Material Contains Two Or More Different Compounds Of Same Transition Metal Patents (Class 526/118)
  • Publication number: 20110136994
    Abstract: An olefin polymerization catalyst is provided formed by contacting a specified transition metal compound (A1), a specified transition metal compound (A2) and a specified solid catalyst component (B) with one another, a molar ratio of (A1)/(A2) being 1 to 90: wherein M1 and M2 are a transition metal atom of Group 4 in the Periodic Table; X1, X2, R1, R3 and R4 are a hydrogen atom, a halogen atom, a hydrocarbyl group or a hydrocarbyloxy group; and Q1 and Q2 are a specified cross-linking group.
    Type: Application
    Filed: November 27, 2008
    Publication date: June 9, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Naoko Ochi, Yoshinobu Nozue, Yasutoyo Kawashima
  • Patent number: 7951743
    Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: May 31, 2011
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7951882
    Abstract: Copolymers, especially multi-block copolymer containing therein two or more segments or blocks differing in chemical or physical properties, are prepared by polymerizing propylene, 4-methyl-1-pentene, or other C4-8?-olefin and one or more copolymerizable comonomers, especially ethylene in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: May 31, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 7915192
    Abstract: A composition for use in forming a multi-block copolymer from a single polymerizable monomer, said copolymer containing therein two or more segments or blocks differing in branching index, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, at least one of catalyst (A) or catalyst (B) being capable of forming a branched polymer by means of chain walking or reincorporation of in situ formed olefinic polymer chains, and (C) a chain shuttling agent.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: March 29, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, David D. Devore, Edmund M. Carnahan, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 7897706
    Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: March 1, 2011
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Patent number: 7863210
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 4, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Patent number: 7842763
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 30, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 7829641
    Abstract: A two-stage cascade polymerization process for the production of multimodal polyethylene film resins with improved bubble stability is provided. The process comprises polymerizing ethylene or a mixture of ethylene and a C4-8 ?-olefin in two reactors arranged in series using a mixed single-site catalyst comprised of a bridged and a non-bridged indenoindolyl transition metal complex to form a multimodal polyethylene resin comprised of a lower molecular weight, higher density component and a higher molecular weight, lower density component.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: November 9, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Philip J. Garrison
  • Patent number: 7825200
    Abstract: Described are novel monomers bearing functionalities capable of initiating control free radical reactions, and a novel process using these initiating monomers in the co-polymerization of an olefin for the formation of well-controlled polyethylene graft polymers where the graft component is derived from controlled free radical polymerization reactions. The initiating monomers are produced by combining an amount of 5-norbornen-2-ol with a hydride or amine for a predetermined amount of time to form a mixture; and adding an amount of an alkyl or acyl halide to said mixture. Polymerization of an olefin with an initiating monomer is conducted in the presence of a metal compound, where the metal compound is comprised of a Group VIII transition metal complex.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: November 2, 2010
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Robert C. Coffin
  • Patent number: 7816478
    Abstract: A thick film and process to prepare polyethylene useful for the film are disclosed. Ethylene is polymerized in two reaction zones with a C6-C10 ?-olefin in the presence of a catalyst system comprising an activator, a supported bridged zirconium complex, and a supported non-bridged zirconium complex. The process yields medium density to linear low density polyethylene having a melt index from 0.20 to 1.0 dg/min. Thick films from the polyethylene have a superior combination of high impact strength and high modulus.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 19, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Mohan Sasthav
  • Patent number: 7754832
    Abstract: A method of preparing a polymer having a tapered block copolymer structure. The method comprises polymerizing a first olefin monomer and a different second olefin monomer in the presence of a catalyst supporting living or quasi-living polymerization. In certain embodiments, the catalyst comprises two neutral metal complexes. In preferred embodiments, a tapered block copolymer structure is formed by adding one monomer in a single batch at the start of the polymerization reaction, and adding a second monomer throughout the course of the reaction. The present invention also provides polymers having one or more tapered block copolymer sections, and compositions based on these polymers.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: July 13, 2010
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Steve Diamanti, Edward J. Kramer, Vikram Khanna, Glenn H. Frederickson, Atsushi Hotta
  • Publication number: 20100121008
    Abstract: A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.
    Type: Application
    Filed: October 6, 2009
    Publication date: May 13, 2010
    Inventors: Tobin J. Marks, Brandon A. Rodriguez, Massimiliano Delferro
  • Publication number: 20100093954
    Abstract: The invention relates to a polymerization process, the polymerization process includes contacting a cyclic bridged metallocene catalyst represented by the following formula: LA(A)LBMQn wherein A is a divalent group bound to each of LA and LB; each of LA and LB are bound to M, and each Q is bound to M; LA and LB are independently selected from the group consisting of cyclopentadienyl ligands and substituted cyclopentadienyl ligands; A is a divalent bridging group comprising a heterocyclic ring comprising from 3 to 6 carbon atoms and one silyl, thus forming a 4 to 7 member divalent ring; M is a Group 4, 5, or 6 transition metal; Q is independently a halogen, a hydride, or a hydrocarbyl radical having from 1 to 20 carbon atoms; wherein n is 1 or 2; with an activator, and optionally a support, to form an activated catalyst and, subsequently, contacting the activated catalyst with ethylene and optionally, at least one C3-C8 alpha olefin comonomer.
    Type: Application
    Filed: December 14, 2009
    Publication date: April 15, 2010
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Donna J. Crowther, John Francis Szul
  • Publication number: 20100010179
    Abstract: A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
    Type: Application
    Filed: June 25, 2009
    Publication date: January 14, 2010
    Applicant: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Kersten A. Terry, Michael D. Awe, John H. Oskam
  • Patent number: 7645834
    Abstract: Disclosed is a method of polymerizing olefin using a compatible combination of a multi-site catalyst and a single-site catalyst. The catalysts may be a Ziegler-Natta catalyst and a metallocene catalyst. The resulting polymer, which may be a homopolymer or a random copolymer, may exhibit a molecular weight distribution which is intermediate than that resulting for polymers prepared using either catalyst alone.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: January 12, 2010
    Assignee: Fina Technologies, Inc.
    Inventors: Kenneth P. Blackmon, Joseph L. Thorman, David John Rauscher, Edwar S. Shamshoum, Christopher Bauch
  • Publication number: 20090229747
    Abstract: Adhesive formulations generally including an acrylate and/or methacrylate monomer; a vinyl ester resin having a weight average molecular weight ranging from about 450 to about 3000; and a catalyst. Also disclosed is a method for forming a composite material employing the formulations.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Applicant: General Electric Company
    Inventors: Daniel Robert Olson, Wendy Lin, George Thomas Seeger
  • Patent number: 7589162
    Abstract: A polymer composition comprising a density equal to or greater than about 0.947 g/cc, a high load melt index from about 1 g/10 min to about 30 g/10 min, and a tensile natural draw ratio less than about 14167 ?-12958, where ? is the density (g/cc) of the composition. A polymer composition comprising a tensile natural draw ratio less than about 14167?-12958, where ? is the density (g/cc) of the composition and wherein less than about 1 weight percent of the composition comprises non-polymeric additives.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: September 15, 2009
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Rajendra K. Krishnaswamy, Qing Yang, David C. Rohlfing, Max P. McDaniel, Kumudini C. Jayaratne, Jim E. French
  • Patent number: 7582711
    Abstract: The present invention relates to catalyst systems for polyolefin production, and more particularly, to catalyst systems for polyolefins used in producing films.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: September 1, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Steven K. Ackerman
  • Publication number: 20090182102
    Abstract: The present invention relates to an ethylene/?-olefin interpolymer product comprising at least one ?-olefin interpolymerized with ethylene and, characterized in at least one aspect, as having improved properties when utilized in a hot melt adhesive formulation. The invention also relates to a process for manufacturing the interpolymer product wherein the process comprises employing two or more single site catalyst systems in at least one reaction environment (or reactor) and wherein the at least two catalyst systems have (a) different comonomer incorporation capabilities or reactivities and/or (b) different termination kinetics, both when measured under the same polymerization conditions. The interpolymer products are useful, for example, in applications such as hot melt adhesives, and also for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings, thermoforms, profiles and fibers.
    Type: Application
    Filed: March 18, 2009
    Publication date: July 16, 2009
    Applicant: Dow Global Technologies Inc.
    Inventors: Teresa P. Karjala, Brian W. S. Kolthammer
  • Publication number: 20090124768
    Abstract: Catalyst systems for producing olefin polymers, methods of making such catalyst systems, and processes for producing olefin polymers using such catalyst systems are provided. The catalyst system comprises a first component and a second component, where the first component comprises chromium on a support, where the support comprises phosphated alumina, and the second component comprises: (1) a metal halide compound, a transition metal compound, and a precipitating agent, or (2) a substituted or unsubstituted dicyclopentadienyl chromium compound deposited onto a calcined oxide carrier, where the carrier includes silica, alumina, aluminophosphate, or any mixed oxide thereof.
    Type: Application
    Filed: September 2, 2008
    Publication date: May 14, 2009
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 7531602
    Abstract: A blend of polymers comprising from 5 to 95 weight % of a polymer having a high molecular weight made using a single site type catalyst and from 95 to 5 weight % of a polymer having a lower molecular weight made using a catalyst containing a phenoxide, preferably a salicylaldimine ligand, has an excellent toughness and would be suitable for use in applications such as polyolefin pipes.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: May 12, 2009
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar
  • Patent number: 7473745
    Abstract: Disclosed is a polyethylene composition. The composition comprises single-site multimodal resin A and single-site multimodal resin B, wherein resin A differs from resin B in molecular weight, in monomeric composition, in density, in long chain branch concentration or distribution, or in combinations thereof. Disclosed is also a method for making the polyethylene composition. The method comprises polymerizing, in the presence of two or more single-site catalysts, ethylene or its mixture with a C3-C10 ?-olefin to form a first multimodal resin and continuing the polymerization in the presence of the same catalysts but in a different hydrogen concentration, in a different monomer composition, or at a different temperature to form a second multimodal resin.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: January 6, 2009
    Assignee: Equistar Chemicals, LP
    Inventors: Venki Chandrashekar, Mark P. Mack, Charles H. Gates, Jr., Charles S. Holland, Natalia Nagy, Sandor M. Nagy, Edward S. Vargas, Jean A. Merrick-Mack
  • Patent number: 7459509
    Abstract: The invention provides ethylene/?-olefin copolymers exhibiting improved environmental stress cracking resistance properties, and methods for the production of the copolymers in a single reactor by means of a bimetallic catalyst including a Ziegler component and a metallocene component.
    Type: Grant
    Filed: February 24, 2007
    Date of Patent: December 2, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Bruce Barry, Gary M. Diamond, Hitesh A. Fruitwala, Shih-May Christine Ong, Chunming Wang
  • Patent number: 7452946
    Abstract: An ethylene-based polymer which is a copolymer obtained from ethylene and a C3 to C10?-olefin and satisfies the following requirements (i), (ii), (iii) and (iv) simultaneously provides a blow-molded product and an extrusion-molded product excellent in moldability, mechanical strength and outward appearance. (i) melt flow rate [MFR2 (g/10 min)] under a loading of 2.16 kg at 190° C. is in the range of 0.01 to 10, (ii) melt tension [MT (g)] and the above melt flow rate [MFR2 (g/10 min)] satisfy the following relationship: MT?3.2×MFR2?0.55, (iii) an activation energy [Ea] of fluidization is less than 30 (KJ/mol), and (iv) swell ratio is 1.36 or more.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: November 18, 2008
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Sadahiko Matsuura, Naoto Matsukawa, Makoto Mitani, Junji Saito, Terunori Fujita, Yasushi Tohi, Koji Endo, Kenji Iwamasa, Keiko Takahashi
  • Patent number: 7449527
    Abstract: Provided is a process for producing a polyolefin having a multimodal molecular weight distribution, which process comprises: (a) polymerizing a first olefin monomer in the presence of an isomerizable metallocene catalyst, to form a first multi-modal polyolefin component; and (b) polymerizing a second olefin monomer in the presence of a second metallocene catalyst to form a second polyolefin component; wherein the molecular weight distribution of the first polyolefin component overlaps with the molecular weight distribution of the second polyolefin component.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: November 11, 2008
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Publication number: 20080269438
    Abstract: The invention concerns a novel catalytic combination for polymerizing alpha-olefins based on a titanium diamidide complex. The invention also concerns a method for polymerizing alpha-olefins using said catalytic combination, in the absence of any aluminum-containing compound. The inventive catalytic combination comprises: component A which is a dichlorinated titanium diamidide complex of general formula (I) wherein R represents a methyl group (component A2) or an isopropyl group (component A1); component B which is a dialkylmagnesium whereof the reaction with component A enables an alkylated component AA to be obtained: and as activator of said component AA, component C which is trispentafluorophenylboran (B(C6F5)3).
    Type: Application
    Filed: June 21, 2006
    Publication date: October 30, 2008
    Inventors: Andre Mortreux, Regis Gauvin, Estelle Gautier
  • Patent number: 7442750
    Abstract: Supported catalyst systems are provided comprising (a) a transition metal compound, (b) an activator comprising (iii) an aluminoxane or (iv) a Group lilA metal or metalloid compound, and (c) a support material comprising an inorganic metal oxide, inorganic metal halide or polymeric material or mixtures thereof characterised in that the support material has been pretreated with a source of a transition metal atom. The preferred transition metal compounds are metallocenes and the source of the transition metal atom is typically a ferrous or cupric metal salt. The supported catalyst systems show improved activity and also may reduce fouling in gas phase fluidised bed processes.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: October 28, 2008
    Assignee: Innovene Europe Limited
    Inventors: Grant Berent Jacobsen, Brian Stephen Kimberley, Claudine Viviane Lalanne-Magne, Sergio Mastroianni
  • Patent number: 7429635
    Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 30, 2008
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7429634
    Abstract: This invention relates to a process to polymerize olefins comprising contacting, in a polymerization system, olefins having three or more carbon atoms with a catalyst compound, activator, optionally comonomer, and optionally diluent or solvent, at a temperature above the cloud point temperature of the polymerization system and a pressure no lower than 10 MPa below the cloud point pressure of the polymerization system, where the polymerization system comprises any comonomer present, any diluent or solvent present, the polymer product, where the olefins having three or more carbon atoms are present at 40 weight % or more.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: September 30, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Gerhard Franz Luft, John Richard Shutt, Lawrence Carl Smith, Douglas J. McLain, Terry J. Burkhardt
  • Patent number: 7410926
    Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: August 12, 2008
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Patent number: 7396888
    Abstract: Provided is a catalyst system for producing a polyolefin blend, which catalyst system comprises a mixture including the following catalyst components: i) a catalyst component A capable of producing an isotactic olefin polymer, and/or a catalyst component A? capable of producing a polymer comprising an isotactic polyolefin block; and ii) a catalyst component B capable of producing a syndiotactic polyolefin, and/or a catalyst component B? capable of producing a polymer comprising a syndiotactic polyolefin block; wherein each of the components in the catalyst system is distinct from the other components in the catalyst system.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: July 8, 2008
    Assignee: TOTAL Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Patent number: 7365137
    Abstract: A multistep process for the polymerization of one or more olefins comprising a first step of polymerizing one or more of said olefins in the presence of a catalyst of the Ziegler-Natta type, a step wherein the polymer obtained in the first step is contacted with a catalyst system comprising an half-sandwich metallocene compound, followed by a second polymerization step. The amount of homo- or copolymer of olefins produced in the first polymerization step is between 10% to 90% by weight of the total amount of polymer produced.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: April 29, 2008
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Giovanni Baruzzi
  • Patent number: 7323523
    Abstract: Properties of a polymer produced in gas phase or slurry phase using a dual catalyst such as polydispersity and comonomer incorporation, may be controlled by controlling reaction parameters such as temperature, (co)monomer pressure, hydrogen partial pressure and the presence of non-polymerizable hydrocarbon. This provides an easy method to control the bimodality of a polymer as well as comonomer incorporation.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: January 29, 2008
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, Victoria Ker, Peter Zoricak, Paul Mesquita
  • Patent number: 7321015
    Abstract: Properties of a polymer produced using a dual catalyst on the same support, such as polydispersity and comonomer incorporation, may be controlled by controlling reaction parameters such as temperature, monomer pressure, hydrogen partial pressure and the presence of non-polymerizable hydrocarbon. This provides an easy method to control the bimodality of a polymer as well as comonomer incorporation.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: January 22, 2008
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, Victoria Ker, Peter Zoricak, Paul Mesquita
  • Patent number: 7303821
    Abstract: This invention provides a chemically coated surface for the electrophoretic separation application. The surface comprises of block copolymers prepared from addition monomers selected from a group consisting of acrylates and its derivatives, metharylates and its derivatives, styrene and its derivatives, acrylamide, methacrylamide, dimethacrylamide, N-monosubstituted acrylamide, N-monosubstituted methacrylamide, N,N-bissubstituted acrylamide, N,N-bissubstituted methacrylamide, vinyl acetate, vinyl pyrolidone, vinyl ether, acrylic acid and methacrylic acid. This invention also provides a chemical process for making the chemically coated surface for the electrophoretic separation application. The process comprises: (a) contacting the support surface with a coupling agent solution, then (b) contacting the support surface with a first living radical polymerizing solution, and optionally (c) contacting the support surface with a second living radical polymerizing solution.
    Type: Grant
    Filed: July 10, 2004
    Date of Patent: December 4, 2007
    Assignee: Sepax Technologies, Inc.
    Inventor: Xueying Huang
  • Patent number: 7304118
    Abstract: An ethylene-based copolymer for non-crosslinked water supply pipe is provided. The ethylene-based copolymer is prepared using a supported hybrid metallocene catalyst and has a dimodal or broad molecular weight distribution. The ethylene-based copolymer has a high density molecular structure in a low molecular weight and has a low density molecular structure with high content of a comonomer in a high molecular weight. The ethylene-based copolymer has a molecular weight distribution of 5-30 and the distribution of copolymerization of ethylene and C3-20 ?-olefin is localized in high molecular weight chains. Accordingly, the ethylene-based copolymer has superior processability, internal pressure creep resistance at high temperatures and environmental stress crack resistance.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: December 4, 2007
    Assignee: LG Chem, Ltd.
    Inventors: Ki Soo Lee, Choong Hoon Lee, Sangwoo Lee, Eunjung Lee, Soojeong Lee, Seungwoo Choi
  • Patent number: 7259214
    Abstract: A catalyst is disclosed for the polymerization and co-polymerization of olefins with functionalized monomers. The catalyst is formed from a combination of two neutral metal complexes, L(iPr2)M(CH2Ph)(PMe3)[L=N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)propanamide] and M(COD)2(COD=cyclooctadiene). The catalyst displays a unique mode of action and performs at ambient conditions producing high molecular weight polyolefins and co-polymers with functional groups. The polymerized olefins include ethylene, ?-olefins and functionalized olefins.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: August 21, 2007
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Prasenjit Ghosh
  • Patent number: 7259215
    Abstract: A process for producing a propylene-ethylene block copolymer in a good morphology using a catalyst system comprising a metallocene catalyst (1) preparing high crystalline polypropylene, a metallocene catalyst (2) preparing low crystalline polypropylene, a porous carrier (3), aluminoxane (4) or a compound (4) which can be reacted with the metallocene catalysts described above to form an ionic complex and, if necessary, an organic aluminum compound (5) and a propylene-ethylene block copolymer. The resultant compound has a high transparency and a low elastic modulus.
    Type: Grant
    Filed: November 11, 2003
    Date of Patent: August 21, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Masami Kanamaru, Hideo Funabashi
  • Patent number: 7247387
    Abstract: This invention provides a chemically coated surface for the plastics surface such as contact lens. The chemical surface coating comprises of at least one addition polymer prepared from addition monomers selected from a group consisting of acrylates and its derivatives, metharylates and its derivatives, styrene and its derivatives, acrylamide, methacrylamide, dimethacrylamide, N-monosubstituted acrylamide, N-monosubstituted methacrylamide, N,N-bissubstituted acrylamide, N,N-bissubstituted methacrylamide, vinyl acetate, vinyl pyrolidone, vinyl ether, acrylic acid and methacrylic acid. This invention also provides a chemical process for making the chemically coated surface on the plastics surface. The process comprises: (a) contacting the plastics surface with a coupling agent solution, then (b) contacting the plastics surface with a first living radical polymerizing solution, and optionally (c) contacting the plastics surface with a second living radical polymerizing solution.
    Type: Grant
    Filed: July 10, 2004
    Date of Patent: July 24, 2007
    Assignee: Sepax Technologies Inc.
    Inventor: Xueying Huang
  • Patent number: 7238756
    Abstract: Methods of controlling the flow index and/or molecular weight split of a polymer composition are disclosed. The method of producing a polymer composition in one embodiment comprises incorporating a high molecular weight polymer into a low molecular weight polymer to form the polymer composition in a single polymerization reactor in the presence of polymerizable monomers, a bimetallic catalyst composition and at least one control agent; wherein the control agent is added in an amount sufficient to control the level of incorporation of the high molecular weight polymer, the level of low molecular weight polymer, or both. Examples of control agents include alcohols, ethers, amines and oxygen.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: July 3, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Fred D. Ehrman, Pradeep P. Shirodkar, Mark Bradley Davis, Daniel P. Zilker, Jr., Porter C. Shannon
  • Patent number: 7226886
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: June 5, 2007
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Kumudini C. Jayaratne, Michael D. Jensen, Qing Yang
  • Patent number: 7199195
    Abstract: The invention provides ethylene/?-olefin copolymers exhibiting improved environmental stress cracking resistance properties, and methods for the production of the copolymers in a single reactor by means of a bimetallic catalyst including a Ziegler component and a metallocene component.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: April 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Bruce Barry, Gary M. Diamond, Hitesh A. Fruitwala, Shih-May Christine Ong, Chunming Wang
  • Patent number: 7192902
    Abstract: The application describes a mixed olefin polymerization catalyst composition comprising a support, a reaction product of at least one first organometallic compound and a first activator capable of rendering the first organometallic compound active for insertion polymerization, and at least one second organometallic compound, the activator incapable of rendering the second organometallic compound active for polymerization of the monomers. The mixed catalyst composition can be used to prepare a first polymer component in a first polymerization reactor stage and then, when an effective activator is added for the second organometallic compound, the catalyst composition can be used to prepare a second polymer composition that is homogeneously blended with the first polymer component.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey L. Brinen, Charles Cozewith
  • Patent number: 7157532
    Abstract: A process for preparing olefin homopolymers or copolymers by polymerization of at least one olefin in a hydrocarbon (mixture) in the presence of a molar mass regulator, a mixed catalyst and a substance which increases the electrical conductivity of the hydrocarbon (mixture) and is soluble in the hydrocarbon or the mixture of hydrocarbons or which reacts with components of the mixed catalyst, wherein the mixed catalyst is obtainable by reaction of a magnesium alkoxide with titanium(IV) halide and comprises titanium in the oxidation states four and three and also an organic aluminum compound, where the molar ratio of Ti(IV) to Ti(III) is from 100:1 to 1:100. The process makes it possible to prepare, in particular, polyethylenes having an ultrahigh molecular weight. The formation of deposits on the walls during the polymerization is significantly reduced.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: January 2, 2007
    Assignee: Ticona GmbH
    Inventors: Wolfgang Payer, Jens Ehlers
  • Patent number: 7148175
    Abstract: A polymerization catalyst system, containing a specified ratio of two iron complexes of a bisimine of 2,6-diacylpyridine or a bisimine of a 2,6-pyridinedicarboxaldehyde which produce polyolefins of differing molecular weights, is useful for producing polyolefins, especially polyethylenes, which are particularly useful for blow molding.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: December 12, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Joel David Citron
  • Patent number: 7141632
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention provides a catalyst system comprising a poor comonomer incorporating catalyst compound and a good comonomer incorporating catalyst compound. Preferably, the low comonomer incorporating catalyst compound is a metallocene containing at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand which is substantially directed to the front of the molecule, contains a long bridging group, or which contains a methyl substitution pattern which correlates to poor comonomer incorporation. The invention also provides methods of selecting the poor comonomer incorporating metallocene to pair with the good comonomer incorporating metallocene to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 28, 2006
    Assignee: Univation Technologies, LLC
    Inventors: George Alan Vaughan, John F. Szul, Matthew Gary McKee, James McLeod Farley, Ching-Tai Lue, Sun-Chueh Kao
  • Patent number: 7132486
    Abstract: Linear low density polyethylenes (LLDPEs) that have relatively high melt index ratios (MIR) and relatively high melt strength (MS) are described. This combination of melt properties is achieved by a substantially non-blended LLDPE. Catalysts used to produce these polyethylenes are generally a blend of bridged bisindenyl zirconocene dichlorides, where one zirconocene contains saturated indenyls and the other unsaturated indenyls.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: November 7, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Armenag Hagop Dekmezian, Natalie Ann Merrill
  • Patent number: 7119153
    Abstract: This invention relates to catalyst compositions comprising a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. This invention also relates to methods to prepare and use the catalyst compositions and new polyolefins. The compositions and methods disclosed herein provide ethylene polymers and copolymers with lower MI, increased melt strength, and good MD tear properties.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: October 10, 2006
    Inventors: Michael D. Jensen, Joel L. Martin, Max P. McDaniel, Qing Yang, Matthew G. Thorn, Elizabeth A. Benham, Ted H. Cymbaluk, Ashish M. Sukhadia, Rajendra K. Krishnaswamy, Mark E. Kertok
  • Patent number: 7101939
    Abstract: An ethylene/?-olefin copolymer comprising a component produced by a non-single-site polymerization catalyst and a component produced by a single-site polymerization catalyst, its preparation and use are described. The copolymer has an ?-olefin content of 5 to 20 percent by weight and shows at least two CRYSTAF peak temperatures differing by at least 15° C. and/or at least two DSC melting peak temperatures differing by at least 15° C.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: September 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Thomas Edward Nowlin, Pradeep P. Shirodkar, Robert Ivan Mink, Gary M. Diamond, Jill Helaine Paul, Lawrence T. Kale, Keith Dackson
  • Patent number: 7064096
    Abstract: Bimodal polyolefins having a reverse or partial reversed comonomer incorporation may be prepared in the presence of a dual catalyst on the same support wherein each catalyst has a different response to temperature, ethylene partial pressures, partial pressure of non-polymerizable hydrocarbons present in the reaction mixture and hydrogen partial pressure.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: June 20, 2006
    Assignee: Nova Chemicals (International) SA
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, Peter Zoricak, Gail Baxter