Sulfur Reactant Contains Sulfur Directly Bonded To Oxygen Patents (Class 528/171)
  • Patent number: 5300622
    Abstract: Heterocyclic bis(4-hydroxyphenyl)cycloalkanes, as illustrated by 4,4-bis(4-hydroxyphenyl)thiopyran and the corresponding acetylated piperidine, may be prepared by the reaction of bisphenol A or a similar compound with the corresponding thiopyranone or piperidone. The thio compound may be oxidized to the corresponding sulfone. Polycarbonates prepared from said heterocyclic bis(4-hydroxyphenyl)cycloalkanes have high glass transition temperatures and are expected to be ductile.
    Type: Grant
    Filed: December 11, 1992
    Date of Patent: April 5, 1994
    Assignee: General Electric Company
    Inventor: John C. Schmidhauser
  • Patent number: 5300624
    Abstract: A method is provided for making flame retardant polycarbonates by phosgenating a mixture of bisphenols having up to about 50 mole % of tetrahalobisphenols, such as tetrabromobisphenols. There is employed a mixture of a phase transfer catalyst and a tertiary organic amine to provide high molecular weight copolymer without excessive phosgene usage.
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: April 5, 1994
    Assignee: General Electric Company
    Inventors: Eugene P. Boden, Peter D. Phelps
  • Patent number: 5300625
    Abstract: Polyethers which contain recurring units of the formula I ##STR1## in which A is a divalent aryl or heteroaryl radical,X is O, S or NR,Z is a divalent aryl or heteroaryl radical or an alkynyl, azo or (CF.sub.2) group, andR is arylare synthesized. The polyethers can be used as thermoplastics for the production of injection-molded articles, extrudates, polymer blends and coatings and for the production of films and membranes from solution.
    Type: Grant
    Filed: January 10, 1992
    Date of Patent: April 5, 1994
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Brigitte Helmreich, Klaus Burger, Gerhard Maier, Reinhold Hecht, Oskar Nuyken
  • Patent number: 5298592
    Abstract: A process for preparing polyaryl ethers of the formula I or Ia ##STR1## by condensation of at least one appropriate bisphenol with at least one appropriate aromatic dichloride in the presence of an alkali metal carbonate in a dipolar aprotic solvent, is carried out in the presence of a catalyst selected from the alkali metal nitrites and the group of compounds of the formula II ##STR2## where r.sup.1 and r.sup.3 are each hydrogen, C.sub.7 -C.sub.16 -phenylalkyl, C.sub.1 -C.sub.12 -alkoxy, fluorine, chlorine, bromine, iodine or nitro, and R.sup.2 is nitro or nitroso, or ##STR3## where R.sup.4 is hydrogen, C.sub.1 -C.sub.4 alkyl, fluorine, chlorine, bromine or iodine.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: March 29, 1994
    Assignee: BASF Aktiengesellschaft
    Inventors: Alexander Aumueller, Wolfgang Eberle, Gerhard Heinz, Bernd Hupfeld, Christiane Husemann, Juergen Koch, Helmut Reichelt
  • Patent number: 5292854
    Abstract: Imide-containing phthalonitrile monomers are prepared from a phthalonitrile and an aromatic dianhydride. The monomer and a method for preparing the monomer is disclosed. These monomers are synthesized into heat resistant polymers and copolymers with aromatic ring structure incorporating imide and ether linkages. The synthesis of the high temperature thermosetting polymers and copolymers is also disclosed.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: March 8, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Teddy M. Keller
  • Patent number: 5288843
    Abstract: In one aspect, the present invention relates to polyimides having excellent thermal resistance and process for preparing the same comprising carrying out condensation of 4,4'-bis(3-aminophenoxy)biphenyl with pyromellitic dianhydride in the presence of a different diamine compound and optionally with a different tetracarboxylic acid dianhydride.In a second aspect, the present invention relates to a heat resistant resin composition consisting essentially of an aromatic polyetherimide and a defined polyimide.In a third aspect, the present invention relates to a polyimide resin composition comprised on a defined polyimide and a separate high-temperature engineering polymer.In a fourth aspect, the present invention relates to a resin composition comprised of a defined polyimide and an aromatic polyamideimide.
    Type: Grant
    Filed: November 5, 1990
    Date of Patent: February 22, 1994
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Shoji Tamai, Masahiro Ohta, Saburo Kawashima, Katsuaki Iiyama, Hideaki Oikawa, Akihiro Yamaguchi, Kouji Ohkoshi, Masao Yoshikawa
  • Patent number: 5283314
    Abstract: A process for producing a branched polycarbonate comprising reacting a dihydric phenol, such as 2,2-bis(4-hydroxyphenyl) propane, a polyfunctional organic compound, such as 1,1,1-tris-(4-hydroxyphenyl)ethane, and phosgene to produce a polycarbonate oligomer, and then polycondensing with stirring the polycarbonate oligomer with a dihydric phenol, such as 2,2-bis(4-hydroxyphenyl) propane, and a monohydric phenol, such as p-tert butylphenol, whereby the interfacial area of the resultant emulsion is not less than 40 m.sup.2 /L.
    Type: Grant
    Filed: March 12, 1993
    Date of Patent: February 1, 1994
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Shigeki Kuze, Hideo Kusuyama, Masayuki Shinohara, Masaya Okamoto
  • Patent number: 5276129
    Abstract: Disclosed herein are processes for the production of polycarbonates by melt polycondensation of an aromatic dihydroxy compound and a carbonic acid diester or a diphenyl carbonate compound wherein said polycondensation is carried out in the presence of from 0.05 to 15 mol %, based on 1 mole of the aromatic dihydroxy compound, of a phenol having from 10 to 40 carbon atoms, a carbonic acid diester having from 17 to 50 carbon atoms or a carbonic acid diester having from 13 to 16 carbon atoms, using a catalyst comprising (a) a nitrogen containing basic compound, (b) from 10.sup.-8 to 10.sup.-3 mole, based on 1 mole of the aromatic dihydroxy compound, of an alkali metal or alkaline earth metal compound, and (c) boric acid or boric ester. Also disclosed is a polycarbonate in which from 5 to 30% of its terminal groups are hydroxy groups and it has a sodium content of not more than 1 ppm and a chlorine content of not more than 20 ppm.
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: January 4, 1994
    Assignee: GE Plastics Japan, Ltd.
    Inventors: Takeshi Sakashita, Tomoaki Shimoda
  • Patent number: 5272248
    Abstract: A process for preparing polyamides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15% by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.
    Type: Grant
    Filed: May 22, 1992
    Date of Patent: December 21, 1993
    Assignee: The United States of America as Represented by the United States National Aeronautics and Space Administration
    Inventors: J. Richard Pratt, Terry L. St. Clair, Diane M. Stoakley, Harold D. Burks
  • Patent number: 5270435
    Abstract: Polyarylene ethers which, based on the total amount of the structural units present in the polyether resin, contain 2-100 mol % of a recurring structural unit of formula I ##STR1## and 0-98 mol % of a recurring structural unit of formula II wherein each a is 1 or 2, 10 to 100% of X, based on the total number of the bonds X present in the structural units of formulae I and II, are --SO.sub.2 --, and 0 to 90% of X are --CO--, and A is a group of formula IIIa-IIIg: ##STR2## wherein Y is --CH.sub.2 --, --C(CH.sub.3).sub.2 --, --C(CF.sub.3).sub.2 --, --S--, --SO--, --SO.sub.2 --, --O-- or --CO--, and the aromatic rings in the structural units of formulae I and II are unsubstituted or substituted by one or more alkyl groups of 1 to 4 carbon atoms, have good solubility in organic solvents and are suitable preferably for modifying other plastics materials or for use as matrix resins for the production of fibrous composite structures.
    Type: Grant
    Filed: January 9, 1992
    Date of Patent: December 14, 1993
    Assignee: Ciba-Geigy Corporation
    Inventors: Rudolf Pfaendner, Thomas Kainmuller, Kurt Hoffmann, Andreas Kramer, Friedrich Stockinger
  • Patent number: 5270432
    Abstract: Polybenzoxazoles (PBO) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl)benzoxazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents, such as N-methylpyrrolidine or N,N-dimethylacetamide, using alkali metal bases, such as potassium carbonate, at elevated temperatures under nitrogen. The novel di(hydroxyphenyl)benzoxazole monomers are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic bis(o-aminophenol)s in the melt. High molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl)benzoxazoles permits a more economical and easier way to prepare PBO than previous routes.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: December 14, 1993
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, John W. Connell, Joseph G. Smith, Jr.
  • Patent number: 5270438
    Abstract: A fluorine-containing polyimide having a low dielectric constant, low water absorption and excellent heat resistance and moisture resistance and a precursor thereof such as a fluorine-containing polyamide-acid, can be prepared by reacting an acid anhydride with an aromatic diamine having perfluoroalkyl group.
    Type: Grant
    Filed: April 3, 1991
    Date of Patent: December 14, 1993
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masami Yusa, Shinji Takeda, Yasuo Miyadera
  • Patent number: 5268446
    Abstract: A readily melt-processable polyimide obtained by reacting diamino-diphenyl ether with 3,3',4,4'-biphenyltetracarboxylic dianhydride in the presence of phthalic anhydride and thermally or chemically imidizing the resultant polyamic acid.
    Type: Grant
    Filed: August 9, 1991
    Date of Patent: December 7, 1993
    Assignee: Mitsui Toatsu Chemicals, Incorporated
    Inventors: Shoji Tamai, Masahiro Ohta, Akihiro Yamaguchi
  • Patent number: 5264538
    Abstract: Cyclic poly(aryl ether) oligomers and mixtures thereof, and methods for the preparation thereof in a highly dilute reaction medium under reaction conditions favorable for ring closure at low degrees of polymerization. These oligomers are represented by the general formula ##STR1## where each Y is divalent oxygen or divalent sulfur, each Ar is an aromatic diradical which comprises one or more C.sub.6 to C.sub.20 arylene groups and has at least one electron withdrawing group attached to an aromatic ring, and n is an integer from 1 to about 20 with the proviso that for integer values of n equal to 1 or 2 all linkages between independent aromatic rings comprise at least one atom.
    Type: Grant
    Filed: June 27, 1990
    Date of Patent: November 23, 1993
    Assignee: The Dow Chemical Company
    Inventors: Michael J. Mullins, Edmund P. Woo, Kimberly E. Balon, Daniel J. Murray, Cheng-Cheng C. Chen
  • Patent number: 5260407
    Abstract: A polyimide film essentially consisting of polyimide having recurring units of the formula (I): ##STR1## which has a density of 1.335 to 1.390 g/cm.sup.3 at 23.degree. C. and/or a refractive index of 1.605 to 1.680 at 23.degree. C. in the direction of thickness and is transparent; and a preparation process of the polyimide film by extruding the polyimide having recurring units of the above formula (I) through a common melt-extrusion process, casting in a chill-roller to obtain an unstretched film, uniaxially or biaxially stretching the unstretched film to cause molecular orientation, and successively setting the stretched film through heat-treatment.
    Type: Grant
    Filed: July 9, 1990
    Date of Patent: November 9, 1993
    Assignee: Mitsui Toatsu Chemicals, Incorporated
    Inventors: Masumi Saruwatari, Yasuhiko Ohta, Yasuhiro Fujii, Yasuko Honji, Shoichi Tsuji, Shinobu Moriya
  • Patent number: 5260404
    Abstract: Polyetherketoneimides and copolymers thereof having an imide repeat unit of formula ##STR1## wherein Ri is ##STR2## in which A is a direct bond or --O--or another substantially non-electron-withdrawing group, and/or Ra is an at least partly arylene moiety other than m- or P-phonylene.These polymers tend to have improved melt stability and other properties, especially when made from a pre-existing imide monomer, instead of by the known amic acid route which results in uncyclised amic acid residues in the polymer.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: November 9, 1993
    Assignee: Raychem Limited
    Inventors: Richard Whiteley, Christopher Borrill
  • Patent number: 5260410
    Abstract: Radiation-sensitive polymers contain, in the polymer main chain, both acid-labile groups and onium salt groups with nonnucleophilic counterions and are suitable for the production of semiconductor structural elements.
    Type: Grant
    Filed: March 2, 1992
    Date of Patent: November 9, 1993
    Inventor: Reinhold Schwalm
  • Patent number: 5260388
    Abstract: A heat-resistant and thermoplastic polyimide which has low dielectric characteristics and recurring structural units of the following formula ##STR1## wherein R is a tetravalent radical having from 2 to 27 carbon atoms and selected from the group consisting of an aliphatic radical, alicyclic radical, monoaromatic radical, condensed polyaromatic radical and noncondensed aromatic radical connected each other with a direct bond or a bridge member; aromatic diamines which are useful for the raw material monomers of the polyimide and have following formulas: ##STR2## and ##STR3## and a process for preparing the polyimide of the above formula by reacting these aromatic diamines with a tetracarboxylic dianhydride in the presence of an aromatic dicarboxylic anhydride or aromatic monoamine, and successively thermally or chemically imidizing the resultant polyamic acid.
    Type: Grant
    Filed: June 8, 1992
    Date of Patent: November 9, 1993
    Assignee: Mitsui Toatsu Chemicals, Incorporated
    Inventors: Shoji Tamai, Wataru Yamashita, Yuichi Okawa, Yuko Ishihara, Keizaburo Yamaguchi, Akihiro Yamaguchi
  • Patent number: 5258485
    Abstract: New and useful aromatic polyethers, which are high in glass transition temperatures, possess excellent mechanical properties, thermal resistance, solvent resistance, and generate fluorescence, are described. Also described are fluorescent resin compositions containing the aromatic polyethers. Processes for preparing the aromatic polyethers and the fluorescent resin compositions are also described.
    Type: Grant
    Filed: June 2, 1992
    Date of Patent: November 2, 1993
    Assignee: Idemitsu Kosan Company Limited
    Inventors: Shigeru Matsuo, Naoto Yakoh, Shinji Chino
  • Patent number: 5250655
    Abstract: An aromatic polycarbonate of improved color value and high molecular weight is obtained by the addition of phosphorous acid and/or a phosphorous ester to the melt polycondensation reaction medium containing aromatic diol, carbonate diester and a metal-containing compound as ester interchange catalyst during the polycondensation reaction
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: October 5, 1993
    Assignee: Mitsubishi Petrochemical Company, Ltd.
    Inventors: Masuzo Yokoyama, Junji Takano, Kazuhide Takakura
  • Patent number: 5247060
    Abstract: Curing of phthalonitrile monomers and prepolymers is accelerated by inclusion of an acid curing agent. Cured phthalonitrile polymers have high thermal oxidative stability and are useful as resins in various compositions and as adhesives.
    Type: Grant
    Filed: January 9, 1992
    Date of Patent: September 21, 1993
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Teddy M. Keller
  • Patent number: 5247057
    Abstract: A polymer which can undergo thermally-induced transformation to provide a reinforcing component and a matrix component. This polymer has repeating units of the formula: ##STR1## wherein Z is selected from the group consisting of dialkyl amino thermoplastic moieties and dialkyl amino moieties which can undergo insitu reaction to form a thermoset. Dialkyl amino moieties which can undergo insitu reaction to form thermosets include the following: ##STR2## wherein Q is ##STR3## R is --CH.sub.3 or Q and a has a value of 1 to 3. Dialkyl amino thermoplastic moieties include the following: ##STR4##The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
    Type: Grant
    Filed: March 23, 1992
    Date of Patent: September 21, 1993
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Loon-Seng Tan, Fred E. Arnold
  • Patent number: 5245000
    Abstract: Poly(arylene sulfide) polymers containing sulfone, ether and biphenyl groups are prepared by a two step process. In the first step, a diphenol is reacted with either a dihaloaromatic sulfone monomer or a bis(haloarylsulfonyl) biphenyl monomer, or both, in the presence of an alkali metal base and a polar organic compound. In the second step, the reaction mixture above is reacted with a sulfur source, and any monomer which was not employed in the first step, if any. The polymers prepared according to the invention process exhibit increased glass transition temperatures over those of known poly(arylene sulfide) polymers. The structure of repeating units of the polymer can be controlled by varying the sequence of addition of the monomers.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: September 14, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Rex L. Bobsein, Jon F. Geibel, Howard F. Efner
  • Patent number: 5245001
    Abstract: The present invention relates to aminoarylsulfonic acid-phenol-formaldehyde condensate useful for incorporation into cementing compositions, for example, mortar, cement paste and the like, for improving slumping characteristics.
    Type: Grant
    Filed: October 9, 1991
    Date of Patent: September 14, 1993
    Assignee: Fujisawa Pharmaceutical Co., Ltd.
    Inventors: Takahiro Furuhashi, Kazushige Kawada, Susumu Tahara, Toru Takeuchi, Yuji Takahashi, Toshikazu Adachi, Tsutomu Teraji
  • Patent number: 5245006
    Abstract: The invention provides aromatic polyamides having an improved resistance to thermo-oxidation. This is achieved by carrying out the polycondensation in the presence of a catalyst system which comprises a mixture of a phosphorus compound and a tin(II) compound or is a compound which contains both elements. The process according to the invention allows aromatic polyamides to be obtained which are resistant to thermo-oxidation (discoloration).
    Type: Grant
    Filed: May 27, 1992
    Date of Patent: September 14, 1993
    Assignee: Huels Aktiengesellschaft
    Inventors: Gunter Poll, Martin Bartmann, Jurgen Finke
  • Patent number: 5243024
    Abstract: Improved imide-containing copolymers comprising, in the aromatic diamine component, p-phenylene diamine and at least one additional aromatic diamine have increased rigidity and useful processability. The copolymers of this invention also may exhibit improved resistance to the detrimental effects of humid environments and retain mechanical properties at elevated temperatures after exposure to humid environments.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: September 7, 1993
    Assignee: Amoco Corporation
    Inventors: Ronald E. Bockrath, Edward J. Gordon
  • Patent number: 5241018
    Abstract: The terminal-modified imide oligomer composition capable of being cured within a short time and of being converted to a shaped, cured resin article having a high mechanical strength, heat resistance and elastic modulus, comprises a rigid, high molecular weight aromatic polyimide (I) produced by polymerizing and imidizing a tetracarboxylic acid component comprising at least one biphenyltetracarboxylic acid compound with an amine component comprising at least one aromatic diamine compound (a) having at least one cyclic structure and two amino groups directly attached to the cyclic structure; a flexible imide oligomer (II) produced by polymerizing and imidizing the tetracarboxylic acid component, with a diamine component comprising at least one aromatic diamine compound (b) having at least two cyclic structures and two amino groups attached directly or through a divalent bonding member to the cyclic structures and a monoamine component comprising at least one monoamine compound (c) having an unsaturated hydrocar
    Type: Grant
    Filed: June 5, 1992
    Date of Patent: August 31, 1993
    Assignee: Ube Industries, Ltd.
    Inventors: Shinji Yamamoto, Yasuo Hirano, Kazuyoshi Fujii
  • Patent number: 5239049
    Abstract: Poly(dianhydride) compounds having formulae (I) and (II): ##STR1## where m is 0 to 50. ##STR2## wherein n is 0 to 20 and X is bond junction, oxygen atom, sulfur atom, SO.sub.2, C(CF.sub.3), CO, C(CH.sub.3).sub.2, CF.sub.2 --O--CF.sub.2, CH.sub.2, and CHOH.
    Type: Grant
    Filed: November 23, 1992
    Date of Patent: August 24, 1993
    Assignee: Olin Corporation
    Inventors: Bruce A. Marien, Keith O. Wilbourn
  • Patent number: 5239042
    Abstract: There are disclosed dibenzofuran amorphous polymer comprising a recurring unit represented by following formula (II) and having a molecular weight giving a reduced viscosity of at least 0.2 dl/g as measured in the form of a 0.5% (W/V) solution in N-methyl-pyrrolidone at 25.degree. C., a process for producing said amorphous polymer, a dibenzofuran copolymer comprising, in addition to a recurring unit represented by following formula (II), at least one type of recurring unit represented by following general formula (III) in a specific proportion and having a molecular weight giving a reduced viscosity of at least 0.2 dl/g as measured in the form of a 0.5% (W/V) solution in concentrated sulfuric acid at 25.degree. C., and a process for producing said copolymer. ##STR1## wherein A is --O--, --CO--, --S--, --SO.sub.2 --, a divalent alkylene group or a single bond and n is a number of 0, 1 or 2.
    Type: Grant
    Filed: November 15, 1991
    Date of Patent: August 24, 1993
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Isaburo Fukawa, Tsuneaki Tanabe
  • Patent number: 5239046
    Abstract: Sizing for carbon fibers with uncapped or capped linear polyamideimides.The uncapped linear polyamideimides useful as carbon fiber sizings generally contain repeating units having the general formula: ##STR1## Wherein R.sub.2 =a trivalent organic radical and generally benzenetriyl;R.sub.3 =a divalent organic radical; andn=an integer sufficiently large to provide a strong, tough coating.Useful capped, linear polyamideimide oligomers may be formed by including end caps with an unsaturated functionality (Y) containing a residue selected from the group consisting of: ##STR2## wherein R.sub.1 =lower alkoxy, aryl, aryloxy, substituted alkyl, substituted aryl, halogen, or mixtures thereof;j=0, 1, or 2;i=1 or 2;G=--CH.sub.2 --, --O--, --S--, --SO.sub.2 --, --SO--, --CO--, --CHR--, or --CR.sub.2 --;T=methallyl or allyl;Me=methyl; andR=hydrogen, lower alkyl, or phenyl.Prepregs and composites having carbon fibers sized with such polyamideimides are also described.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: August 24, 1993
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard, Ronald R. Stephenson
  • Patent number: 5239043
    Abstract: An improved process for the preparation of poly(aryl ether) polymers by reacting, in the absence of dipolar aprotic solvents, an alkali metal double salt of a dihydric phenol with a dihalobenzenoid compound in the presence of a macro bicyclic compound having nitrogen bridgehead atoms linked together by three hydrocarbon bridging chains having in each of the hydrocarbon bridging chains at least one additional hetro atom selected from the group consisting of oxygen, nitrogen and sulfur atoms.The poly(aryl ether) polymer resins produced by the process have a low degree of coloration and excellent mechanical and electrical properties which allow them to be molded into a variety of articles.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: August 24, 1993
    Assignee: Amoco Corporation
    Inventor: Selvaraj Savariar
  • Patent number: 5239044
    Abstract: A polyarylsulphone is prepared by the polycondensation of a bisphenol with an aryl dichloride, at least one of which contains a sulphone group, in the presence of a base and introducing into the reaction mixture less than 5% mole, relative to the aryl dichloride, of 4,4'-difluorodiphenylsulphone. The bisphenol and aryldichloride can be of 4,4'-dihydroxydiphenylsulphone and 4,4'-dichlorodiphenylsulphone respectively. The difluoro compound is added when the polymerisation is essentially complete. The polymer product if of improved quality.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: August 24, 1993
    Assignee: Imperial Chemical Industries, PLC
    Inventors: Richard R. Cooper, David G. Parker
  • Patent number: 5238983
    Abstract: Molding compounds based on a thermoplastically processible aromatic polyamide. Molding compounds with an improved stability toward thermal oxidation were attained in that the molding compounds in comparison to polyamides contain chemically inert compounds of the formula I ##STR1## The molding compounds according to the invention exhibit an excellent stability toward thermal oxidation.
    Type: Grant
    Filed: February 13, 1992
    Date of Patent: August 24, 1993
    Assignee: Huels Aktiengesellschaft
    Inventors: Gunter Poll, Jurgen Finke, Harald Modler
  • Patent number: 5237045
    Abstract: Polymerization or cure of di-phthalonitrile monomers or prepolymers by a curing agent selected from (a) an acid and an amine, (b) a salt of an acid and an amine, and (c) mixtures of (a) and (b). In a preferred embodiment, the curing agents are amine salts which are reaction products of an aromatic amine and an aromatic sulfonic acid. The use of the novel curing agents enhances curing rates and results in polymers which have high Tg.
    Type: Grant
    Filed: January 9, 1992
    Date of Patent: August 17, 1993
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Peter J. Burchill, Teddy M. Keller
  • Patent number: 5237044
    Abstract: Polyimide sheets having excellent thermal resistance and good surface appearance of the resultant sheets are obtained by a melt-extrusion process from a specific polyimide in the temperature range of 300.degree. C. to 450.degree. C. and a moisture content of 200 ppm or less.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: August 17, 1993
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Masumi Saruwatari, Shoichi Tsuji, Masami Nakano, Shinobu Moriya, Masahiro Ohta, Toshiyuki Nakakura
  • Patent number: 5235020
    Abstract: An improved process for the preparation of poly(aryl ether) polymers by reacting, in the absence of dipolar aprotic solvents, an alkali metal double salt of a dihydric phenol with a dihalobenzenoid compound in the presence of an alkoxylated tertiary amine compound having a nitrogen atom linking together three organic chains comprising hydrocarbon groups and in each of the chains at least one oxygen atom.The poly(aryl ether) polymer resins produced by the process have a low degree of coloration and excellent mechanical and electrical properties which allow them to be molded into a variety of articles.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: August 10, 1993
    Assignee: Amoco Corporation
    Inventor: Selvaraj Savariar
  • Patent number: 5235019
    Abstract: An improved process for the preparation of poly(aryl ether) polymers by reacting, in the absence of dipolar aprotic solvents, an alkali metal double salt of a dihydric phenol with a dihalobenzenoid compound in the presence of a macrocyclic polyether compound having one ether ring in which oxygen atoms are separated one from the other by 2 to 3 carbon atoms, the ring having fused thereto from 0 to 4 monocyclic or polycyclic aromatic or saturated hydrocarbon nuclei. The nuclei are attached by vicinal carbon atoms thereof to adjoining ring oxygens in oxygen-carbon-carbon-oxygen arrangement.The poly(aryl ether) polymer resins produced by the process have a low degree of coloration and excellent mechanical and electrical properties which allow them to be molded into a variety of articles.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: August 10, 1993
    Assignee: Amoco Corporation
    Inventor: Selvaraj Savariar
  • Patent number: 5233018
    Abstract: A perfluorinated polyimide comprising a repeating unit represented by general formula (1): ##STR1## and a perfluorinated poly(amic acid) comprising a repeating unit represented by general formula (6): ##STR2## wherein R.sub.1 is a tetravalent organic group; and R.sub.2 is a divalent organic group, provided that chemical bonds between carbon atoms and monovalent elements contained in R.sub.1 and R.sub.2 are exclusively carbon-to-fluorine bonds; methods for preparing them; and optical material including the perfluorinated polyimide. 1,4-Bis(3,4-dicarboxytrifluorophenoxy)tetrafluorobenzene dianhydride, 1,4-difluoropyromellitic anhydride, 1,4-bis(3,4-dicarboxytrifluorophenoxy)tetrafluorobenzene, 1,4-difluoropyromellitic acid, and 1,4-bis(3,4-dicyanotrifluorophenoxy)tetrafluorobenzene as well as methods preparing them. The perfluorinated polyimide has a thermal stability and has a low optical loss in an optical communication wavelength region (0.8 to 1.7 .mu.m).
    Type: Grant
    Filed: September 26, 1991
    Date of Patent: August 3, 1993
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Ando, Toru Matsuura, Shigekuni Sasaki, Fumio Yamamoto
  • Patent number: 5231160
    Abstract: A novel aromatic diamine; a polyimide comprising 1,3-bis(3-aminobenzoyl)benzene or 4,4'-bis(3-aminobenzoyl)biphenyl as a diamine component and having recurring structural units represented by the formula (III): ##STR1## wherein R is a tetravalent radical selected from the group consisting of an aliphatic radical having from 2 to 27 carbon atoms, alicyclic radical, monoaromatic radical, condensed polyaromatic radical, and noncondensed aromatic radical connected each other with a direct bond or a bridge member, and X is a divalent radical of ##STR2## and a polyimide having a terminal aromatic group which is essentially unsubstituted or substituted with a radical having no reactivity with amines or dicarboxylic acid anhydrides or a composition comprising said polyimide.
    Type: Grant
    Filed: August 29, 1991
    Date of Patent: July 27, 1993
    Assignee: Mitsui Toatsu Chemicals, Incorporated
    Inventors: Shoji Tamai, Keizaburo Yamaguchi, Yuko Ishihara, Saburo Kawashima, Hideaki Oikawa, Toshiyuki Kataoka, Akihiro Yamaguchi
  • Patent number: 5229482
    Abstract: Aromatic polyether polymers, illustrated by polyethersulfones, polyetherketones and polyetherimides, are prepared by a phase transfer catalyzed reaction between a salt of a dihydroxyaromatic compound and a substituted aromatic compound such as bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) ketone or 1,3-bis[N-(4-chlorophthalimido)]benzene or the corresponding derivative of toluene or diphenyl ether, or the analagous fluoro-, bromo- or nitro-substituted compounds. The phase transfer catalysts employed are those which are stable at temperatures in the range of about 125.degree.-250.degree. C. Particularly preferred phase transfer catalysts are the hexaalkylguanidinium and .alpha.,.omega.-bis(pentaalkylguanidinium)alkane salts and the corresponding heterocyclic salts.
    Type: Grant
    Filed: February 28, 1991
    Date of Patent: July 20, 1993
    Assignee: General Electric Company
    Inventor: Daniel J. Brunelle
  • Patent number: 5229483
    Abstract: A stain-resist agent for polyamides fibers, its preparation and use are disclosed. The stain-resist agent is the condensation product of a phenolic of which at least 67 weight percent is bis-hydroxyphenylsulfone and the remainder p-cresol, p-phenolsulfonic acid or methyl-p-hydroxybenzoate, with from about 0.4 to 2.3 moles, per mole of the phenolic of a mercapto-substituted carboxylic acid selected from mercaptosuccinic acid, mercaptoacetic acid or mercaptopropionic acid; and about 1.4 to about 3.7 moles per mole of mercapto-substituted carboxylic acid of formaldehyde and sufficient base to neutralize all of the mercapto-substituted carboxylic acid groups and part but not all of the phenolic groups. The product contains about 3 to about 6 phenolic moieties with a molecular weight of 1500 to 2500 being preferred. Generally the reaction is carried out at reflux temperature (100.degree. to 103.degree. C.) for a period of 24 to 72 hours. Generally the stain-resist is applied to the polyamide fibers at a pH of 1.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: July 20, 1993
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Patrick H. Fitzgerald
  • Patent number: 5227455
    Abstract: Premix for the production of mouldings, containingA) from 40-99.95% by weight of polymer granules A based on a polyaryl ether sulfone, polyaryl ether ketone, polyimide, polyamide imide or polyether imide, or a mixture thereof,B) up to 50% by weight of fillers B in fiber or particle form, or a mixture thereof,C) from 0.05-10% by weight of a compound C ether of the general formula X ##STR1## where A1 to A7 are identical or different and, independently of one another, are a radical of the formula --CO--, --O--, --S--, --SO.sub.2 --, --C(CH.sub.3).sub.2 --, a chemical bond, ##STR2## and k, l, m, n, p and q are each 0 or 1, or a C.sub.1 -C.sub.8 -alkyl, C.sub.1 -C.sub.8 -alkoxy or cyano derivative thereof which is substituted on the aromatic ring, or of the general formula Y ##STR3## where R is C.sub.1 -C.sub.8 -alkyl, C.sub.1 -C.sub.8 -alkoxy or cyano, A8 to A11 are as defined for A1 to A7, r, s and t are 0 or 1, and x is 2, 3 or 4, or a mixture thereof,is described.
    Type: Grant
    Filed: September 4, 1992
    Date of Patent: July 13, 1993
    Assignee: BASF Aktiengesellschaft
    Inventors: Peter Ittemann, Gerhard Heinz
  • Patent number: 5227454
    Abstract: Soluble and/or meltable benzothiazole-containing polyaryl ethers with a glass transition temperature of above 150.degree. C. and a melting point of up to 450.degree. C. are composed essentially of repeat units of the formula I ##STR1## whose rings may be substituted by C.sub.1 -C.sub.6 -alkyl, C.sub.1 -C.sub.
    Type: Grant
    Filed: September 24, 1991
    Date of Patent: July 13, 1993
    Assignee: BASF Aktiengesellschaft
    Inventors: Peter Wolf, Gerhard Heinz
  • Patent number: 5225515
    Abstract: Polybenzazole polymers may contain perfluorocyclobutane rings to provide a flexible moiety which is stable at high temperatures.
    Type: Grant
    Filed: April 17, 1991
    Date of Patent: July 6, 1993
    Assignee: The Dow Chemical Company
    Inventors: Zenon Lysenko, William J. Harris
  • Patent number: 5221727
    Abstract: The new aromatic polyethers containing ester groups, which are distinguished by high dimensional stability, may be used for the production of all kinds of moulded products as well as for the preparation of block copolymers of aromatic polyether segments and segments of other thermoplastic polymers.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: June 22, 1993
    Assignee: Bayer Aktiengesellschaft
    Inventors: Robert Kumpf, Rolf Wehrmann, Harald Pielartzik, Dittmar Nerger
  • Patent number: 5219978
    Abstract: 9,9-Bis(3,5-diphenyl-4-hydroxyphenyl)fluorene a novel compound can be used to produce amorphous poly(arylene ethers) which have high glass transition temperatures and good thermo-oxidative stability and which are soluble in aromatic and chlorinated solvents; the novel fluorene derivative is produced by transalkylation of 9,9-bis(4-hydroxyphenyl)fluorene or 9,9-bis(4-methoxyphenyl)fluorene with 2,6-diphenylphenol.
    Type: Grant
    Filed: February 21, 1992
    Date of Patent: June 15, 1993
    Inventors: Allan S. Hay, Zhi Y. Wang
  • Patent number: 5218078
    Abstract: A process for preparing a halogenated polycarbonate wherein phenolic-terminated, halogenated carbonate oligomers are prepared in the presence of a coupling catalyst, and are then condensed by contact with a carbonate precursor.
    Type: Grant
    Filed: July 15, 1991
    Date of Patent: June 8, 1993
    Assignee: The Dow Chemical Company
    Inventors: Maurice J. Marks, John K. Sekinger
  • Patent number: 5216117
    Abstract: The solvent-resistance and thermal stability of polyamideimides of the general formulae: ##STR1## is improved by capping the amideimides with a crosslinking functionality (Y) containing a residue selected from the group of: ##STR2## wherein R.sub.1 =lower alkyl, lower alkoxy, aryl, aryloxy, substituted alkyl, substituted aryl (either including hydroxyl or halo-substituents), halogen, or mixtures thereof;j= 0, 1, or 2;G=--CH.sub.2 --, --O--, --S--, --SO.sub.2 --, --SO--, --CO--, --CHR--, or --CR.sub.2 --;R=hydrogen, lower alkyl, or phenyl;T=methallyl or allyl;Me=methyl;R.sub.2 =a trivalent organic radical; andR.sub.3 =a divalent organic radical.The amideimide oligomers may be linear or multidimensional, and can be processed into blends, prepregs, or composites. Methods of making these amideimides and intermediates useful in the syntheses are also described.
    Type: Grant
    Filed: January 13, 1992
    Date of Patent: June 1, 1993
    Assignee: The Boeing Company
    Inventors: Clyde H. Sheppard, Hyman R. Lubowitz
  • Patent number: 5216113
    Abstract: The new polyphosphonates, which are highly branched through polyfunctional phosphorus compounds, are suitable for use as moldings, fibers or films and as flameproofing agents and stabilizers in plastics. The new highly branched polyphosphonates show high resistance to thermal ageing and ensure good processability coupled with high migration resistance at elevated in-use temperatures.
    Type: Grant
    Filed: September 24, 1990
    Date of Patent: June 1, 1993
    Assignee: Bayer Aktiengesellschaft
    Inventors: Wolfgang-Hans Schulz-Schlitte, Jurgen Kirsch, Karsten-Josef Idel, Gerd Fengler, Uwe Arndt, Hans-Dieter Block
  • Patent number: RE34563
    Abstract: Copolycondensate molding materials are obtainable by polycondensation offrom 2 to 98 mol % of 2,2-di-(4'-hydroxyphenyl)-propane (A),from 2 to 98 mole % of 4,4'-dihydroxydiphenyl sulfone (B) andfrom 0 to 96 mole % of (C) ##STR1## where R.sup.1 and R.sup.2 are each H, C.sub.1 -C.sub.6 -alkyl or C.sub.1 -C.sub.6 -alkoxy, X is a chemical bond, --S--, --O--, --CO--, CR.sup.3 R.sup.4 (where R.sup.3 and R.sup.4 are different when n and p are each 0), or SO.sub.2 -- only when n or p is .Iadd.not .Iaddend.0), R.sup.3 and R.sup.4 are each H, C.sub.1 -C.sub.6 -alkyl, C.sub.1 -C.sub.6 -alkoxy, aryl or halogen-substituted alkyl of 1 to 4 carbon atoms, m is 0 or 1, and n and p are each 0, 1, 2, 3, or 4,with from 1 to 100 mole % of (D) ##STR2## where R.sup.5 and R.sup.6 have the same meaning as R.sup.1 and R.sup.2, and v and w are each 0, 1, 2, 3 or 4, and from 0 to 99 mol % of (E) ##STR3## where R.sup.7 -R.sup.10 are each Cl or F or have the same meanings as R.sup.1 and R.sup.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: March 15, 1994
    Assignee: BASF Aktiengesellschaft
    Inventor: Gerhard Heinz