes (b1) an aliphatic and cycloaliphatic or aromatic polycarbonic acid anhydride; and (b2) a polyether-amine of the general formula (I), H2N—(CnH2n—O)m—CnH2n—NH2, wherein n is an integer from 2 to 8; and m is from about 3 to about 100; (c) the polycarbonic acid anhydride [component (b1)] is present in the curable epoxy resin composition in a concentration of 0.60 Mol to 0.93 Mol; and (d) the polyether-amine of the general formula (I) [component (b2)] is present in the curable epoxy resin composition in a concentration of about 0.02 Mol to about 0.1 Mol.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: March 19, 2013
    Assignee: ABB Research Ltd
    Inventors: Bandeep Singh, Stéphane Schaal, Xavier Kornmann, Prateek Puri
  • Publication number: 20130035419
    Abstract: The present invention refers to a method of dispersing carbon nanotubes in a thermosetting resin. The method comprises: (a) contacting the carbon nanotubes with a dispersant in a solvent to form a dispersion mixture, wherein the dispersant is a graft polymer comprising a polymeric backbone and a side chain grafted to the polymeric backbone; and (b) adding the thermosetting resin to the dispersion solution to form a resin blend. The present invention also refers to a composition used for the method.
    Type: Application
    Filed: February 9, 2011
    Publication date: February 7, 2013
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Bee Eng Mary Chan, Wei Yuan, Junluo Feng, Zaher Judeh
  • Publication number: 20130026661
    Abstract: A liquid epoxy resin composition for semiconductor encapsulation comprising: (A) at least one epoxy resin, (B) at least one curing accelerator and (C) at least one acid anhydride terminated polyamic acid, and an assembly in which a cured material of the liquid epoxy resin is positioned between a printed circuit substrate and semiconductor die. The liquid epoxy resin composition provides a cured material that has an excellent adhesiveness to a semiconductor chip surface and has an excellent moisture resistance.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: NAMICS CORPORATION
    Inventors: Pawel Czubarow, Osamu Suzuki, Toshiyuki Sato, Kazuyoshi Yamada, Kaori Matsumura
  • Publication number: 20130011642
    Abstract: Films with optical transmittance of >80% between 400 and 750 nm and with CTEs less than 20 ppm/° C. are prepared from aromatic polyamides that are soluble in polar organic solvents yet have Tgs >300° C. The films are crosslinked in the solid state by heating at elevated temperatures for short periods of time in the presence of multifunctional epoxides. Surprisingly, the optical and thermal properties of the films do not change significantly during the curing process. The temperature required for the crosslinking process to take place can be reduced by the presence of a few free, pendant carboxyl groups along the polyamide backbones. The films are useful as flexible substrates for electronic displays and photovoltaic devices.
    Type: Application
    Filed: June 20, 2012
    Publication date: January 10, 2013
    Applicant: AKRON POLYMER SYSTEMS, INC.
    Inventors: LIMIN SUN, DONG ZHANG, FRANK W. HARRIS, JIAOKAI JING
  • Patent number: 8328906
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 11, 2012
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Kronos
  • Publication number: 20120285721
    Abstract: The hydrolysis resistance of silicone polyetherimide copolymers is improved by addition of polyepoxide compounds, hydrotalcite compounds or mixtures thereof. An article made from the composition retains at least 83% of its molecular weight (Mw) were exposed to steam in an autoclave at 115° C. for 3 and 7 days.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Inventors: Robert R. Gallucci, Yashpal Bhandari
  • Patent number: 8293847
    Abstract: An object of the present invention is to provide a film-like adhesive capable of achieving a superior combination of processability and reflow resistance. A film-like adhesive of the present invention is used for bonding a semiconductor element to an adherend, and includes an adhesive layer comprising at least one resin selected from the group consisting of polyurethaneimide resins, polyurethaneamideimide resins and polyurethaneimide-polyurethaneamideimide resins.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 23, 2012
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Takashi Masuko, Minoru Sugiura, Shigeki Katogi, Masami Yusa
  • Patent number: 8278398
    Abstract: Two-component epoxy-based structural adhesives are disclosed which exhibit excellent impact resistance, even when cured at approximately room temperature. The adhesives include an epoxy resin component which includes an epoxy resin and a reactive tougher. The adhesives also include a hardener component, which includes from 15 to 50 weight percent of an amine-terminated polyether, from 4 to 40 weight percent of an amine terminated rubber having a glass transition temperature of ?40° C. or below, and from 10 to 30 weight percent of an amine-terminated polyamide having a melting temperature of no greater than 50° C.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: October 2, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Andreas Lutz, Beda Steiner
  • Publication number: 20120244332
    Abstract: A resin composition comprising a polyamideimide and a polyfunctional glycidyl compound, the polyamideimide having 2 or more carboxyl groups on at least one end of the molecular chain.
    Type: Application
    Filed: September 28, 2010
    Publication date: September 27, 2012
    Applicant: HITACHI CHEMICAL COMPANY, LTD
    Inventor: Kazumasa Takeuchi
  • Patent number: 8268926
    Abstract: Particle-toughened polymer compositions include a base polymer formulation and a plurality of toughening particles. In certain embodiments, the base polymer formulation includes bismaleimides or other polymer resins capable of high temperature service. A first plurality of toughening particles may include core shell rubbers. A second plurality of toughening particles may be selected from a variety of polymer compositions, including polyimides, polyether ketone (PEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyether imide, polyether sulfones, and polyphenylene oxide. It is found that increasing concentration of the core shell rubbers may improve the toughness of the composition while preserving thermal properties of the composition, such as glass transition temperature.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: September 18, 2012
    Assignee: Cytec Technology Corp.
    Inventors: Mark Richard Bonneau, Jack Douglas Boyd, Gordon T. Emmerson, Scott D. Lucas, Stephen J. Howard, Spencer Donald Jacobs
  • Patent number: 8247517
    Abstract: The use of 1,3-substituted imidazolium salts of the formula I in which R1 and R3 independently of one another are an organic radical having 1 to 20 C atoms, R2, R4, and R5 independently of one another are an H atom or an organic radical having 1 to 20 C atoms, it also being possible for R4 and R5 together to form an aliphatic or aromatic ring, and X is a dicyanamide anion as latent catalysts for curing compositions comprising epoxy compounds.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 21, 2012
    Assignee: BASF SE
    Inventors: Lars Wittenbecher, Michael Henningsen, Georg Degen, Matthias Maase, Manfred Doering, Ulrich Arnold
  • Publication number: 20120164455
    Abstract: Resin compositions comprise an epoxy thermosetting resin; and at least two types of interlaminar toughening particles; wherein a first type of interlaminar toughening particles are insoluble in said epoxy thermosetting resin; wherein a second type of interlaminar toughening particles are partially soluble or swellable in said epoxy thermosetting resin. Prepregs and structural compounds contain these resin compositions, which are useful in the aerospace industry.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 28, 2012
    Applicant: CYTEC TECHNOLOGY CORP.
    Inventors: James Martin Griffin, Mark Bonneau, Gordon Emmerson
  • Patent number: 8206808
    Abstract: A prepreg composite material that includes a fiber layer and a resin comprising a thermoset resin component, a curing agent and a fibrous micropulp. The micropulp component is an aramid fiber having a volume average length of from 0.01 to 100 micrometers. The prepreg is useful in composite panel construction for minimizing fluid permeation into the cured structure. This prepreg is particularly suitable for making honeycomb sandwich panels. Film adhesives, liquid and paste resins containing aramid fiber micropulp are also disclosed.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: June 26, 2012
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Subhotosh Khan, Halvar Young Loken
  • Patent number: 8198381
    Abstract: Disclosed is a phenol aralkyl epoxy resin having a structure wherein at least a phenol or a naphthol is bound by using an aralkyl group as a linking group and a structure represented by formula (1) below, while satisfying the condition 1 below. This epoxy resin is excellent in workability during production of a composition and is easy to control quality. Condition 1: The following relation (?) is satisfied with A being the hydroxyl equivalent (as measured in accordance with JIS K 0070) of a phenol-modified epoxy resin obtained by adding an equivalent molar amount of phenol relative to the epoxy equivalent of the epoxy resin, and B being the epoxy equivalent of the epoxy resin. 50?1000×(A?B)/B?250 (?).
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: June 12, 2012
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Masataka Nakanishi, Katsuhiko Oshimi, Kazuyuki Ohhashi, Toru Kurihashi
  • Patent number: 8192840
    Abstract: A spring with high durability has a coating film composed of an epoxy resin powder coating containing softening agent which contains an epoxy resin and a softening agent comprising a thermoplastic resin for improving impact resistance of the coating film. A method of coating a spring with high durability comprises a coating step of making an epoxy resin powder coating containing softening agent which contains an epoxy resin and a softening agent comprising a thermoplastic resin for improving impact resistance of a coating film adhere to a surface on which the coating film is formed, and a baking step of baking the epoxy resin powder coating containing softening agent adhered to the surface.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: June 5, 2012
    Assignees: Chuo Hatsujo Kabushiki Kaisha, Rock Paint Co., Ltd.
    Inventors: Yasuhiko Kunita, Takayuki Sakakibara, Masami Wakita, Yuichi Kondo, Norio Sawatari
  • Patent number: 8188209
    Abstract: A curable polyimide resin composition containing a polyimide resin obtainable from by a reaction of a reaction mixture containing a diisocyanate compound, a carbonate group-containing diol compound and an imide compound having two terminal hydroxyhydrocarbyl groups gives a cured insulation film having improved characteristics.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: May 29, 2012
    Assignee: Ube Industries, Ltd.
    Inventors: Masahiro Naiki, Ryoichi Takasawa, Shuichi Maeda, Tetsuji Hirano, Masayuki Kinouchi
  • Publication number: 20120115388
    Abstract: Embodiments of the invention are directed to carriers providing a primary toughening function and incorporating a secondary toughening agent therein. According to embodiments of the invention, the carrier/agent combination may be used in liquid resin infusion applications. The carrier may be any polymer-based material having a solubility characteristic in a thermosetting resin. The secondary toughening agent may be of a material such as a thermoplastic, a thermoset, a cross-linked thermoset, a rubber, a rubbery-like material or a combination thereof and may be in the form of a particle, a micro-fiber (fibril) or a fibrous network. In some embodiments, the carrier is soluble in the resin while the secondary toughening agent is insoluble in the resin when subjected to a cure cycle.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 10, 2012
    Applicant: CYTEC TECHNOLOGY CORP.
    Inventors: Alexandre A. Baidak, Patrick Terence McGrail, Dominique Ponsolle, Robert Blackburn
  • Patent number: 8168731
    Abstract: Provided is a curable resin composition that exhibits good heat resistance and low thermal expansion, and that realizes good solubility in solvents, a cured product thereof, a printed wiring board including the composition, a novel epoxy resin that imparts these properties, and a process for producing the same. A curable resin composition contains, as essential components, an epoxy resin (A) having, in its molecular structure, a glycidyloxy group and a skeleton in which a naphthalene structure and a cyclohexadienone structure are bonded to each other via methylene group(s); and a curing agent (B).
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 1, 2012
    Assignee: DIC Corporation
    Inventors: Yutaka Satou, Kazuo Arita, Ichirou Ogura
  • Publication number: 20120088864
    Abstract: The solvent resistance of epoxy resins toughened with polyethersulfone is improved by using low molecular weight polyethersulfone. The resulting thermoplastic toughened epoxy resins are useful for making prepreg for aerospace applications.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 12, 2012
    Applicant: Hexcel Corporation
    Inventor: Yen-Seine Wang
  • Publication number: 20120088863
    Abstract: Thermoplastic toughened epoxy resin for use in making prepreg for aerospace applications. The resin includes an epoxy resin component comprising a tri functional epoxy resin and/or tetra functional epoxy, a thermoplastic component and 4,4?-Bis(p-aminophenoxy)biphenyl (BAPB) as the curing agent. The use of BAPB as a curative was found to increase the resistance of the cured resin to attack by solvents.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 12, 2012
    Applicant: Hexcel Corporation
    Inventor: Yen-Seine Wang
  • Patent number: 8153732
    Abstract: A biaxially oriented polyphenylene sulfide film contains polyphenylene sulfide and polyether imide, wherein the contents of the polyphenylene sulfide and the polyether imide are 70 to 99 parts by weight and 1 to 30 parts by weight respectively when the total amount of the polyphenylene sulfide and the polyether imide is taken as 100 parts by weight, and further contains a compound having one or more groups selected from an epoxy group, an amino group and an isocyanate group as a compatibilizing agent in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyphenylene sulfide and polyether imide in total, and the polyether imide forms a dispersed phase with an average particle diameter of 10 to 500 nm and the biaxially oriented polyphenylene sulfide film exhibits a tensile elongation at break of 110 to 250% in both the longitudinal direction and width direction.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: April 10, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Takuji Higashioji, Tetsuya Machida, Masatoshi Ohkura, Yasuyuki Imanishi, Atsushi Ishio, Megumi Yamada
  • Publication number: 20120035324
    Abstract: The invention relates to a process for preparing a reinforced and reactive thermoplastic composition having a continuous phase which is based on at least one thermoplastic polymer and dispersed in which is a discontinuous phase based on at least one reactive reinforcing agent that may be immiscible with said at least one thermoplastic polymer, and also to a composition obtained by this process.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 9, 2012
    Applicant: HUTCHINSON
    Inventors: Nicolas Garois, Philippe Sonntag, Grégory Martin, Matthieu Vatan, Jacques Drouvroy
  • Publication number: 20120028050
    Abstract: The present invention relates to a film for flip chip type semiconductor back surface to be formed on a back surface of a semiconductor element flip chip-connected onto an adherend, the film for flip chip type semiconductor back surface having a ratio of A/B falling within a range of 1 to 8×103 (%/GPa), in which A is an elongation ratio (%) of the film for flip chip type semiconductor back surface at 23° C. before thermal curing and B is a tensile storage modulus (GPa) of the film for flip chip type semiconductor back surface at 23° C. before thermal curing.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 2, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Goji SHIGA, Naohide TAKAMOTO, Fumiteru ASAI
  • Patent number: 8101689
    Abstract: The shape memory polymers disclosed are a reaction product of at least one reagent containing two active amino-hydrogen or two active phenolic-hydrogen with at least one multifunctional cross linking reagent which contains at least three or more active amino- or phenolic-hydrogen or is a reagent containing at least three glycidyl ether moieties which is then further mixed with at least one diglycidyl ether reagent whereupon the resulting mixture is cured and has a glass transition temperature higher than 00 C. This reaction creates crosslinking between the monomers and polymers such that during polymerization they form a crosslinked thermoset network.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: January 24, 2012
    Assignee: Cornerstone Research Group, Inc.
    Inventors: Tat Hung Tong, Benjamin J. Vining, Richard D. Hreha, Thomas J. Barnell
  • Publication number: 20120012999
    Abstract: The present invention relates to a semiconductor-encapsulating adhesive, a semiconductor-encapsulating film-form adhesive, a method for producing a semiconductor device, and a semiconductor device. The present invention provides a semiconductor-encapsulating adhesive comprising (a) an epoxy resin, and (b) a compound formed of an organic acid reactive with an epoxy resin and a curing accelerator.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Kazutaka HONDA, Tetsuya ENOMOTO, Yuuki NAKAMURA
  • Patent number: 8097657
    Abstract: The present invention relates to organic polymer porous materials, and in particular, to an organic polymer porous material that functions as a reusable insoluble solid catalyst and a method for producing the same. The organic polymer porous material of the present invention is characteristic in that the amount of immobilized bases is high and the specific surface area is large. The object has been achieved by an organic polymer porous material including a polymer (PA) obtained by polymerizing a polymerizable composition (A) containing a compound (a) obtained by reacting a dendrimer (a1) having at least an amino group as a reactive functional group or a polyethyleneimine (a2) having at least an amino group as a reactive functional group with a compound (a3) having a vinyl group and a group that can react with the reactive functional group.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: January 17, 2012
    Assignees: DIC Corporation, Kawamura Institute of Chemical Research
    Inventors: Shinji Kato, Shin Ogasawara
  • Publication number: 20110305883
    Abstract: Provided are an adhesive resin composition that is halogen-free, has good adhesiveness, solder heat resistance, and flame retardancy, and has good flow characteristics, and a laminate and a flexible printed wiring board using the same. The adhesive resin composition contains a phosphorus-containing epoxy resin and/or a phosphorus-containing phenoxy resin, a phosphorus-containing polyester resin having a weight-average molecular weight of more than 20,000 and 150,000 or less, another thermoplastic resin, and a curing agent. The adhesive resin composition preferably further contains a benzoxazine compound. Preferably, substantially no inorganic filler is mixed in the adhesive resin composition.
    Type: Application
    Filed: January 18, 2010
    Publication date: December 15, 2011
    Applicants: SUMITOMO ELECTRIC PRINTED CIRCUITS, INC., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shingo Kaimori, Jun Sugawara, Akira Mizoguchi, Syougo Asai, Takuma Yoshisaka, Naota Uenishi
  • Patent number: 8067486
    Abstract: An aqueous multi-component epoxy coating composition having less than 3% by weight of VOCs and curable upon admixing the components comprises (a) a first component of (i) a stable epoxy dispersion of an epoxy resin, from 5 to 20 weight percent of a mixture of surfactants comprising a low temperature nonionic surfactant having a molecular weight of from 1,000 to 7,000; a high temperature nonionic surfactant having a molecular weight of greater than 7,000 to 20,000 and an anionic surfactant, and (b) a second component of (i) a water miscible polyamine, wherein the composition further contains an associative thickener as well as thixotropic clay and/or a cellulosic thickener as additional thickener(s).
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: November 29, 2011
    Assignee: The Sherwin-Williams Company
    Inventor: Wendy Zhao
  • Patent number: 8066799
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 29, 2011
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Kronos
  • Publication number: 20110274907
    Abstract: Curative fibre components comprise one or more fibres for filaments of curative suitable to cure curable resins such as thermoset resin. In curative fibre components comprising a plurality of fibres of curative, the fibres can be commingled, such as twisting, to form a thread or yarn. Curative fibre components can be used to form a material in the form of a sheet, fabric, layer, textile or mat of woven or non-woven curative fibres. Curative fibre components can be used to produce composite materials such as fibre reinforced resinous composite materials. The curative fibre components can be commingled, including interwoven, stitched and layered with other fibres or fibrous materials, such as fibrous reinforcement, fibrous curable resin, fibrous thermoplastic, other non-reinforcing fibres to form composite materials, prepregs, preforms and articles.
    Type: Application
    Filed: November 24, 2009
    Publication date: November 10, 2011
    Inventors: Mark Raymond Steele, Andrew Gibbs, Amy Grace Atinkson