Sulfur Reactant Contains Sulfur Directly Bonded To Oxygen Patents (Class 528/171)
  • Patent number: 5420233
    Abstract: An agent for vertical orientation treatment consisting essentially of a polyimide which contains a linear alkyl group having at least 12 carbon atoms in an amount of at least 5% by weight of the alkyl group to the total weight of the polyimide, and which, when a coating film of the polyimide is formed on a substrate, has a surface energy of not more than 38 dyn/cm.
    Type: Grant
    Filed: June 15, 1993
    Date of Patent: May 30, 1995
    Assignee: Nissan Chemical Industries Ltd.
    Inventors: Hideyuki Isogai, Toyohiko Abe
  • Patent number: 5418315
    Abstract: The method of this invention prepares copolymeric polycarbonates which have excellent mechanical properties, heat resistance and transparency, and which also have improved chemical resistance, hue, and residence stability by inducing the melt polycondensation of an aromatic dihydroxy compound containing an amount of 2-90 mol % of hydroquinone and/or substituted hydroquinones with a diester carbonate in the presence of a catalyst containing alkali metal compounds and/or alkaline earth metal compounds in an amount of 1.times.10.sup.-8 to 5.times.10.sup.-6 mole per mole of the total amount of the aromatic dihydroxy compound.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: May 23, 1995
    Assignee: GE Plastics Japan
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Kotaro Kishimura, Shuichi Uchimura
  • Patent number: 5414069
    Abstract: An electroluminescent polymer comprises a main chain and a plurality of side chains, each of the side chains comprising an electroluminescent group and a flexible spacer connecting the electroluminescent group to the main chain, the spacers and the main chain being such that the electroluminescent groups are not conjugated with one another. The nature of the main chain and the spacer groups can be varied to enhance solubility, film-forming ability and other characteristics of the polymer, without significantly changing the electroluminescent properties of the polymer.
    Type: Grant
    Filed: February 1, 1993
    Date of Patent: May 9, 1995
    Assignee: Polaroid Corporation
    Inventors: William J. Cumming, Russell A. Gaudiana, Richard T. Ingwall, Eric S. Kolb, Parag G. Mehta, Richard A. Minns
  • Patent number: 5414070
    Abstract: Disclosed is a poly(amide-ether-imide) and the preparation of the same. An ether chain-containing aromatic diamine is subject to thermal condensation with trimellitic anhydride (TMA) in a polar solvent to obtain diimide dicarboxylic acid, followed by polycondensing the diimide dicarboxlic acid with diamine to form the poly(amide-ether-imide). The poly(amide-ether-imide) of the present invention has superior strength, heat resistance, and processability. The preparation of the present invention is simple and economic.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: May 9, 1995
    Assignee: National Science Council
    Inventors: Chin-Ping Yang, Sheng-Huei Hsiao, Jiun-Hung Lin
  • Patent number: 5412065
    Abstract: Polyimide oligomers are described which comprise the intercondensation product of a monomer mixture comprising (A) at least one aromatic bis(ether anhydride), (B) at least one phenylindane diamine, and (C) at least one end-cap monomer selected from the group consisting of monoanhydrides, acyl halides and amines, wherein each end-cap monomer (C) contains at least one crosslinkable group in the molecule and wherein the phenylindane diamine component (B) is present in the mixture in a stoichiometric excess. The monomers react in a suitable solvent under an inert atmosphere to form polyimide oligomers having a number average molecular weight of from about 1,000 to about 15,000. The polyimide oligomers of the present invention are readily processed to form polyimide matrix resins with high temperature and oxidative stability.
    Type: Grant
    Filed: April 9, 1993
    Date of Patent: May 2, 1995
    Assignee: Ciba-Geigy Corporation
    Inventors: Michael Amone, Mark Southcott
  • Patent number: 5412060
    Abstract: The invention relates to a process for the production of polycarbonates by the two-phase interfacial method in which deviations between measured and estimated variables are continuously minimized by means of a suitably selected observer or filter system on the basis of a process model with an empirical Mark-Houwink relation adapted to the process. The variables estimated by the observer/filter are converted into control variables which are used to set input streams of the production process. Product quality is kept constant, changes in load or set values are quickly intercepted and even disturbances not readily accessible to measurement are taken into account by the process control.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: May 2, 1995
    Assignee: Bayer Aktiengesellschaft
    Inventors: Claus Wulff, Uwe Hucks, Rolf Bachmann, Gunther Weymans, Jurgen Kadelka, Wolfgang Herrig
  • Patent number: 5410012
    Abstract: Novel poly(N-arylenebenzimidazole)s (PNABIs) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.
    Type: Grant
    Filed: March 5, 1993
    Date of Patent: April 25, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5410013
    Abstract: Poly(arylene ether) sulfones that contain thiophene rings within the aromatic polymer backbone are disclosed, along with fibers, films, and other articles of manufacture formed therefrom.
    Type: Grant
    Filed: June 1, 1994
    Date of Patent: April 25, 1995
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Edward T. Samulski, Robert S. Archibald, Valeria V. Sheares
  • Patent number: 5405933
    Abstract: The present invention provides copolymerized polycarbonates having improved flow and formability, in addition to excellent mechanical properties, heat resistance, transparency, and water resistance obtained by copolymerization of two or more aromatic dihydroxy compounds and a compound capable of reacting with those aromatic dihydroxy compounds to form carbonate linkages, characterized in that, of all the constituent repeating units derived from aromatic dihydroxy compounds, 2-40 mole % are derived from resorcin and/or substituted resorcins.
    Type: Grant
    Filed: September 9, 1993
    Date of Patent: April 11, 1995
    Assignee: General Electric Company
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Takashi Nagai
  • Patent number: 5405956
    Abstract: Low molecular weight cyclic oligomers of formula (I) ##STR1## in which n is an integer of 2 to 20, and each C in the oligomer is a radical of formula (II): ##STR2## and each X in the oligomer is --O--R--O-- or --S--R--S--, B and D are both carbonyl groups CO, or together represent a divalent radical of formula ##STR3## in which A.sub.1, A.sub.2, A.sub.3 A.sub.4, Ar.sub.1, Ar.sub.2 and Ar.sub.3 are selected from a variety of aromatic radicals, A.sub.1, A.sub.2, Ar.sub.3 and Ar.sub.4 also possibly being hydrogen, are useful in the production of high molecular weight, linear, polyketones, polyphthalazines and polyisoquinolines; the cyclic oligomers have low melt viscosities when heated above their softening temperatures and can be readily molded, whereafter they can be rings-open polymerized to form molded high molecular weight polymer products with excellent properties.
    Type: Grant
    Filed: March 1, 1994
    Date of Patent: April 11, 1995
    Inventors: Allan S. Hay, Kwok P. Chan
  • Patent number: 5391691
    Abstract: A process for producing an aromatic polycarbonate with improved heat resistance comprising melt polycondensing an aromatic diol compound and a carbonic acid diester compound in the presence of an interesterification catalyst and in the co-presence of an organosilicon compound.
    Type: Grant
    Filed: October 22, 1993
    Date of Patent: February 21, 1995
    Assignee: Mitsubishi Petrochemical Co., Ltd.
    Inventors: Masuzo Yokoyama, Kazuhide Takakura, Junji Takano
  • Patent number: 5391693
    Abstract: A polycarbonate copolymer having a desirable heat resistance and impact resistance, and a process for producing the copolymer. The polycarbonate copolymer comprises a carbonate structural unit of the formula (I): ##STR1## wherein A is alkylidene, alkylene, arylene, arylalkylene, --O--, --S--, --SO.sub.2 -- or a single bond, and a carbonate structural unit of formula (II): ##STR2## wherein X.sup.1 and Y.sup.1 are hydrogen, halogen or an organic group and m and n are 1 to 4, wherein the proportion of the carbonate structural unit of the formula (II) being 2 to 15 mole % based on the amount of the carbonate structural unit of the formulas (I) and (II), and the viscosity average molecular weight of the copolymer being 15,000 to 40,000.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: February 21, 1995
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventor: Mitsugu Nakae
  • Patent number: 5386002
    Abstract: Polyetherimides, polyesterimides, poly(ester etherimides) and poly(carbonate imides) which are thermoplastic, polymeric materials contain divalent bisimides of formula ##STR1## wherein R is independently in each occurrence hydrogen, alkyl of from 1 to 20 carbons, aryl or aralkyl of from 1 to 20 carbons, halogen or NO.sub.2. Novel monomeric bisimides corresponding to the above formula are also disclosed.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: January 31, 1995
    Assignee: The Dow Chemical Company
    Inventors: Muthiah N. Inbasekaran, Daniel J. Murray, Michael N. Mang, James L. Brewbaker
  • Patent number: 5384388
    Abstract: [Purpose] The object of the present invention is to provide a method of product copolymerized polycarbonates having improved flow and formability, in addition to excellent mechanical properties, heat resistance, transparency, and color tone.[Constitution] A method of producing copolymerized polycarbonates by melt polycondensation of two or more aromatic dihydroxy compounds with a carbonate diester, characterized in that(i) resorcin and/or substituted resorcins are used as 2-90 mole % of the aromatic dihydroxy compounds, where the sum of all the aromatic dihydroxy compounds is taken as 100 mole %, and(ii) an alkali metal compound and/or an alkaline-earth metal compound (a) is used as the catalyst.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: January 24, 1995
    Assignee: GE Plastics Japan
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Takashi Nagai
  • Patent number: 5380820
    Abstract: In one aspect, the present invention relates to polyimides having excellent thermal resistance and process for preparing the same comprising carrying out condensation of 4,4'-bis(3-aminophenoxy)biphenyl with pyromellitic dianhydride in the presence of a different diamine compound and optionally with a different tetracarboxylic acid dianhydride.In a second aspect, the present invention relates to a heat resistant resin composition consisting essentially of an aromatic polyetherimide and a defined polyimide.In a third aspect, the present invention relates to a polyimide resin composition comprised on a defined polyimide and a separate high-temperature engineering polymer.In a fourth aspect, the present invention relates to a resin composition comprised of a defined polyimide and an aromatic polyamideimide.
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: January 10, 1995
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Masahiro Ohta, Masao Yoshikawa
  • Patent number: 5371173
    Abstract: The synthesis of a nonlinear chromophoric co-monomer 3,5-diamino-4'-nitrodiphenylamine and use as a reactive component in combination with a bismaleimide monomer in a NLO-active polyimide matrix is disclosed. After concurrent corona or contact poling and thermal polymerization, thin films of these chromophoric polyimides exhibit high second harmonic generation efficiencies and high DSC-determined glass transition temperatures. These poled polyimides also exhibit excellent SHG temporal stability, retaining 85-90% of the initial second harmonic efficiency after more than one month in air at 85.degree. C.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: December 6, 1994
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Michael A. Hubbard, Jiann T. Lin
  • Patent number: 5367041
    Abstract: A self-doped conducting polymer having along its backbone a .pi.-electron conjugated system which comprises a plurality of monomer units, between about 0.01 and 100 mole % of the units having covalently linked thereto at least one Bronsted acid group. The conductive zwitterionic polymer is also provided, as are monomers useful in the preparation of the polymer and electrodes comprising the polymer.
    Type: Grant
    Filed: January 2, 1991
    Date of Patent: November 22, 1994
    Assignee: The Regents of the University of California
    Inventors: Fred Wudl, Alan Heeger
  • Patent number: 5362838
    Abstract: There are disclosed carbonate polymers having ethenyl aryl moieties. Such carbonate polymers are prepared from one or more multi-hydric compounds and have an average degree of polymerization of at least about 1 based on multi-hydric compound. These polymers, including blends thereof, can be easily processed and shaped into various forms and structures according to the known techniques. During or subsequent to the processing, the polymers can be crosslinked, by exposure to heat or radiation, for example, to provide crosslinked polymer compositions. These compositions have a good combination of properties, including for example, processability into shaped articles having unexpectedly good combinations of toughness, solvent resistance, ignition resistance, modulus and resistance to thermal linear expansion.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: November 8, 1994
    Assignees: Virginia Polytechnic Institute and State University, The Dow Chemical Company
    Inventors: James E. McGrath, Stephen E. Bales, Daniel M. Knauss, Thomas A. Chamberlin, Michael J. Mullins, Maurice J. Marks
  • Patent number: 5362837
    Abstract: Macrocyclic polyetherimide oligomer compositions are prepared by a displacement reaction at a temperature in the range of about 200.degree.-225.degree. C. between at least one fluorinated aromatic phthalimide and at least one phenolic trialkylsilyl ether compound. Preferably, a bis-fluoroimide and a bis-trialkylsilyl ether of a dihydroxyaromatic compound such as resorcinol are employed. The reaction is conducted by maintaining reagents A and B in high dilution in a dipolar aprotic organic liquid such as N-methylpyrrolidone, and in the presence of a catalytic amount of at least one substantially soluble fluoride. Preferably, a mixture of reagents A and B is added to solvent containing the catalyst.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: November 8, 1994
    Assignee: General Electric Company
    Inventors: Tohru Takekoshi, Jane M. Terry
  • Patent number: 5362841
    Abstract: A process for preparing halogenated polycarbonate wherein the total amount of base the end pH of the aqueous phaser and the amount of coupling catalyst employed in the reaction are controlled to selected levels.
    Type: Grant
    Filed: May 17, 1993
    Date of Patent: November 8, 1994
    Assignee: The Dow Chemical Company
    Inventors: Sarat Munjal, Clark J. Cummings, Che-I Kao
  • Patent number: 5357031
    Abstract: An aromatic copolyamide which is soluble in organic copolyamide solvents and contains recurring structural units of formulae I, II and III ##STR1## in which at least some of the radicals R.sup.1 are a group of formula --OC--R.sup.2 --CO--, in which R.sup.2 is a divalent aromatic radical having valence bonds in the para-position or in a comparable coaxial of parallel position to one another, and in which the remaining radicals are as defined.
    Type: Grant
    Filed: July 6, 1993
    Date of Patent: October 18, 1994
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Georg-Emerich Miess, Karl Heinrich, Peter Klein
  • Patent number: 5349042
    Abstract: There is disclosed a process for producing a polycarbonate which comprises reacting, by the melt method, (A) a dihydroxy compound with (B) a carbonic diester having a chloride contempt derived from chloroformate group of not more than a prescribed level. According to the above process, a polycarbonate which is excellent in transparency, tone of color, heat resistance and water resistance can be efficiently and economically produced.
    Type: Grant
    Filed: March 16, 1993
    Date of Patent: September 20, 1994
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Shigeki Kuze, Ryozo Okumura, Yoshinobu Suwabe
  • Patent number: 5349039
    Abstract: Disclosed is a polyester-imide prepared from a condensation polymerization of aromatic diacid, diimide diacid, and diol, having a carboxy to hydroxy equivalent molar ratio of 0.9:1 to 1.1:1. The disclosed polyester-imide has outstanding heat-resistance, remarkable filming ability, and high solubility in both phenol series and amide series solvents.
    Type: Grant
    Filed: October 20, 1992
    Date of Patent: September 20, 1994
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-Hui Li, Tzong-Ming Lee, Jyh-Chien Chen
  • Patent number: 5344914
    Abstract: A new method for preparing commercially valuable polymeric ketones is described. The method employs an .alpha.-amiononitrile as a monomeric unit whereby an amorphous, soluble polymer having protected carbonyl moiety is obtained. Upon deprotecting the carbonyl moiety, a crystalline polymeric ketone is obtained. The method allows production of polymeric ketone materials having aromatic, aliphatic or mixed aromatic/aliphatic backbones.
    Type: Grant
    Filed: October 5, 1992
    Date of Patent: September 6, 1994
    Assignee: The Center for Innovative Technology*
    Inventors: Harry W. Gibson, Ashish Pandya
  • Patent number: 5344910
    Abstract: Polycarbonate resins containing repeating or recurring polymer chain units of the formula: ##STR1## wherein R represents alkyl are useful in high temperature applications, when thermoplastically molded into articles.
    Type: Grant
    Filed: March 23, 1993
    Date of Patent: September 6, 1994
    Assignee: General Electric Company
    Inventor: Paul D. Sybert
  • Patent number: 5340904
    Abstract: A compound or polymer having a bis(phenoxy)naphthalene structure, a high molecular weight, and very good mechanical performance and heat-resistivity is provided. The polymer can be polyamides, polyimides or poly(amide-imide)s and can have a basic structure of ##STR1## wherein R1 is a naphthalene ring.
    Type: Grant
    Filed: December 29, 1992
    Date of Patent: August 23, 1994
    Assignee: National Science Council
    Inventors: Chin-Ping Yang, Wen-Tung Chen
  • Patent number: 5340905
    Abstract: A two step solvent-free process for the preparation of polycarbonates having a low degree of branching is disclosed. Accordingly, the process comprise(i) transesterifying in the melt, at temperatures of from 80.degree. to 250.degree. C. and under atmospheric pressure and for a time of up to five hours of diphenols and carbonic acid diaryl esters in the presence of a catalyst to form an oligocarbonate having a weight average molecular weight of from 8,000 to 18,000 and an OH-end group content of from 25 to 50%, and(ii) polycondensing of said oligocarbonate at temperatures of from 250.degree. C. to 295.degree. C. and pressures of from <500 mbar to 0. 01 mbar,said catalyst being present in an amount of 10.sup.-1 to 10.sup.-8 tool of a catalyst per tool of diphenol, said catalyst being at least one member selected from the group consisting of quaternary ammonium compounds and quaternary phosphonium compounds.
    Type: Grant
    Filed: February 3, 1994
    Date of Patent: August 23, 1994
    Assignee: Bayer Aktiengesellschaft
    Inventors: Steffen Kuhling, Hermann Kauth, Wolfgang Alewelt, Dieter Freitag
  • Patent number: 5334696
    Abstract: A thermosetting resin is comprised of (a) a bisimide, particularly a bismaleimide, (b) a reactive brominated aromatic compound, particularly a member of the group consisting of group consisting of tribromophenyl maleimide, tribromostyrene, and pentabromobenzyl acrylate; and(c) a multifunctional nitrogen compound, particularly dicyandiamide, and optionally(d) ethylene bistetrabromophthalimide.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: August 2, 1994
    Assignee: Allied Signal Inc.
    Inventors: Larry D. Olson, Jeffrey R. Kamla, Henry R. Johnson
  • Patent number: 5328979
    Abstract: Copolyimide compositions and methods for their preparation which are melt-processible at relative low pressures, i.e. less than 1000 psi, and are suited for laminating and molding, are described. The invention additionally encompasses copolyimide precursors, reinforced polyimide composites and laminates made from said polyimides where the composite is reinforced by fibrous materials. This is achieved by reacting at least one aromatic dianhydride where each anhydride group is located on an aromatic ring with the carbonyl units in an ortho orientation relative to one another, with at least one diamine which is capable of a transmidization reaction upon incorporation into the polyimide backbone, and with at least one other diamine which is not capable of undergoing such reaction, the diamine which is capable of undergoing the transimidization reaction being present in an amount of from about 1-50 mole percent in relation to the diamine that is not susceptable to transimidization.
    Type: Grant
    Filed: November 16, 1992
    Date of Patent: July 12, 1994
    Assignee: The University of Akron
    Inventors: Frank Harris, Patricia A. Gabori
  • Patent number: 5324813
    Abstract: Low dielectric constant polyimides formed from an optionally fluorinated dianhydride and a fluorinated diamine are described. The fluorine containing constituents are sterically disposed so that the dipole moment of the constituents tend to cancel out. Since fluorine containing diamines are generally nonreactive, to achieve a polyimide of high enough molecular weight to be practically useful, a method of fabrication of a high molecular weight polymer from monomers of low reactivity is provided. The monomers, such as a diamine and dianhydride are provided in a solution within which a low molecular weight polyamic acid is formed. The solution is dried. The polyamic acid used is cured to a low molecular weight polyimide. The polyimide is redisolved, redryed and recured enough times to build up the molecular weight to a useful level. The method is applicable to fabricating other polymers of high molecular weight, such as polyamides, polyesters and polyurethanes.
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: June 28, 1994
    Assignee: International Business Machines Corporation
    Inventors: Gareth G. Hougham, Jane M. Shaw, Alfred Viehbeck
  • Patent number: 5324809
    Abstract: The present invention relates to a method of preparing a copolymeric polycarbonate which comprises melt-polycondensing a mixture of an aromatic dihydroxy compound comprising hydroquinone or substituted hydroquinones and a diester carbonate in the presence of a catalyst containing alkali metal compounds and/or alkaline earth metal compounds.
    Type: Grant
    Filed: June 24, 1992
    Date of Patent: June 28, 1994
    Assignee: GE Plastics Japan, Ltd.
    Inventors: Takeshi Sakashita, Tomoaki Shimoda, Kotaro Kishimura, Shuichi Uchimura
  • Patent number: 5322919
    Abstract: A process for producing polycarbonates which comprises transesterifying by reacting (A) at least one compound selected from the group consisting of aromatic dihydroxy compounds, aliphatic dihydroxy compounds, bisesters of aromatic dihydroxy compounds, bisesters of aliphatic dihydroxy compounds, carbonates of aromatic dihydroxy compounds and carbonates of aliphatic dihydroxy compounds, with (B) at least one compound selected from the group of diaryl carbonates, dialkyl carbonates, and alkylaryl carbonates, at a transesterification temperature of 100.degree. C. to 330.degree. C. in the presence of an inert solvent in an amount of 1 to 60% by weight based on the total of the theoretical amount of polycarbonate produced from the said compounds (A) and (B) and the amount of the inert solvent. According to the present invention, a polycarbonate which is excellent in color tone (transparency), heat resistance, and water resistance can be efficiently and simply produced at a low cost.
    Type: Grant
    Filed: November 20, 1991
    Date of Patent: June 21, 1994
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Kouichi Kurosawa, Shigeki Kuze, Noriyuki Kunishi, Masaya Okamoto
  • Patent number: 5322916
    Abstract: A polyamide precursor of a polybenzazole polymer is prepared by reacting an aromatic bis(alkenyl)ester with a ring forming, aromatic diamine. The precursor can be prepared in an organic solvent for the monomers to form a soluble polyamide precursor which can be subsequently cyclocondensed to form a PBX polymer. A polybenzoxazole precursor is prepared by the reaction of a bis(alkenyl)ester and a bis(ortho-hydroxyamine). A polybenzazole polymer is easily prepared by heating the polyamide, PBX precursor.
    Type: Grant
    Filed: March 16, 1993
    Date of Patent: June 21, 1994
    Assignee: The Dow Chemical Company
    Inventors: James J. O'Brien, Edmund P. Woo
  • Patent number: 5321114
    Abstract: A composition comprising a copolyestercarbonate derived from a dihydric phenol, a carbonate precursor, and an aliphatic alpha omega dicarboxylic acid or ester precursor wherein the dicarboxylic acid or ester precursor has from 10 to about 20 carbon atoms, inclusive, and is present in the copolyestercarbonate in quantities of from about 2 to 30 mole percent of the dihydric phenol.
    Type: Grant
    Filed: April 8, 1993
    Date of Patent: June 14, 1994
    Assignee: General Electric Company
    Inventors: Luca P. Fontana, Kenneth F. Miller, Christianus A. A. Claesen, Peter W. van Es, Theodorus O. N. de Vroomen, Clayton B. Quinn, Richard W. Campbell
  • Patent number: 5321115
    Abstract: A process for preparing a halogenated polycarbonate wherein phenolic-terminated, halogenated carbonate oligomers are prepared in the presence of a coupling catalyst, and are then condensed by contact with a carbonate precursor.
    Type: Grant
    Filed: June 7, 1993
    Date of Patent: June 14, 1994
    Assignee: The Dow Chemical Company
    Inventors: Maurice J. Marks, John K. Sekinger
  • Patent number: 5321096
    Abstract: A thermoplastic resin composition comprise 99.9.about.50 parts by weight of one or more thermoplastic resin selected from the group consisting of aromatic polyimide, aromatic polyetherimide, aromatic polyamideimide, aromatic polyethersulfone and aromatic polyether ketone and 0.1.about.50 parts by weight of one or more liquid crystal type aromatic polyimide having recurring structural units represented by the formula (1): ##STR1## wherein R.sub.1 .about.R.sub.5 is a hydrogen atom, fluorine atom, trifluoromethyl, methyl, ethyl or cyano and may be the same or different, and R is a tetravalent radical having 6.about.27 carbon atoms and being selected from the group consisting of a monoaromatic radical, condensed polyaromatic radical and noncondensed aromatic radical connected each other with a direct bond or a bridge member.
    Type: Grant
    Filed: March 22, 1993
    Date of Patent: June 14, 1994
    Assignee: Mitsui Toatsu Chemical, Incorporated
    Inventors: Yuichi Okawa, Nobuhito Koga, Hideaki Oikawa, Tadashi Asanuma, Akihiro Yamaguchi
  • Patent number: 5321116
    Abstract: A process for preparation of a random copolycarbonate from an ortho-substituted dihydric phenol and a non-ortho-substituted dihydric phenol.
    Type: Grant
    Filed: April 5, 1993
    Date of Patent: June 14, 1994
    Assignee: The Dow Chemical Company
    Inventors: Maurice J. Marks, Thoi H. Ho
  • Patent number: 5319065
    Abstract: There is provided a process for producing a polycarbonate resin containing less amounts of a terminal OH group and a residual monomer and having excellent heat resistance efficiently with a simple equipment. Said process comprises emulsifying an oligomer-containing reaction mixture obtained by the reaction of an alkaline aqueous solution of an aromatic dihydroxy compound with phosgene in the presence of an organic solvent, after adding a molecular weight modifier thereto, and performing polymerization while the reaction mixture is allowed to stand still in the emulsified state.
    Type: Grant
    Filed: April 19, 1993
    Date of Patent: June 7, 1994
    Assignee: Teijin Chemicals, Ltd.
    Inventors: Shinji Kikumoto, Hiroki Okuyama, Akiyoshi Manabe, Hidekazu Ito
  • Patent number: 5317078
    Abstract: Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.
    Type: Grant
    Filed: October 30, 1991
    Date of Patent: May 31, 1994
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Paul M. Hergenrother, Joseph G. Smith
  • Patent number: 5317082
    Abstract: Polyimide optical waveguide structures comprising a core within a cladding wherein at least one of the core and the cladding is a polyimide containing 6FDA, BTDA, an aromatic diamine having bulky methyl groups ortho to the amine, and a co-diamine wherein the polyimides have the properties of low optical loss, low optical absorbance, controllable refractive index, and high thermal stability, and wherein the polyimides are photosensitive and solvent resistant.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: May 31, 1994
    Assignee: Amoco Corporation
    Inventors: Allyson J. Beuhler, David A. Wargowski
  • Patent number: 5314985
    Abstract: The object of the present invention is to provide a process for the preparation of aromatic polycarbonates in the molten state using fluoride catalysts.
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: May 24, 1994
    Assignee: Bayer Aktiengesellschaft
    Inventors: Steffen Kuhling, Wolfgang Alewelt, Hermann Kauth, Dieter Freitag
  • Patent number: 5312896
    Abstract: The present invention relates to porphyrins and to metal ion-containing monomers and polymers. The monomer ##STR1## wherein A, R.sup.1,R.sup.2,R.sup.3, and R.sup.4 defined herein, is used with dianhydride to produce a porphyrin polymer or a metal ion containing porphyrin polymer. These polymers are useful as electrical conductors and as liquid crystal polymers, non-linear (NLO) materials, magnetic materials, electrochromic polymers photo-and electrocatalysts and advanced materials.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: May 17, 1994
    Assignee: SRI International
    Inventors: Tilak R. Bhardwaj, Susanna C. Ventura, Subhash C. Narang
  • Patent number: 5312895
    Abstract: Para-ordered aromatic heterocyclic polymers having repeating units of the formula: ##STR1## wherein n has a value of 0.05 to 1.00 and Q is a benzobisazole of the formula ##STR2## wherein X is --S-- or --O--, are soluble in aprotic solvents.
    Type: Grant
    Filed: March 12, 1993
    Date of Patent: May 17, 1994
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Thuy D. Dang, Fred E. Arnold
  • Patent number: 5310856
    Abstract: A heat-resistant and high-transparence polyesterimide composition is disclosed which is prepared from the reaction of: (a) an imidihydroxycarboxylic acid represented by the following formula: ##STR1## (b) at least one dicarboxylic, such as terephthalic acid or isophthalic acid, or mixture thereof, and (c) at least one dihydroxy compound represented by the following formula: ##STR2## Wherein Y can be --C(CH.sub.3).sub.2 --, --SO.sub.2 --, --CH(CH.sub.3)--, --(CH.sub.2).sub.m --, where m in an integer of 1 to 10, --O--, or --S--; X can be H, Cl, or Br; and n is an integer of 0 to 4. The polyesterimide resins disclosed in this invention also exhibit improved fabricability due to their improved solubility in organic solvents, and improved mechanical strength.
    Type: Grant
    Filed: January 11, 1993
    Date of Patent: May 10, 1994
    Assignee: Industrial Technology Research Institute
    Inventor: Chien-Hui Li
  • Patent number: 5306789
    Abstract: Amorphous polymers which are soluble in organic solvents and can thus be cast as films have high glass transition temperatures which make them suitable for numerous high temperature applications; the polymers comprise ortho aromatic polyketones, polyphthalazines and polyisoquinolines, the polyphthalazines and polyisoquinolines being readily formed from the polyketones.
    Type: Grant
    Filed: October 31, 1990
    Date of Patent: April 26, 1994
    Inventors: Allan S. Hay, Rina Singh
  • Patent number: 5306802
    Abstract: Disclosed herein is a polycarbonate copolymer comprising repeating units respectively made of a bisphenol A and a tetrahalogenobisphenol A and having a trihalogenophenoxy group as an end group at the terminal, particularly both terminals thereof and a method for efficiently producing said polycarbonate copolymer. This polycarbonate copolymer is superior in impact resistance, flame retardance, molding thermostability and the like, is good in hydrolytic resistance, is much less liable to cause a mold rust and has high quality. Therefore, this polycarbonate copolymer will be extensively used in various industrial materials, for example as the flame retardant parts for household electric appliances, office automation apparatuses and the like.
    Type: Grant
    Filed: March 15, 1993
    Date of Patent: April 26, 1994
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Ryozo Okumura, Shigeki Kuze, Noriyuki Kunishi
  • Patent number: 5304626
    Abstract: A chemical resistant copolymer useful in electronic applications, said copolymer is a polyimide containing a 3,3',4,4'-tetracarboxybiphenyl dianhydride (BPDA) moiety, at least one other dianhydride moiety, and at least one diamine.
    Type: Grant
    Filed: September 13, 1991
    Date of Patent: April 19, 1994
    Assignee: Amoco Corporation
    Inventors: Marvin J. Burgess, Douglas E. Fjare, Herbert J. Neuhaus
  • Patent number: 5302694
    Abstract: The present invention relates to a method of producing polyesters based on hydroxycarboxylic acids, more particularly based on .alpha.-hydroxycarboxylic acids.
    Type: Grant
    Filed: August 24, 1993
    Date of Patent: April 12, 1994
    Assignee: Boehringer Ingelheim GmbH
    Inventor: Berthold Buchholz
  • Patent number: 5300623
    Abstract: A method is provided for making polycarbonate by phosgenating a mixture of bisphenol and phenolic chain-stopper under interfacial reaction conditions in the presence of a phase transfer catalyst. A polycarbonate is obtained which is substantially free of diarylcarbonate.
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: April 5, 1994
    Assignee: General Electric Company
    Inventors: Eugene P. Boden, Peter D. Phelps
  • Patent number: RE34820
    Abstract: Sizing for carbon fibers with uncapped or capped linear polyamideimides.The uncapped linear polyamideimides useful as carbon fiber sizings generally contain repeating units having the general formula: ##STR1## Wherein R.sub.2 =a trivalent organic radical and generally benzenetriyl;R.sub.3 =a divalent organic radical; andn=an integer sufficiently large to provide a strong, tough coating.Useful capped, linear polyamideimide oligomers may be formed by including end caps with an unsaturated functionality (Y) containing a residue selected from the group consisting of: ##STR2## wherein R.sub.1 =lower alkoxy, aryl, aryloxy, substituted alkyl, substituted aryl, halogen, or mixtures thereof;j=0, 1 or 2;i=1 or 2;G=--CH.sub.2 --, --O--, --S--, --SO.sub.2 --, --SO--, --CO--, --CHR--, or --CR.sub.2 --;T=methallyl or allyl;Me=methyl; andR=hydrogen, lower alkyl, or phenyl.Prepregs and composites having carbon fibers sized with such polyamideimides are also described.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: January 3, 1995
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard, Ronald R. Stephenson