Silicon Present In Inorganic Oxygen-containing Compound Patents (Class 526/129)
  • Patent number: 7256243
    Abstract: The present invention provides a novel silicon compound represented by Formula (1) having a living radical polymerization initiating ability for addition-polymerizable monomers and a polymer obtained using the same. The above polymer can provide an organic-inorganic composite material having a distinct structure. wherein R1 is hydrogen, alkyl, aryl or arylalkyl; R2 and R3 are alkyl, phenyl or cyclohexyl; and A is a group having an ability to initiate polymerization of a monomer.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 14, 2007
    Assignee: Chisso Corporation
    Inventors: Hisao Oikawa, Mikio Yamahiro, Kazuhiro Yoshida, Nobumasa Ootake, Kenichi Watanabe, Kohji Ohno, Yoshinobu Tsujii, Takeshi Fukuda
  • Patent number: 7256150
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Gp 2 metal being selectively sorbed on a carrier to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: August 14, 2007
    Assignee: Borealis Polymers Oy
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 7247594
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a transition metal compound and an activator for olefin polymerization processes.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: July 24, 2007
    Assignee: Chevron Phillips Chemical Co. LP
    Inventors: Kumi C. Jayaratne, Michael D. Jensen, Matthew G. Thorn, Max P. McDaniel, Paul Barbee, Qing Yang
  • Patent number: 7247686
    Abstract: A solid cocatalyst for olefin polymerization in which an ion-containing compound comprising a cation expressed by [R4M]+, wherein the group R are each individually selected from the group consisting of hydrogen atom and a substituted or non-substituted hydrocarbon group having from 1 to 30 carbon atoms with the exception of an aryl group; two or more groups R may form a ring by bonding with one another; at least one of the groups R is a hydrocarbon group having from 1 to 30 carbon atoms with the exception of an aryl group; and M represents nitrogen or sulfur, and a non-coordinating anion expressed by [A] said ion-containing compound is chemically bonded to a fine particulate carrier is used.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: July 24, 2007
    Assignees: Basell Polyolefine GmbH, SunAllomer Ltd.
    Inventors: Satoru Ishigaki, Shinji Hinokuma
  • Patent number: 7238756
    Abstract: Methods of controlling the flow index and/or molecular weight split of a polymer composition are disclosed. The method of producing a polymer composition in one embodiment comprises incorporating a high molecular weight polymer into a low molecular weight polymer to form the polymer composition in a single polymerization reactor in the presence of polymerizable monomers, a bimetallic catalyst composition and at least one control agent; wherein the control agent is added in an amount sufficient to control the level of incorporation of the high molecular weight polymer, the level of low molecular weight polymer, or both. Examples of control agents include alcohols, ethers, amines and oxygen.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: July 3, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Fred D. Ehrman, Pradeep P. Shirodkar, Mark Bradley Davis, Daniel P. Zilker, Jr., Porter C. Shannon
  • Patent number: 7232785
    Abstract: The present invention relates to a new solid catalytic component, which can be used in combination with an aluminum compound as co-catalyst and optionally an external electron donor as additional co-catalyst to form a catalytic system of the Ziegler-Natta-catalyst-type. The solid catalytic system comprises titanium or vanadium compound, a compound of magnesium containing at least one halogen, a particulate porous support, and optionally an internal electron donor.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: June 19, 2007
    Assignee: ABB Lummus Global, Inc.
    Inventors: Wolf Spaether, John Lynch, Joachim Rösch, Rainer Hemmerich
  • Patent number: 7232869
    Abstract: A process for the preparation of a catalyst system includes the steps of combining a Lewis base, an organic compound having at least one functional group containing active hydrogen, and an organometallic component with a particulate support material to provide an intermediate composition, and then combining the intermediate composition with one or more metallocene compound. The catalyst system is advantageously used for olefin polymerization.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: June 19, 2007
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Thorsten Sell, Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter
  • Patent number: 7223823
    Abstract: This invention relates to a process of polymerizing ethylene in a reactor comprising contacting a catalyst system comprising a supported chromium catalyst and an aluminum alkyl cocatalyst, where the catalyst and cocatalyst are contacted by cofeeding the catalyst and cocatalyst to the reactor or feeding the catalyst and cocatalyst separately to the reactor, where the catalyst and cocatalyst are not contacted prior to the step of feeding or cofeeding, with ethylene, and from 0 to 50 mole % of one or more comonomers, where the polymerization occurs at a temperature between 50 and 120° C., and the molar ratio of aluminum from the cocatalyst to the chromium in the supported chromium catalyst is 30:1 or more.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 29, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventor: Zerong Lin
  • Patent number: 7220804
    Abstract: The present invention relates to a supported catalyst composition and a method for making the supported catalyst composition and its use in a process for polymerizing olefin(s). In particular, the invention is directed to a method for making a supported catalyst composition by contacting a supported activator with a bulky ligand and a metal compound.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: May 22, 2007
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Patent number: 7220695
    Abstract: This invention relates to supported activators comprising the product of the combination of an ion-exchange layered silicate, an organoaluminum compound, and a heterocyclic compound, which may be substituted or unsubstituted. This invention further relates to catalyst systems comprising catalyst compounds and such activators, as well as processes to polymerize unsaturated monomers using the supported activators. For the purposes of this patent specification and the claims thereto, the term “activator” is used interchangeably with the term “co-catalyst”, the term “catalyst” refers to a metal compound that when combined with an activator polymerizes olefins, and the term “catalyst system” refers to the combination of a catalyst and an activator with or without a support. The terms “support” or “carrier”, for purposes of this patent specification, are used interchangeably and are any ion-exchange layered silicates.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary L. Casty, Smita Kacker, Jack W. Johnson, Murielle V. Scott, Steven L. Hegwood, Robert R. Simpson, Robert P. Reynolds
  • Patent number: 7211536
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers which contain three or more carbon atoms or which are substituted vinyl compounds, specifically alpha olefins, particularly the polymerization of propylene to produce syndiotactic or isotactic polypropylene. The supported metallocene catalyst comprises a stereospecific metallocene catalyst and a co-catalyst component comprising at least one of an alkyl alumoxane and an alkylaluminum compound. Both the metallocene catalyst and the co-catalyst are supported on a particulate silica support comprising silica particles having an average particle size of 5–40 microns and an average effective pore size of 50–200 angstroms. The silica support further has a differential pore size distribution of a pore volume of at least 0.01 cm3/g. within a range having a maximum pore width of no more than 300 angstroms.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 1, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Margarito Lopez, Edwar Shamshoum, Donald Gordon Campbell, Jr.
  • Patent number: 7205363
    Abstract: The invention relates to a process for the polymerization of olefins using an antistatic agent. In particular, the invention relates to a polymerization process to produce propylene polymers using a supported metallocene catalyst system and an antistatic agent. The antistatic agent may also be contacted with a scavenger prior to polymerization.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 17, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Randell Wayne Dickey, Jennifer Harting Ward, Thomas Craig Wilson
  • Patent number: 7202190
    Abstract: A supported catalyst system for polymerizing olefins comprising a) a support, b) a Lewis base of the formula M3R6R7R8 ??(I) wherein M3 is an element of main group III of the Periodic Table of the Elements, c) an organometallic compound of the formula II as cocatalyst, M3R6R7R8 ??(II) wherein M3 is an element of main group III of the Periodic Table of the Elements, d) at least one metallocene, e) an organometallic compound of the formula [M4R9j]kIII where M4 is an element of main groups I, II or III of the Periodic Table of the Elements, where the organometallic compound of the formula II is covalently bound to the support.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: April 10, 2007
    Assignee: Targor GmbH
    Inventors: Hans Bohnen, Cornelia Fritze
  • Patent number: 7199073
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, a third metallocene compound, a chemically-treated solid oxide, and an organoaluminum compound are provided. Methods for preparing and using the catalyst and polyolefins are also provided. The compositions and methods disclosed herein provide ethylene polymers having decreased haze while minimizing impact on other properties, such as dart impact.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 3, 2007
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Joel L. Martin, Elizabeth A. Benham, Mark E. Kertok, Michael D. Jensen, Max P. McDaniel, Gil R. Hawley, Qing Yang, Matthew G. Thorn, Ashish M. Sukhadia
  • Patent number: 7172988
    Abstract: A catalyst component for ethylene polymerization, including an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difunctional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound, wherein the difunctional compound is a mono-, di- or multi-halogenated alcohol or phenol having from 2 to 20 carbon atoms; or a mono-, di- or multi-halogenated acyl halide having from 2 to 20 carbon atoms. Also, a process for preparing the catalyst component and use thereof.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: February 6, 2007
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Patent number: 7169864
    Abstract: A process for the preparation of a catalyst system includes the steps of combining a support material with a first composition which includes at least one aluminoxane in a first solvent to provide an aluminoxane loaded support; and, contacting the aluminoxane loaded support with a second composition which includes at least one metallocene compound, a second solvent, and a cocatalyst, wherein the cocatalyst includes a second portion of the at least one aluminoxane alone or in combination with an ionic compound and/or a Lewis acid.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: January 30, 2007
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Nicola S. Paczkowski, Andreas Winter, Franz Langhauser
  • Patent number: 7163993
    Abstract: This invention relates to olefin polymers particularly suited to satisfying the dielectric properties required in electrical device use. The olefin polymers can be prepared by contacting polymerizable olefin monomers with catalyst complexes of Group 3–11 metal cations and noncoordinating or weakly coordinating anion compounds bound directly to the surfaces of finely divided substrate particles or to polymer chains capable of effective suspension or solvation in polymerization solvents or diluents under solution polymerization conditions. Thus, the invention includes polyolefin products prepared by the invention processes, particularly ethylene-containing copolymers, having insignificant levels of mobile, negatively charged particles as detectable by Time of Flight SIMS.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: January 16, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Patent number: 7160833
    Abstract: A spray-dried composition comprising the reaction product of a magnesium halide, a solvent, an electron donor compound, and a transition metal compound and an inert filler comprising substantially spherical particles having an average particle size ranging from about 1 ?m to about 12 ?m, and a polymerization process using the same.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: January 9, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: Burkhard Eric Wagner, Mark Wilton Smale, Robert James Jorgensen
  • Patent number: 7148298
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene with bridging ?5-cyclopentadienyl-type ligands, in combination with a cocatalyst and an activator-support. The compositions and methods disclosed herein provide ethylene polymers with low levels of long chain branching.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: December 12, 2006
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Michael D. Jensen, Joel L. Martin, Max P. McDaniel, David C. Rolfing, Qing Yang, Matthew G. Thorn, Ashish M. Sukhadia, Youlu Yu, Jerry T. Lanier
  • Patent number: 7141633
    Abstract: A process for the trimerization of olefins is disclosed, comprising contacting a monomeric olefin or mixture of olefins under trimerization conditions with a catalyst which comprises (a) a source of chromium, molybdenum or tungsten (b) a ligand containing at least one phosphorus, arsenic or antimony atom bound to at least one hydrocarbyl or heterohydrocarbyl group having a polar substituent, but excluding the case where all such polar substituents are phosphane, arsane or stibana groups; and optionally (c) an activator.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: November 28, 2006
    Assignee: BP Chemicals Limited
    Inventor: Duncan Frank Wass
  • Patent number: 7125937
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers such as the polymerization of propylene to produce syndiotactic polypropylene or isotactic polypropylene. The supported catalyst comprises a stereospecific metallocene catalyst component and a co-catalyst component comprising an alkylalumoxane. Both the metallocene catalyst component and the co-catalyst component are supported on a particulate polyorganosilsesquioxane support comprising spheroidal particles of a polyorganosilsesquioxane having an average. diameter with the range of 0.3–20 microns. The polyorganosilsesquioxane support is characterized by relatively low surface area, specifically a surface area less than 100 square meters per gram. The metallocene component can take the form of a single metallocene or two or more metallocenes which are co-supported on the polyorganosilsesquioxane support.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: October 24, 2006
    Assignee: Fina Technology, Inc.
    Inventors: David John Rauscher, William John Gauthier
  • Patent number: 7074865
    Abstract: Metal complexes, catalysts derived therefrom, and polymerization processes using the same, characterized by the presence of one or more nitrogen and boron containing, anionic 5-membered cyclic ligand groups, especially 1,2-azaborolyl groups, are disclosed.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: July 11, 2006
    Assignees: Dow Global Technologies Inc., The Regents of The University of Michigan
    Inventors: Arthur J. Ashe, III, Hong Yang, Francis J. Timmers
  • Patent number: 7071137
    Abstract: A method for making a Ziegler-Natta catalyst support includes the steps of contacting a fumed silica with a surface modifying agent such as a compound having the formula RMgX MgR?R? wherein R, R? and R? are each individually a moiety selected from an alkyl group, cycloalkyl, aryl or alkaryl group, and X is a halogen selected from the group consisting of chlorine, bromine and iodine, to provide a pretreated silica seeding agent. The pretreated silica seeding agent is then dispersed in a non-aqueous liquid magnesium halide/alkanol complex, and the magnesium halide is crystallized onto the silica particles to form catalyst support particles especially suitable for Ziegler-Natta catalysts.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: July 4, 2006
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Douglas D. Klendworth, Frank Wolf Spaether
  • Patent number: 7067598
    Abstract: The present invention relates to a process for the gas-phase (co-)polymerization of olefins in a fluidized bed reactor using a chromium oxide catalyst characterized in that the polymerization is performed in the presence of a polymer structure modifier.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: June 27, 2006
    Assignee: BP Chemicals Limited
    Inventors: Jean-Jacques Kuhlburger, Kenneth John Rowley
  • Patent number: 7060766
    Abstract: Processes of forming a supported activated catalyst composition and method of polymerization are disclosed, the process of forming the composition including combining a halogenated aromatic aluminum activator compound with a fluorinated support and a catalyst to form a supported activated catalyst composition. Also disclosed is a supported activated catalyst composition, comprising the reaction product of a fluorinated support, a perfluorophenyl aluminum activator and in one embodiment a metallocene catalyst. In one embodiment, the halogenated aromatic aluminum activator is represented by the formula RnAl(ArHal)3-n, wherein ArHal is a halogenated aryl group, R is a monoanionic ligand, and n is 1 or 2.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: June 13, 2006
    Inventors: Laughlin G. McCullough, Matthew W. Holtcamp
  • Patent number: 7060767
    Abstract: The invention discloses a solid catalytic component comprising a metallocene, at least one first ligand of which comprises a cyclopentadienyl group chemically bonded via a methyl group to a support composed of a porous inorganic compound. It also discloses a process for the preparation of such a solid catalytic component. Application to the polymerization and copolymerization of olefins.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: June 13, 2006
    Inventors: Frédéric Bortolussi, Christophe Boisson, Roger Spitz, Jean Malinge, Jean-Pierre Broyer
  • Patent number: 7009012
    Abstract: The present invention provides a supported catalyst comprising (A) a polymer (B) a supporter, (C) a transition metal compound, and optionally (D) (a) a compound which can form an ionic complex by the reaction with the transition metal compound or (b) a specific oxygen-containing compound, and (E) an alkylaluminum compound. The supported catalyst according to present invention, which has a high activity, can be used for preparing a styrenic polymer with a high syndiotacticity. The supported catalyst can be used in combination with a cocatalyst, preferably an alkyl aluminoxane.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: March 7, 2006
    Assignee: Samsung Atofina Co. Ltd.
    Inventors: Sung Cheol Yoon, Xuequan Zhang, Jae Gon Lim, Hyun Joon Kim, Young Sub Lee
  • Patent number: 6995220
    Abstract: A process for polymerizing ethylene is disclosed. The ethylene is polymerized with a catalyst system which comprises an activator and an indeno[2,1-b]indolyl Group 4-6 transition metal complex having open architecture. The process gives polyethylene having a broad molecular weight distribution for improved processability.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: February 7, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Gregory G. Hlatky
  • Patent number: 6992035
    Abstract: Metallocene having two cyclic dienyl groups connected by a single carbon having an aryl substituent and a terminally unsaturated hydrocarbyl substituent, olefin polymerization catalyst systems prepared therefrom, and the use of such catalyst systems are disclosed.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: January 31, 2006
    Assignee: Phillips Petroleum Company
    Inventors: M. Bruce Welch, Syriac J. Palackal, Bryan E. Hauger, David W. Dockter, Alexander Köppl, Helmut G. Alt
  • Patent number: 6982304
    Abstract: Polyethylene resins having improved environmental stress crack resistance, stiffness and impact resistance is made by a process comprising feeding both a chromium oxide catalyst and a silyl chromium catalyst into a polymerization reactor. The chromium oxide catalyst and the silyl chromium catalyst are on separate supports. The chromium oxide catalyst is 25–50 weight percent and the silyl chromium catalyst is 50–75 weight percent of the total weight of catalyst. The catalysts may be added separately or as a single mixture.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: January 3, 2006
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Cliff Robert Mure, Guylaine St. Jean, Stephen Paul Jaker, Robert J. Jorgensen, Karen Breetz
  • Patent number: 6982306
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a stannoxy-substituted half-sandwich metallocene and an activator for olefin polymerization processes. For example, this invention encompasses the preparation of (?5-C5H5)Ti(OSnPh3)Cl2, its contact with an activator, for example, zinc-impregnated chlorided alumina, to form a catalyst composition, and the use of this catalyst composition for polymerizing olefins or acetylenes.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: January 3, 2006
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Joel L. Martin, Michael D. Jensen, Max P. McDaniel
  • Patent number: 6969748
    Abstract: Complexes of the formula I where M?Ni, Pd; process for preparing the metal complexes and the use of the complexes obtainable in this way for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes and bulk polymerization processes.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: November 29, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Peter Preishuber-Pflügl, Benno Bildstein, Alexander Krajete
  • Patent number: 6958306
    Abstract: A catalyst composition and method for preparing a supported catalyst system for olefin polymerization is provided. In one aspect, the catalyst composition includes a reaction product of a dialuminoxane and a halogen substituted aryl borane, wherein the reaction takes place on a support and at conditions sufficient to exchange one or more ligands on the dialuminoxane for one or more ligands on the halogen substituted aryl borane while on the support. In one embodiment, the method for preparing the supported catalyst system includes combining a dialuminoxane with a support to form a treated catalyst support, and combining a halogen substituted aryl borane with the treated catalyst support at conditions sufficient to exchange one or more ligands on the dialuminoxane for one or more ligands on the halogen substituted aryl borane while on the support to form a supported activator. The method further includes reacting one or more polymerization catalysts with the supported activator.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: October 25, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Matthew W. Holtcamp
  • Patent number: 6958377
    Abstract: A process for polymerizing olefins is disclosed. The process uses an organometallic complex with at least one non-bridged indenoindolyl ligand bonded to M. The substituent on the indole nitrogen contains an atom selected from the group consisting of S, O, P, and N. Polyolefins from the process have unexpectedly high molecular weight compared with polyolefins made using similar supported indenoindolyl complexes.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 25, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Patent number: 6953831
    Abstract: An ethylene polymer excellent in molding processability represented by uniform extensibility, drawdown resistance, swell and extrudability, and mechanical properties represented by rigidity, impact resistance and ESCR, is provided. Particularly, an ethylene polymer remarkably excelent in balance between rigidity and ESCR as compared with a conventionally known ethylene polymer is provided. An ethylene polymer, which is an ethylene homopolymer or a copolymer of ethylene with an ?-olefin having a carbon number of from 3 to 20, and which satisfies the following conditions (1) to (4): (1) the melt index (HLMI) under a load of 21.6 kg at 190° C. is from 0.1 to 1000 g/10 min, (2) the density (d) is from 0.935 to 0.985 g/cm3, (3) the relation between HLMI and d satisfies the following formula (i): d?0.00900×log(HLMI)+0.951, (4) the relation between ESCR and the flexural modulus (M) satisfies the following formula (ii): M??7310×log(ESCR)+32300.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: October 11, 2005
    Assignee: Japan Polychem Corporation
    Inventors: Yoshiyuki Ishihama, Toshihiko Sugano, Masayuki Yamazaki, Kou Obata
  • Patent number: 6953829
    Abstract: A catalyst system comprising at least one metallocene, at least one cocatalyst, at least one support material and, if desired, further organometallic compounds is described. The catalyst system can advantageously be used for the polymerization of olefins and displays a high catalyst activity and gives a good polymer morphology without it being necessary to use aluminoxanes such as methylaluminoxane (MAO), which usually has to be used in high excess, as cocatalyst.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: October 11, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Roland Kratzer, Cornelia Fritze, Jörg Schottek
  • Patent number: 6949614
    Abstract: A catalyst system comprising a metallocene, a cocatalyst, a support material and optionally a further organometallic compound is described. The catalyst system can advantageously be used for the polymerization of olefins. Here, the use of aluminoxanes such as methylaluminoxane (MAO) as cocatalyst is dispensed with and a high catalyst activity and good polymer morphology are nevertheless achieved.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: September 27, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Jörg Schottek, Patricia Becker
  • Patent number: 6943224
    Abstract: A process for forming a coordination catalyst system comprising sequentially or substantially simultaneously contacting: (I) pre-catalyst reactants comprising (a) at least one first ligand-containing reactant; and (b) at least one first transition metal reactant suitable to form at least one metallocene or constrained geometry pre-catalyst compound (e.g., rac-ethylene bis(indenyl)zirconiUm dichloride); an optionally (c) at least one second ligand-containing reactant and (d) at least one second transition metal reactant suitable to form at least one non-metallocene, non-constrained geometry, bidentate or tridentate transition metal compound (e.g., tridentate 2,6-diacetylpyridine-bis(2,4,6-trimethylanaline)FeCl2) and (II) further contacting, jointly or individually, the pre-catalyst compound(s) and optional bidentate or tridentate compound(s) with at least one support-activator agglomerate (e.g., spray dried silica/clay agglomerate).
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: September 13, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Keng-Yu Shih
  • Patent number: 6943225
    Abstract: The present invention relates to a multinuclear metallocene catalyst for olefin polymerization and a process for olefin polymerization using the same, in which the multinuclear metallocene catalyst for olefin polymerization comprises, as a main catalyst, a transition metal compound that contains at least two metal atoms in the groups III to X of the periodic table as central metals and a ligand having a cyclopentadienyl structure bridging between the two metal atoms, and, as a cocatalyst, an aluminoxane compound, an organoaluminum compound or a bulky compound reactive to the transition metal compound to impart a catalytic activity to the transition metal compound.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: September 13, 2005
    Assignee: Honam Petrochemical Corporation
    Inventors: Min-Hyung Lee, Sung-Jin Park, Seong-Kyun Kim, Young-Jo Kim, Yong-Gyu Han, Young-Kyu Do, Ki-Ho Choi, Seung-Woong Yoon, Bo-Geun Song, Han-Seock Cho
  • Patent number: 6933354
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6933353
    Abstract: A method for preparing a supported organometallic complex is disclosed. An organometallic complex is combined with a support material that has been treated with an organozinc compound. The organometallic complex comprises a Group 3 to 10 transition metal and an indenoindolyl ligand that is bonded to the transition metal. Also disclosed is a process for polymerizing an olefin using the supported complex. Organozinc treatment of the support unexpectedly boosts catalyst activity and polyolefin molecular weight.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6908876
    Abstract: The present invention relates to a supported catalyst system for olefin polymerization which comprises at least one metallocene component and a support of an inorganic oxide of silica, aluminum or a polymer containing hydroxyl groups. The support is modified with an organogermane and/or organotin compound. The inventive catalyst system produces minimal reactor fouling, has excellent productivity and good hydrogen responsiveness. The present invention also relates to a process for preparing the catalyst system and to the slurry/suspension or gas-phase polymerization of olefins using the catalytic system, optionally with a small amount of aluminoxane cocatalyst.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: June 21, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Muhammad Atiqullah, Akhlaq Moman, Muhammad Naseem Akhtar, Atieh Abu-Raqabah, Syriac J. Palackal, Muhammad A. Al-Saleh, Faizur Rahman, Muhammad Ibrahim, Javaid H. Khan
  • Patent number: 6908877
    Abstract: Support within the disclosure of the present application can only be found for the treatment of the dehydrated silica catalyst carrier with a silazane compound and not with a silane compound.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: June 21, 2005
    Assignee: LG Chem. Ltd.
    Inventors: Sang-Young Shin, Choong-Hoon Lee, Eun-Jung Lee, Jae-Seung Oh
  • Patent number: 6906153
    Abstract: The invention provides a catalyst system (preferably a heterogeneous catalyst system) comprising: a transition metal bisphenolate catalyst (preferably a group 4 to 6 transition metal bisphenolate catalyst) and another olefin polymerization catalyst, and optionally a co-catalyst, e.g. an organoaluminium compound or a boron compound.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 14, 2005
    Assignee: Borealis Technology Oy
    Inventors: Richard Blom, Klaus J. Jens, Arlid Follestad, Olav B. Ryan
  • Patent number: 6903170
    Abstract: Ethylene and optional comonomers are polymerized using a supported metallocene catalyst, an alumoxane activator, and triisobutylaluminum (TIBAL). A silica support is first pretreated with a silane compound and then with an organoboron compound. The treated silica is then combined with a Group 4 metallocene complex and an alumoxane to generate a supported, activated catalyst. While it was previously thought that the particular support treatment technique used herein provided benefits only for polymerizations catalyzed by non-metallocene single-site complexes, it has now been found that similar benefits can be realized even with conventional metallocenes if TIBAL is selected as the scavenger.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 7, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6900154
    Abstract: Processes of forming a supported activated catalyst composition and method of polymerization are disclosed, the process of forming the composition including combining a halogenated aromatic aluminum activator compound with a fluorinated support and a catalyst to form a supported activated catalyst composition. Also disclosed is a supported activated catalyst composition, comprising the reaction product of a fluorinated support, a perfluorophenyl aluminum activator and in one embodiment a metallocene catalyst. In one embodiment, the halogenated aromatic aluminum activator is represented by the formula RnAl(ArHal)3?n, wherein ArHal is a halogenated aryl group, R is a monoanionic ligand, and n is 1 or 2.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: May 31, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Laughlin G. McCullough, Matthew W. Holtcamp
  • Patent number: 6894131
    Abstract: Provided is a process for polymerizing olefins in the presence of a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group. More particularly, the present invention is directed to a process and catalyst composition having improved reactor performance, reducing or eliminating the need for anti-fouling additives to the catalyst composition and/or the reactor. In one embodiment, the invention is a process of polymerizing olefins comprising contacting ethylene and at least one comonomer with a supported catalyst system comprising a metallocene catalyst compound, the metallocene catalyst compound comprising at least one fluoride ion or fluorine containing leaving group; and wherein the supported catalyst system comprises an inorganic oxide support having an average particle size of from 35 ?m or less and a pore volume of from 1 to 2 cm3/g. The polymer product resulting therefrom is, in one embodiment, a copolymer having a density in the range of from 0.910 g/cm3 to 0.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: May 17, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Laughlin G. McCullough, Agapios K. Agapiou
  • Patent number: 6884749
    Abstract: Olefin polymerization in the presence of heterogeneous supported catalysts is improved by incorporating into the supported catalyst a unifunctional hydrophobic tether comprising a hydrophobic portion containing no basic nitrogen and a univalent reactive group. The unifunctional hydrophobic tether reduces fouling and sheeting in gas phase polymerization processes and improves polymer morphology and bulk density in slurry polymerization processes, while substantially maintaining or enhancing catalyst polymerization activity.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: April 26, 2005
    Assignee: Equistar Chemicals L.P.
    Inventors: Karen L. Neal-Hawkins, Sandor M. Nagy, William J. Sartain, Kiran Gupte, Kenneth W. Johnson
  • Patent number: RE39532
    Abstract: The novel metallocenes of the formula I in which, preferably, M1 is Zr or Hf, R1 and R2 are alkyl or halogen, R3 and R4 are hydrogen, R5 and R6 are alkyl or haloalkyl, —(CR8R9)m—R7—(CR8R9)n— is a single- or multi-membered chain in which R7 may also be a (substituted) hetero atom, m+n is zero or 1, and R10 is hydrogen, form, together with aluminoxanes as cocatalysts, a very effective catalyst system for the preparation of polyolefins of high stereospecificity and high melting point.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: March 27, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Andreas Winter, Martin Antberg, Walter Spaleck, Jürgen Rohrmann, Volker Dolle
  • Patent number: RE39561
    Abstract: The novel metallocenes of the formula I in which, preferably, M1 is Zr or Hf, R1 and R2 are alkyl or halogen, R3 and R4 are hydrogen, R5 and R6 are alkyl or haloalkyl, —(CR8R9)m—R7—(CR8R9)n— is a single- or multi-membered chain in which R7 may also be a (substituted) hetero atom, m+n is zero or 1, and R10 is hydrogen, form, together with aluminoxanes as cocatalysts, a very effective catalyst system for the preparation of polyolefins of high stereospecificity and high melting point.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: April 10, 2007
    Assignee: Basell Polyoefine GmbH
    Inventors: Andreas Winter, Martin Antberg, Walter Spaleck, Jürgen Rohrmann, Volker Dolle