Containing Chemically Combined Protein Or Biologically Active Polypeptide Patents (Class 525/54.1)
  • Publication number: 20150025196
    Abstract: The present invention relates to functionalized ploy(2-oxazoline) polymers, which are very suitable as a carrier and/or delivery vehicle (conjugate) of drugs, such as small therapeutic molecules and bio-pharmaceuticals. These polymers are characterized in that they comprise repeating units that are represented by the following formula —[N(R1)—(CHR2)m]- wherein R1 is R3—(CHR4)n-CONH—R5; R2 is selected from H and optionally substituted C1-5alkyl; R3 is CH2CO, C(O)O, C(O)NH OR C(S)NH; R4 is selected from H and optionally substituted C1-5alkyl; R5 is H; an C1-5alkyl; aryl; or a moiety comprising a functional group that can be used for conjugation; m is 2 or 3 and n is 1-5; or n is 0 and R3 is CH2. The invention relates further to a conjugate of these polyoxazoline polymers with at least one active moiety, such as a therapeutic moiety, a targeting moiety and/or diagnostic moiety, and to the use of these conjugates in the therapeutic treatment or prophylactic treatment or diagnosis of a disease or disorder.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 22, 2015
    Inventor: Richard Hoogenboom
  • Publication number: 20150018486
    Abstract: The present invention comprises compositions and methods for delivery systems of agents, including therapeutic compounds, pharmaceutical agents, drugs, detection agents, nucleic acid sequences and biological factors. In general, the nanotherapeutic compositions of the present invention comprise a platform comprising a colloidal metal, a targeting ligand such a tumor necrosis factor, a stealth agent such as polyethylene glycol, and one or more diagnostic or therapeutic agents for delivery. The invention also comprises methods and compositions for making such nanotherapeutic compositions and for the treatment of cancer.
    Type: Application
    Filed: February 14, 2014
    Publication date: January 15, 2015
    Applicant: Cytlmmune Sciences, Inc.
    Inventors: Lawrence Tamarkin, Giulio F. Paciotti, Marja S. Huhta
  • Publication number: 20150017115
    Abstract: Polymeric conjugates of a polymeric backbone formed of a plurality of backbone units and having attached to portions of the backbone units two or more therapeutically active agents, or one or more therapeutically active agents and a NCAM targeting moiety, are disclosed. Uses of such polymeric conjugates in treating and/or monitoring cancer and/or medical conditions associated with angiogenesis are also disclosed.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 15, 2015
    Inventors: Ronit Satchi-Fainaro, Ela Markovsky, Hemda Baabur-Cohen
  • Publication number: 20150011683
    Abstract: A rubber composition includes an elastomer having an elongation at break (Eb) of about 50% or more according to ASTM-D 412 at 25° C., a water-insoluble keratin, and a reinforcing filler. A tire component including the composition and a method for making the composition are also disclosed.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Applicant: Bridgestone Corporation
    Inventors: William L. Hergenrother, Lorri L. Shultz, Chenchy Jeffrey Lin
  • Publication number: 20150004173
    Abstract: A peptide is disclosed of the general structure: Z—W—Y, wherein Z and Y are independently a one to eight amino acid sequence wherein the amino acids are selected from glycine and alanine and W is a non-hydrolyzable pHis analogue. Such peptides can be used to produce sequence-independent anti-phosphohistidine antibodies. Also provided are antibodies that specifically bind to a peptide comprising a phosphohistidine (or a non-hydrolyzable pHis analogue) but fail to specifically bind to an identical peptide containing histidine instead of phosphohistidine.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 1, 2015
    Inventors: Magda Stankova, Fahad Al-Obeidi, Jacques Mauger, Robert A. Binnie, Tony Hunter, Jill Meisenhelder, Stephen Rush Fuhs
  • Publication number: 20140377212
    Abstract: A series of peptides with divergent confirmations including structures of formula (1A), (1B), (2) and (3) are provided. In the formula, wherein U, G, A, B, R1, R2 and T are as defined in the specification. The divergent peptides disclosed in the present invention are characterized in a mineral binding affinity function.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 25, 2014
    Applicant: Kaohsiung Medical University
    Inventors: Hui-Ting Chen, Kuang-Chan Hsieh, Je-Ken Chang, Gwo-Jaw Wang, Yin-Chih Fu, Mei-Ling Ho, Cherng-Chyi Tzeng
  • Publication number: 20140377209
    Abstract: Conjugates are provided herein which comprise a protein attached to at least two polymeric moieties, at least one of which exhibits reverse thermal gelation. The conjugates are suitable for being cross-linked by non-covalent and/or covalent cross-linking. Compositions-of-matter comprising cross-linked conjugates are provided herein, as well as processes for producing same. Methods of controlling a physical property of compositions-of-matter are also provided herein. The conjugates and compositions-of-matter may be used for various applications, such as cell growth, tissue formation, and treatment of disorders characterized by tissue damage or loss, as described herein.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Dror SELIKTAR, Yonatan Shachaf
  • Patent number: 8916683
    Abstract: Described herein are block copolymer conjugates that form double-network hydrogels under appropriate conditions. The conjugates comprise a block of polymer end-group, a block of self-associating peptide or protein, and flexible linkers between the two. Hydrogels comprising the conjugates have the mechanical properties, including elastic modulus and fracture toughness, required for load-bearing applications, while maintaining desirable shear-thinning properties, for example, for injectability.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: December 23, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Bradley D. Olsen, Matthew J. Glassman, Jacqueline Chan
  • Patent number: 8916616
    Abstract: Multifunctional polymers are disclosed having a smart segment and a biodegradable segment. Advantageously, the biodegradable segment includes a hydrophilic segment and a hydrophobic segment. Embodiments include combining the multifunctional polymeric material with a biologically active substance in an aqueous loading environment and administering the composition as a drug delivery vehicle to a human subject.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: December 23, 2014
    Assignee: University of Tennessee Research Foundation
    Inventors: Tao Lu Lowe, Young Shin Kim, Xiao Huang
  • Publication number: 20140370567
    Abstract: Dual-functional nonfouling surfaces and materials, methods for making dual-functional nonfouling surfaces and materials, and devices that include dual-functional nonfouling surfaces and materials. The dual-functional surfaces are nonfouling surfaces that resist non-specific protein adsorption and cell adhesion. The dual-functional surfaces and materials include covalently coupled biomolecules (e.g., target binding partners) that impart specific biological activity thereto. The surfaces and materials are useful in medical diagnostics, biomaterials and bioprocessing, tissue engineering, and drug delivery.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 18, 2014
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Shaoyi Jiang, Zheng Zhang, Shengfu Chen, Hana Vaisocherova
  • Patent number: 8911717
    Abstract: A drug delivery system for delivering a drug payload to a specific tissue or cell type is disclosed. The system includes a polymalic acid molecular scaffold which can be used for attaching a plurality of molecular modules. Molecular modules include targeting antibodies for promoting cellular uptake by a target cell, and pro-drugs for altering cellular metabolism, for example, a pro-drug that alters expression of protein kinase CK2.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: December 16, 2014
    Assignees: Cedars-Sinai Medical Center, Arrogene Nanotechnology, Inc.
    Inventors: Julia Y. Ljubimova, Keith L. Black, Eggehard Holler
  • Patent number: 8906355
    Abstract: This invention discloses ligand-targeted multi-stereoisomer peptide-polymer conjugate compounds comprising a plurality of different synthetic and chemically modified stereoisomer peptides that have been conjugated to a biocompatible polymer carrying a peptide ligand for targeted delivery or encapsulated in ligand targeted polymer nanoparticles. The unique physicochemical properties of the stereoisomer peptides provide therapeutic compounds with ideal biopharmaceutical properties. The stereoisomer peptides carried by the polymer are delivered to cells or tissues to inhibit, suppress, block, or disrupt, simultaneously and independently, the functional domain of a different disease causing protein.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 9, 2014
    Inventor: Lucia Irene Gonzalez
  • Patent number: 8905235
    Abstract: The present invention provides conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates. Methods of making polymeric reagents and conjugates, as well as methods for administering conjugates and compositions, are also provided.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: December 9, 2014
    Assignee: Nektar Therapeutics
    Inventors: Sean M. Culbertson, Samuel P. McManus
  • Patent number: 8906343
    Abstract: A PAA nanoparticle containing a covalently linked fluorescent dye and a post-loaded tetrapyrrolic photosensitizer.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 9, 2014
    Assignees: Health Research, Inc., The Research Foundation of State University of New York, Regents of the University of Michigan
    Inventors: Ravindra K. Pandey, Raoul Kopelman, Anurag Gupta, Munawwar Sajjad
  • Patent number: 8901017
    Abstract: Binder compositions are described, where the compositions include a protein, a first crosslinking compound that includes a carbohydrate, and a second crosslinking compound that includes two or more primary amine groups. The first and second crosslinking compounds may be individually crosslinkable with each other and with the protein. Also described are fiber products that may include inorganic or organic fibers and a cured thermoset binder prepared from a protein and at least two crosslinking compounds. Additionally, methods of making fiber products are described that include providing inorganic or organic fibers, and applying a liquid binder composition to the fibers to form a fiber-binder amalgam. The liquid binder composition may include a protein and at least two crosslinking compounds that include a carbohydrate and an organic amine with two or more primary amines. The amalgam may be heated to a curing temperature to form the fiber product.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: December 2, 2014
    Assignee: Johns Manville
    Inventors: Mingfu Zhang, Jawed Asrar, Uranchimeg Lester
  • Publication number: 20140350183
    Abstract: Polymers, monomers, chromophoric polymer dots and related methods are provided. Highly fluorescent chromophoric polymer dots with narrow-band emissions are provided. Methods for synthesizing the chromophoric polymers, preparation methods for forming the chromophoric polymer dots, and biological applications using the unique properties of narrow-band emissions are also provided.
    Type: Application
    Filed: December 27, 2012
    Publication date: November 27, 2014
    Inventors: Daniel T. Chiu, Changfeng Wu, Yu Rong, Yong Zhang, Yi-Che Wu, Yang-Hsiang Chan, Xuanjun Zhang, Jiangbo Yu, Wei Sun
  • Publication number: 20140350692
    Abstract: Bone tissue biomimetic materials, biomimetic constructs that can be formed with the materials, and methods for forming the materials and constructs are described. The bone tissue biomimetic materials include electrospun nanofibers formed of polymers that are conjugated with peptides that include acidic amino acid residues. The materials can incorporate high levels of mineralization so as to provide mechanical strength and promote osteogenesis and/or osteoconductivity on/in the bone tissue biomimetic materials. The materials and constructs can be utilized in forming tissue engineered structures for in vitro and in vivo use. Macroscopic bone tissue biomimetic scaffolds formed from the materials can be seeded with osteogenic cells and utilized to develop bone graft materials that can exhibit strength and osteoconductivity similar to the native bone and that exhibit uniform distribution of nutrients in the scaffolds.
    Type: Application
    Filed: April 24, 2014
    Publication date: November 27, 2014
    Applicant: University of South Carolina
    Inventor: Esmaiel Jabbari
  • Publication number: 20140341975
    Abstract: A composition-of-matter is provided as well as pharmaceutical compositions and methods of using same. The composition of matter includes least one active moiety surrounded by a scaffold configured for enabling selective influx of an agent capable of interacting with the at least one active moiety.
    Type: Application
    Filed: August 23, 2012
    Publication date: November 20, 2014
    Applicant: VICOY NANOMEDICINES LTD
    Inventor: Erez Aharon Livneh
  • Publication number: 20140343227
    Abstract: The invention relates to a method for homogeneous solution phase peptide synthesis (HSPPS) of a N-terminal peptide fragment PEP-N and a C-terminal peptide fragment C-PEP, with C-PEP carrying a specific diketopiperazine (DKP) comprising C-terminal protecting group, which contains a handle group HG, with HG being connected to the C-terminus of the peptide fragmcnt; thereby this specific DKP comprising C-terminal protecting group can be selectively cleaved from the peptide as a conventionally used C-terminal protecting group. By the use of this DKP and HG comprising C-terminal protecting group, certain process steps in convergent peptide synthesis based on a combination of HSPPS and solid phase peptide synthesis (SPPS) can be avoided.
    Type: Application
    Filed: June 20, 2014
    Publication date: November 20, 2014
    Inventors: Fernando Albericio, Michèle Cristau, Matthieu Giraud, Miriam Gongora Benitez, Judit Tulla-Puche
  • Patent number: 8889791
    Abstract: Provided are novel biocompatible copolymers and compositions comprising the copolymers. The copolymers and degradation products thereof are non-toxic and typically have an LCST between room temperature and 37° C. so that they are liquid at room temperature and gelled at 37° C. which facilitates their use in humans, for example for wound treatment and as a cellular growth matrix or niche. The copolymer comprises numerous ester linkages in its backbone so that the copolymers are erodeable in situ. Degradation products of the polymer are soluble and non-toxic. The copolymer is amine-reactive so that it can conjugate with proteins, such as collagen. Active ingredients, such as drugs, can be incorporated into compositions comprising the copolymer.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: November 18, 2014
    Assignee: University of Pittsburgh-Of the Commonwealth System of Higher Education
    Inventors: Jianjun Guan, William R. Wagner, Kazuro Lee Fujimoto
  • Publication number: 20140335045
    Abstract: A heparin mimicking polymer, its conjugate with bFGF, and method of making and using the same are disclosed. In particular, described herein are conjugates of biologic agents (e.g., bFGF) and heparin mimicking polymers having superior stability while retaining full native activity after a variety of stressors.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 13, 2014
    Inventors: Heather D. Maynard, Thi Nguyen
  • Patent number: 8883964
    Abstract: The invention provides modified collagen and related therapeutic and diagnostic methods.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: November 11, 2014
    Assignee: The Johns Hopkins University
    Inventors: Michael Yu, Jennifer H. Elisseeff, Allen Yi-Lan Wang, Hyeseung Janice Lee, Xiao Mo
  • Patent number: 8883188
    Abstract: The present invention relates to a modular supramolecular bioresorbable or biomedical material comprising (i) a polymer comprising at least two 4H-units and (ii) a biologically active compound. Optionally, the supramolecular bioresorbable or bio medical material comprises a bioresorbable or biomedical polymer as third component to tune its properties (mechanical and bioresorption properties). The supramolecular bioresorbable or biomedical material is especially suitable for biomedical applications such as controlled release of drugs, materials for tissue-engineering, materials for the manufacture of a prosthesis or an implant, medical imaging technologies.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: November 11, 2014
    Assignee: SupraPolix B.V.
    Inventors: Patricia Yvonne Wilhelmina Dankers, Gaby Maria Leonarda Hoorne-Van Gemert, Henricus Marie Janssen, Egbert Willem Meijer, Anton Willem Bosman
  • Publication number: 20140328883
    Abstract: The invention relates to methods for preparing crosslinked polyelectrolytes, in particular crosslinked polyelectrolytes multilayer films. The invention also relates to a method of coating a surface, and the obtained coated article.
    Type: Application
    Filed: December 30, 2013
    Publication date: November 6, 2014
    Inventors: Catherine Picart, Jean-Claude Voegel, Benoit Frisch, Pierre Schaaf, Gero Decher, Frederic Cuisinier
  • Publication number: 20140329936
    Abstract: One-part thermosetting binder compositions are described that may include soy protein, a first crosslinking compound, and a second crosslinking compound different from the first crosslinking compound. Upon curing, the first and second crosslinking compounds covalently bond to each other and to the soy protein to form a thermoset binder. Also describe are fiber-containing products that include a plurality of fibers and a formaldehyde-free binder. The formaldehyde-free binder is formed from a one-part, thermosetting binder composition that includes soy protein, a first crosslinking compound, and a second crosslinking compound different from the first crosslinking compound. Upon curing, the first and second crosslinking compounds covalently bond to each other and to the soy protein to form a thermoset binder.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: Mingfu Zhang, Philip Francis Miele, Jawed Asrar
  • Publication number: 20140314703
    Abstract: The present invention relates to immunogenic complexes formed between polyanionic carbomers and Env polypeptides. Uses of the immunogenic complexes in applications including inducing an immune response and immunization generally are described. Methods of forming and manufacture of the immunogenic complexes are also described. The present invention also relates to immunogenic compositions including low viscosity, polyanionic carbomers and Env polypeptides. Uses of such immunogenic compositions in applications including inducing an immune response and immunization generally are described. Methods of manufacture of such immunogenic compositions are also described.
    Type: Application
    Filed: November 14, 2012
    Publication date: October 23, 2014
    Inventors: Susan W. Barnett, Antu Dey
  • Publication number: 20140315789
    Abstract: The present disclosure relates generally to antimicrobial peptides, methods for their use, and methods for preparing devices having surfaces which are modified to incorporate OH said peptides. In some embodiments, the antimicrobial peptides are antimicrobial OH cationic peptides modified to comprise a thiol functional group.
    Type: Application
    Filed: November 21, 2012
    Publication date: October 23, 2014
    Inventors: Mark Duncan Willcox, Neresh Kumar, Nerida Cole, Renxum Chen
  • Publication number: 20140302516
    Abstract: Lyophilized polymer dot compositions are provided. Also disclosed are methods of making and using the lyophilized compositions and kits supplying the compositions.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 9, 2014
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Daniel T. Chiu, Wei Sun, Jiangbo Yu, Changfeng Wu, Fangmao Ye
  • Patent number: 8853325
    Abstract: The present invention is directed to alkanal derivatives of water-soluble polymers such as poly(ethylene glycol), their corresponding hydrates and acetals, and to methods for preparing and using such polymer alkanals. The polymer alkanals of the invention are prepared in high purity and exhibit storage stability.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: October 7, 2014
    Assignee: Nektar Therapeutics
    Inventor: Antoni Kozlowski
  • Patent number: 8852747
    Abstract: The invention relates to coextrusion binders including renewable and/or biodegradable polymers having good adhesion properties: at least one renewable and/or biodegradable polymer (A) grafted with a functional monomer including at least one reactive function, the grafting ratio being <1% in weight of the grafted polymer (A); at least one non-grafted renewable and/or biodegradable polymer (B) identical to (A) or compatible with (A) optionally a softener (C); and optionally a starch-based material (D). The invention also relates to multilayered structures including the binder of the present invention, in which the layers are preferably made of renewable and/or biodegradable compounds. The multilayered structures are advantageously useful in the field of food packaging.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: October 7, 2014
    Assignee: Arkema France
    Inventors: Fabrice Chopinez, Johann Laffargue, Jeau-Laurent Pradel, Damien Rauline, Samuel Devisme
  • Publication number: 20140294960
    Abstract: Implantable modular hydrogels to aid in salivary gland restoration and associated methods are provided. In one embodiment, the present disclosure provides for a hydrogel network comprising: a hyaluronic acid macromer crosslinked with a multiblock copolymer.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Robert L. Witt, Xinqiao Jia, Swati Pradham Bhatt, Mary C. Farach-Carson, Daniel A. Harrington
  • Publication number: 20140296434
    Abstract: The present invention relates to chromatography matrices including ligands based on one or more domains of immunoglobulin-binding proteins such as, Staphylococcus aureus Protein A (SpA), as well as methods of using the same.
    Type: Application
    Filed: June 6, 2014
    Publication date: October 2, 2014
    Inventors: Shari Spector, Robert Smith, Joe Orlando, Nanying Bian
  • Publication number: 20140296435
    Abstract: This invention provides Chelating Complex Micelles as a drug carrier. The Chelating Complex Micelles can load drugs without changing their structure, and therefore extend the half-life of drugs in the human body. The chelating complex micelles contain a metal ion core, at least one polymer, and at least one drug molecule. The metal ion is considered as a Lewis acid while polymer chain and drug molecules are referred to as Lewis bases. The drug molecule is linked to the polymer via forming coordinate bonds with metal ion, and then self-assembled to form chelating complex micelles as a drug carrier.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Inventors: Chau-Hui Wang, Chia-Hung Chen, Johnson Lin, Jing-Yi Chen, Wei-Chuan Liao
  • Patent number: 8846020
    Abstract: Conjugates are provided herein which comprise a protein attached to at least two polymeric moieties, at least one of which exhibits reverse thermal gelation. The conjugates are suitable for being cross-linked by non-covalent and/or covalent cross-linking. Compositions-of-matter comprising cross-linked conjugates are provided herein, as well as processes for producing same. Methods of controlling a physical property of compositions-of-matter are also provided herein. The conjugates and compositions-of-matter may be used for various applications, such as cell growth, tissue formation, and treatment of disorders characterized by tissue damage or loss, as described herein.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: September 30, 2014
    Assignee: Regentis Biomaterials Ltd.
    Inventors: Dror Seliktar, Yonatan Shachaf
  • Patent number: 8846110
    Abstract: The present invention relates to compositions for the treatment of cancerous tissues in warm-blooded animals containing one or two anticancer agents attached to polymeric carriers having monomer units derived from one or more of N-(2-carboxypropyl)methacrylamide (2-CPMA), N-(3-carboxypropyl)methacrylamide (3-CPMA), N-(2-aminopropyl)methacrylamide (2-APMA) and/or N-(3-aminopropyl)methacrylamide (3-APMA) are also included. Anticancer agents in compositions can be attached to said polymeric carrier by side-chains which can be susceptible to hydrolysis by lysosomal enzymes intracellularly. Compositions can also include a targeting ligand attached to the polymeric carrier, optionally through a second linker.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 30, 2014
    Assignee: Rexahn Pharmaceuticals, Inc.
    Inventors: Young B. Lee, Deog J. Kim, Chang H. Ahn
  • Publication number: 20140288150
    Abstract: The disclosure provides for dendronized polymers, and the use of the polymers as carriers for the intracellular delivery of nucleic acids.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Inventors: Zhibin Guan, Hanxiang Zeng
  • Patent number: 8841382
    Abstract: The present invention provides an amphiphile of the formula (I) as described hereinafter. The invention further relates to a process for preparing the amphiphile and to a composition comprising the amphiphile and a sparingly water-soluble active ingredient. It further relates to a process for producing the composition by contacting the amphiphile and the active ingredient, and to the use of the amphiphile for solubilizing a sparingly water-soluble active ingredient in aqueous solutions. The invention also relates to the use of the amphiphile in an agrochemical formulation comprising the amphiphile and a pesticide for controlling phytopathogenic fungi and/or unwanted vegetation and/or unwanted insect or mite infestation and/or for regulating the growth of plants, and finally to plant propagation material comprising the amphiphile.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 23, 2014
    Assignee: BASF SE
    Inventors: Anna Cristadoro, Holger Türk, Michael Ishaque, Rabie Al-Hellani
  • Publication number: 20140275420
    Abstract: Methods for conducting controlled grafting-from radical polymerizations from biomolecules under conditions that are biologically compatible are described. The methods provide biomolecule-polymer conjugates with highly controlled structures and narrow polydispersities under aqueous reaction conditions and biological temperatures. Biomolecules, such as proteins and nucleotides can be conjugated to polymers with high levels of control.
    Type: Application
    Filed: August 22, 2012
    Publication date: September 18, 2014
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Krzysztof Matyjaszewski, Saadyah E. Averick, Antonina Simakova
  • Patent number: 8835556
    Abstract: The present invention is directed to conjugates of hydrolytically stabilized maleimide-functionalized water soluble polymers and to methods for making and utilizing such polymers and their precursors.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: September 16, 2014
    Assignee: Nektar Therapeutics
    Inventors: Antoni Kozlowski, Remy F. Gross, III, Samuel P. McManus
  • Publication number: 20140256879
    Abstract: Method for assembling proteins from peptide fragments. It allows the production of proteins in a manner that is simple, reliable and applicable on an industrial scale. This method allows the production of proteins of therapeutic or diagnostic interest. Kits for applying this synthesis method as well as test and/or diagnostic kits are also described.
    Type: Application
    Filed: October 16, 2012
    Publication date: September 11, 2014
    Inventors: Oleg Melnyk, Laurent Raibaut, Vincent Aucagne, Agnes Delmas
  • Patent number: 8829109
    Abstract: Improved poly(amido ethylenimine) copolymers for gene delivery are disclosed. One illustrative embodiment includes polyethylene glycol (PEG) covalently bonded to a branched poly(triethyenetetramine/cystamine bisacrylamide) copolymer (poly(TETA/CBA)). The polyethylene glycol can be linear or branched. Another illustrative embodiment includes an RGD peptide covalently bonded to the poly(TETA/CBA)-PEG conjugate. Still another illustrative embodiment includes a method of using these compositions for transfecting a cell with a nucleic acid.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: September 9, 2014
    Assignee: University of Utah Research Foundation
    Inventors: James W. Yockman, Jonathan Brumbach, Lane V. Christensen, Sung Wan Kim
  • Patent number: 8821850
    Abstract: A drug conjugate is provided herein. The conjugate comprises a protein based recognition-molecule (PBRM) and a polymeric carrier substituted with one or more -LD-D, the protein based recognition-molecule being connected to the polymeric carrier by LP. Each occurrence of D is independently a therapeutic agent having a molecular weight ?5 kDa. LD and LP are linkers connecting the therapeutic agent and PBRM to the polymeric carrier respectively. Also disclosed are polymeric scaffolds useful for conjugating with a PBRM to form a polymer-drug-PBRM conjugate described herein, compositions comprising the conjugates, methods of their preparation, and methods of treating various disorders with the conjugates or their compositions.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: September 2, 2014
    Assignee: Mersana Therapeutics, Inc.
    Inventors: Aleksandr Yurkovetskiy, Mao Yin, Timothy B. Lowinger, Joshua D. Thomas, Charles E. Hammond, Cheri A. Stevenson, Natalya D. Bodyak, Patrick R. Conlon, Dmitry R. Gumerov
  • Publication number: 20140243236
    Abstract: Certain disclosed embodiments of the present invention concern the synthesis, derivatization, conjugation to immunoglobulins and signal amplification based on discrete, relatively short polymers having plural reactive functional groups that react with plural molecules of interest. Reactive functional groups, such as hydrazides, may be derivatized with a variety of detectable labels, particularly haptens. The remaining reactive functional groups may be conjugated directly to a specific binding molecule, such as to the oxidized carbohydrate of the Fc region of the antibody. Disclosed conjugates display large signal amplification as compared to those based on molecules derivatized with single haptens, and are useful for assay methods, particularly multiplexed assays.
    Type: Application
    Filed: April 23, 2014
    Publication date: August 28, 2014
    Applicant: Ventana Medical Systems, Inc.
    Inventors: Jerry W. Kosmeder, II, Casey A. Kernag, Donald Johnson, Christopher Bieniarz
  • Publication number: 20140242623
    Abstract: We disclose methods and compositions for preparation of stimuli-responsive plastics that are capable of responding to chemical and/or physical signals in their environment. In one embodiment the plastics consist of patterned mixtures of poly(phthalaldehyde) polymers in which each polymer contains a different end-capping group (also called a “trigger”), responsive to a different signal. Other embodiments use different polymers and different triggers. The plastics may be homogeneous in composition, but each polymer within the plastic is capable of responding to a different signal and depolymerizing once this signal reacts with the trigger. This process of depolymerization enables the plastic to alter its physical features non-linearly to external signals: i.e., the degree of change in physical form is much larger than the intensity of the initial signal.
    Type: Application
    Filed: May 10, 2011
    Publication date: August 28, 2014
    Inventors: Scott T. Phillips, Wanji Seo, Jessica Robbins, Michael Olah, Kyle Schmid, Anthony Michael DiLauro
  • Publication number: 20140243210
    Abstract: An immunoglobulin binding peptide having the general formula, from amino terminus to carboxy terminus, of Z—R1—R2—R3—R4—R5—R6—X, is described, wherein: R1 is H or Y; R2 is a hydrophobic, preferentially aromatic, amino acid (for example W, F, Y, V); R3 is a positively charged or aromatic amino acid (for example R, H, F, W); R4 is a hydrophobic or positively charged amino acid (for example G, Y, R, K, L); R5 is a positively charged or aromatic amino acid (for example W, F, R, H, Y); R6 a random amino acid but preferably hydrophobic or negatively charged (for example V, W, L, D, H); X is present or absent and when present is a linking group; and Z is present or absent and when present is a capping group bonded to the N terminus of R1; and wherein the amino acids of said peptide are in D form, L form, or a combination thereof.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 28, 2014
    Inventors: Ruben Carbonell, Haiou Yang, Patrick Gurgel
  • Publication number: 20140242180
    Abstract: A temperature stable nanoparticle is provided comprising a core, a water soluble polymer and a peptide, the water soluble polymer attached to the core at a first terminus of the water soluble polymer, the peptide attached to a second terminus of the water soluble polymer, the peptide comprising an RGD amino acid sequence, the water soluble polymer of having sufficient length to allow binding of the peptide to glycoprotein lib/Ilia (GPIIb/llla). In one aspect, the nanoparticle has a melting temperature over 35° C. In various aspects, the nanoparticle has a spheroid shape and a diameter of less than 1 micron.
    Type: Application
    Filed: October 12, 2012
    Publication date: August 28, 2014
    Inventors: Erin Lavik, Andrew Shoffstall, Jeffrey Ustin
  • Patent number: 8816001
    Abstract: This invention pertains to methods for producing homogeneous recombinant proteins that contain polymer initiators at defined sites. The unnatural amino acid, 4-(2?-bromoisobutyramido)phenylalanine of formula 1, was designed and synthesized as a molecule comprising a functional group further comprising an initiator for an atom-transfer radical polymerization (‘ATRP”) that additionally would provide a stable linkage between the protein and growing polymer. We evolved a Methanococcus jannaschii (Mj) tyrosyl-tRNA synthetase/tRNACUA pair to genetically encode this unnatural amino acid in response to an amber codon. To demonstrate the utility of this functional amino acid, we produced Green Fluorescent Protein with the unnatural amino acid initiator of formula 1 site-specifically incorporated on its surface (GFP-1).
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 26, 2014
    Assignee: Franklin and Marshall College
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Patent number: 8815226
    Abstract: A drug conjugate is provided herein. The conjugate comprises a protein based recognition-molecule (PBRM) and a polymeric carrier substituted with one or more -LD-D, the protein based recognition-molecule being connected to the polymeric carrier by LP. Each occurrence of D is independently a therapeutic agent having a molecular weight ?5 kDa. LD and LP are linkers connecting the therapeutic agent and PBRM to the polymeric carrier respectively. Also disclosed are polymeric scaffolds useful for conjugating with a PBRM to form a polymer-drug-PBRM conjugate described herein, compositions comprising the conjugates, methods of their preparation, and methods of treating various disorders with the conjugates or their compositions.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: August 26, 2014
    Assignee: Mersana Therapeutics, Inc.
    Inventors: Aleksandr V. Yurkovetskiy, Mao Yin, Timothy B. Lowinger, Joshua D. Thomas, Charles E. Hammond, Cheri A. Stevenson, Natalya D. Bodyak, Patrick R. Conlon, Dmitry R. Gumerov
  • Publication number: 20140235789
    Abstract: The present application discloses peptides and peptaibols of high purity may be obtained by solid phase peptide synthesis using as the starting resin hydroxy amino acids, hydroxy amino acid amides, hydroxy amino alcohols or small peptides containing hydroxy amino acids attached to polymers through their side chain.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: Chemical & Biopharmaceutical Laboratories of Patras S.A.
    Inventor: Chemical & Biopharmaceutical Laboratories of Patras S.A.
  • Patent number: 8809452
    Abstract: A synthetic material (22), a sensor comprising the synthetic material (22) and a method for making the synthetic material (22) and the sensor, respectively, as well as the use of this synthetic material (22) as a construction material and/or a high performing material, especially in the areas of aeronautics, aerospace, automotive, wind turbines and sporting goods. The synthetic material (22) comprising at least two phases (2, 9) and an optical detectable component (26, 16), wherein at least one of said phases is a solid phase building a matrix (20) of the synthetic material (22), and wherein the optical detectable component (26, 16) changes its optical properties (symbol 5, 7) when its intact structure is perturbed (8/26?), said optical detectable component (26, 16) is bond to both phases (2, 9) of the synthetic material (22).
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: August 19, 2014
    Inventors: Nico Bruns, Samuel Loercher