Sulfur-containing Aryl Compound Patents (Class 528/295)
  • Patent number: 9523007
    Abstract: A polymer composition comprising 1 to 99 wt % of a copolymer (A) and 99 to 1 wt % of a copolymer (B); the polymer composition used as a light emitting material of a light emitting device having high performances; Copolymers (A) and (B) being copolymers showing fluorescence in the solid state and having a polystyrene-reduced number average molecular weight of 103 to 108, and containing a repeating unit (a) and a repeating unit (b); Copolymer (A) has a relation of 100>XaA>5, where XaA (%) is a percentage of the mol number of repeating unit (a) based on the sum of the mol numbers of repeating units (a), and Copolymer (B) satisfies a relation of XaB?XaA?5, where XaB (%) is a percentage of the mol number of repeating unit (a) based on the sum of the mol numbers of repeating units (a) and (b).
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: December 20, 2016
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Katsumi Agata, Takeshi Yamada
  • Patent number: 9169334
    Abstract: This invention relates to a reaction product obtained by ring-opening metathesis polymerization of norbornene ketones functionalized with the residual portion of a vinyl terminated macromonomer.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ian C. Stewart, David T. Harris
  • Patent number: 9018336
    Abstract: A polymer of sulfonated poly(arylene ether)s (PAEs) and a manufacturing method thereof are provided. A main structure of the PAEs has a first side formed by multi-phenyl glycol monomer and a second side formed by multi-phenyl dihalo monomer with an electron-withdrawing group. The glycol monomer and the dihalo monomer are reacted with each other by a nucleophilic displacement reaction, so as to form the main structure of the PAEs. A film made of the PAEs has a better size stability under a high water uptake.
    Type: Grant
    Filed: January 26, 2014
    Date of Patent: April 28, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 8987407
    Abstract: A fuel cell catalyst layer having sulfonated poly(arylene ether)s and a manufacturing method therefor are provided. The manufacturing method includes steps of: providing at least one type of sulfonated poly(arylene ether)s; mixing the sulfonated poly(arylene ether)s with a catalyst composition to prepare a catalyst slurry; and coating the catalyst slurry to form a film which is dried to be an electrode catalyst layer, in which the weight ratio of the sulfonated poly(arylene ether)s is 5-50 wt %. The sulfonated poly(arylene ether)s in the electrode catalyst layer can provide good thermal stability, glass transition temperature, chemical resistance, mechanical properties, water impermeability, low proton transmission loss, and a relatively simple process to shorten the manufacturing time and lower the cost thereof.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 24, 2015
    Assignee: National Sun Yat-sen University
    Inventors: Wen-yao Huang, Chun-Che Lee, Hsu-feng Lee, Steven Holdcroft
  • Patent number: 8945711
    Abstract: It is an object of the present invention to provide a water-based composite resin composition which has an excellent long-term storage stability and which enables formation of a coating film having an excellent water resistance and solvent resistance. The present invention relates to a water-based composite resin composition and a coating agent; the water-based composite resin composition containing composite resin particles (A) and an aqueous medium (B), the composite resin particles (A) containing polyester resin (a1) particles having a sulfonate group and an epoxy resin (a2) of which some or all parts are encapsulated in the polyester resin (a1) particles, wherein a mass ratio [(a1)/(a2)] of the polyester resin (a1) to the epoxy resin (a2) in the composite resin particles (A) is in the range of 95/5 to 30/70.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 3, 2015
    Assignee: DIC Corporation
    Inventors: Tomokazu Higeshiro, Mitsuru Kitada
  • Patent number: 8916674
    Abstract: A method for preparing series of terpolymer of poly (diphenyl ether sulfone) and poly (diphenyl ether diphenyl sulfone) comprises: adding high temperature organic solvent, stirring and heating; sequentially adding 4,4?-dihydroxydiphenyl, 4,4?-dichlorodiphenyl sulfone and 4,4?-Bis(4-chlorophenyl)sulfonyl-1,1?-biphenyl; after all the monomers are completely dissolved, heating to 100° C. and adding alkali metal carbonate salt-forming agent which is 5-10 mol % more than the amount of 4,4?-dihydroxydiphenyl added, and subsequently adding xylene; continuously heating and salt-forming reaction begins in the system, and controlling the temperature at 190˜210° C.; then heating to 230˜236° C., and maintaining for 3-4 hours to obtain polymer viscous liquid; and refining the polymer viscous liquid to obtain a terpolymer containing different structural units in the molecular chain, wherein the Tg of the terpolymer can be regulated by changing the ratio of the two dichloro-containing monomers.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 23, 2014
    Assignee: Kingfa Sci & Tech Co., Ltd.
    Inventors: Zhongwen Wu, Rongtang Ma, Xiangbin Zeng
  • Publication number: 20140356787
    Abstract: A resist composition comprising a compound (m0) (wherein Rb1 represents an electron withdrawing group; Rb2 and Rb3 each independently represents an aryl group, an alkyl group or an alkenyl group, provided that Rb2 and Rb3 may be mutually bonded to form a ring with the sulfur atom; and X0? represents a monovalent counteranion).
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Yoshitaka Komuro, Takaaki Kaiho, Toshiaki Hato, Akiya Kawaue, Junichi Tsuchiya, Yoshiyuki Utsumi
  • Patent number: 8865313
    Abstract: The present invention relates generally to the field of organic chemistry and particularly to the optical retardation films for liquid crystal displays. The present invention provides an optical film comprising a substrate having front and rear surfaces, and at least one solid retardation layer on the front surface of the substrate.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: October 21, 2014
    Assignee: Crysoptix K.K.
    Inventor: Ellina Kharatiyan
  • Publication number: 20140227516
    Abstract: A carbon fiber sizing agent imparts good bonding performance to carbon fiber, is used to reinforce a thermoplastic matrix resin, and provides a carbon fiber strand applied with the sizing agent and a fiber-reinforced composite reinforced with the carbon fiber strand. The sizing agent for carbon fiber is used to reinforce thermoplastic matrix resin. The sizing agent essentially contains a polymer component having a glass transition temperature of at least 20 deg.C. and exhibits no endothermic peaks indicating an endothermic heat of fusion due to crystalline melting of at least 3 J/g in a determination with a DSC. The weight ratio of the polymer component is 10 to 100 wt % of the nonvolatile components of the sizing agent. The polymer component is at least one component selected from the group consisting of an aromatic polyester resin, aromatic polyester-polyurethane resin and amine-modified aromatic epoxy resin.
    Type: Application
    Filed: October 15, 2012
    Publication date: August 14, 2014
    Inventors: Yoshio Hashimoto, Yusuke Shimizu, Mikio Nakagawa
  • Patent number: 8734952
    Abstract: The present invention relates generally to the field of organic chemistry and particularly to the optical retardation films for liquid crystal displays. The present invention provides an optical film comprising a substrate having front and rear surfaces, and at least one solid retardation layer on the front surface of the substrate.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 27, 2014
    Assignee: Crysoptix KK
    Inventor: Ellina Kharatiyan
  • Patent number: 8710176
    Abstract: A method of producing a sulfonated polyarylether block copolymer is provided. The method includes producing a sulfonated polyarylether block copolymer containing a hydrophobic segment having a structural unit represented by formula (5) and a hydrophilic segment having a structural unit having a sulfonic acid groups or derivative thereof incorporated into a structure represented by formula (6). A hydrophilic segment prepolymer having a sulfonic acid group in a potassium salt form and a hydrophobic segment prepolymer are block copolymerized. A proton conductor that includes the sulfonated polyarylether block copolymer is also provided.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: April 29, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Tetsuji Hirano, Nobuharu Hisano, Tatsuya Arai, Masayuki Kinouchi
  • Publication number: 20140058059
    Abstract: A polyester has excellent thermostability with only a small reduction in intrinsic viscosity during melt molding. The polyester is obtained from a dicarboxylic acid, and/or an ester-forming derivative thereof, and a diol which contains 15 to 500 ppm of a 1,2-propanediol-derived component.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Inventors: Takuro Okubo, Youichiro Tanaka, Kunihiro Morimoto
  • Publication number: 20140031511
    Abstract: A continuous polymerization process where one or more stirred vessels (intermittent reactor vessels) are employed in oligomer transfer line for mixing additives. An additive is added in the stirred vessel either as a solution or as slurry. The additive may or may not be reactive with the other monomer of the polyester molecule. The additive reacts with the monomer and incorporates in the polymer backbone in one of the embodiment. One or more further additives are mixed with the pre-reactor monomer mix and are charged in the first reactor or charged through the stirred vessel in the form of single slurry or solution or multiple slurries or solutions. Any further vessels employed provide higher residence time proportionate to output and use of such vessels in reactor system is independent of the any further additives.
    Type: Application
    Filed: January 23, 2013
    Publication date: January 30, 2014
    Inventors: Uday Shankar AGARWAL, Ved Prakash MISHRA, Krishna Srinivas RAO, S. VENKATACHALAM, Rajiv DIXIT, Ashwin Kumar JAIN, Anil Krishna KELKAR
  • Publication number: 20140018496
    Abstract: A sulfopolyester containing residues of 2,2,4,4-tetralkylcyclobutane-1,3-diol such as 2,2,4,4-tetramethylcyclobutane-1,3-diol is highly dispersible in water. This allows one to reduce the content of sulfonate groups or reduce the amount of ethylene glycol or other hydrophilic glycols to retain good water resistance in cured coatings. The sulfopolyester may also be a reaction product of a 2,2,4,4-tetralkylcyclobutane-1,3-diol along with 1,4-cyclohexanedimethanol, neopentyl glycol, or a mixture thereof with an acid component. Coating compositions may also contain these sulfopolyesters along with water and a polymer resin.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 16, 2014
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Thauming Kuo, Phillip Bryan Hall
  • Patent number: 8609783
    Abstract: The present invention relates to a blend of sulfo-modified copolyester wherein the diacid is aromatic or cyclic and polyglycolic acid. The blend of sulfo-modified copolyester and polyglycolic acid can be used to prepare containers with good transparency and high gas barrier properties. The preferred sulfo-modified copolyester composition comprises terephthalic acid, isophthalic acid and 5-sulfoisophthalic acid. A method of preparing a blend of sulfo-modified copolyester and polyglycolic acid is disclosed, as well as master batch processes. The present invention also relates to a method of making a container wherein the sulfo-modified copolyester is blended with the polyglycolic acid at an injection molding machine used to make preforms, which are then blown into bottles.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: December 17, 2013
    Assignee: Invista North America S.A.R.L.
    Inventor: Mehta Sanjay
  • Publication number: 20130323505
    Abstract: A fiber made of a polyester copolymer (B), wherein the polyester copolymer (B) comprises a dicarboxylic acid component and a glycol component, and the dicarboxylic acid component comprises 75 mol % or more of a terephthalic acid component, 1.0 mol % to 3.5 mol % of component (a) derived from a compound represented by formula (I), 2.0 mol % to 10.0 mol % of a cyclohexane dicarboxylic acid component (b), and 2.0 mol % to 8.0 mol % of an aliphatic dicarboxylic acid component (c). This can afford a polyester fiber that exhibits deep color property to cation dyes and disperse dyes under a normal pressure environment and is superior in color fastness to washing and color fastness to light and can secure good spinnability.
    Type: Application
    Filed: February 17, 2012
    Publication date: December 5, 2013
    Applicant: KURARAY CO., LTD.
    Inventors: Hitoshi Nakatsuka, Kazuhiko Tanaka, Kazuhide Oka, Daisuke Ohga, Shinya Kawakado
  • Patent number: 8580872
    Abstract: A sulfopolyester containing residues of 2,2,4,4-tetralkylcyclobutane-1,3-diol such as 2,2,4,4-tetramethylcyclobutane-1,3-diol is highly dispersible in water. This allows one to reduce the content of sulfonate groups or reduce the amount of ethylene glycol or other hydrophilic glycols to retain good water resistance in cured coatings. The sulfopolyester may also be a reaction product of a 2,2,4,4-tetralkylcyclobutane-1,3-diol along with 1,4-cyclohexanedimethanol, neopentyl glycol, or a mixture thereof with an acid component. Coating compositions may also contain these sulfopolyesters along with water and a polymer resin.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: November 12, 2013
    Assignee: Eastman Chemical Company
    Inventors: Thauming Kuo, Phillip Bryan Hall
  • Patent number: 8519081
    Abstract: Polysulfone based polymer comprising a repeat unit represented by the following Chemical Formula 1 is provided: wherein, X, M1, M2, a, b, c, d, e, f, R1, R2, R3, R4 and n are as defined in the detailed description.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 27, 2013
    Assignees: Hyundai Motor Company, Dongjin Semichem Co., Ltd.
    Inventors: Ju Ho Lee, Dong II Kim, Jang-Bae Son, Hyung-Su Park, Inchul Hwang, Ki Yun Cho
  • Patent number: 8512519
    Abstract: Sulfopolyester thermoplastic resins provide advantages in papermaking processes and in paper products including paperboard. Improvements in wet strength and dry strength of paper products are achieved by addition of sulfopolyester thermoplastic resins and cationic strength additives during the paper making process. The use of sulfopolyester thermoplastic resins in paper products also significantly enhances the repulpability of the paper.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 20, 2013
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell, Marvin Lynn Mitchell
  • Patent number: 8487070
    Abstract: A sulfonated poly(arylene ether) copolymer that has a crosslinking structure in a chain of a polymer, a sulfonated poly(arylene ether) copolymer that has a crosslinking structure in and at an end of a chain of a polymer, and a polymer electrolyte film that is formed by using them are disclosed. According to the polycondensation reaction of the sulfonated dihydroxy monomer (HO—SAr1-OH), the none sulfonated dihydroxy monomer (HO—Ar—OH), the crosslinkable dihalide monomer (X—CM-X) and the none sulfonated dihalide monomer (X—Ar—X), the poly(arylene ether) copolymer in which the sulfonic acid is included is synthesized. The formed poly(arylene ether) copolymer has the crosslinkable structure in the chain of the polymer. In addition, by carrying out the polycondensation reaction in respects to the crosslinkable monohydroxy monomer or the crosslinkable monohalide monomer, the crosslinking can be formed at the end of the polymer.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: July 16, 2013
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Jae-Suk Lee, Myung-Hwan Jeong, Kwan-Soo Lee, Eun-Seon Park, Young-Mu Joe
  • Patent number: 8420767
    Abstract: Disclosed herein is a polyarylene-based polymer, a preparation method for the same, and a polymer electrolyte membrane for fuel cell using the polymer. The polyarylene-based polymer, which is designed to have long side chains of a hydrophilic moiety and dense sulfonic acid groups, may improve the formation of ion channels when fabricating a polymer membrane and also ensures good chemical stability of the hydrophilic moiety and good dimensional stability against water. Further, the preparation method of the present invention simplifies production of the polymer, and polymer electrolyte membranes using the polymer exhibits improved properties as a polymer electrolyte membrane for a fuel cell, such as high proton conductivity, even under an atmosphere of low water uptake, and good dimensional stability against a long-term exposure to water.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: April 16, 2013
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee, Jang-Bae Son
  • Publication number: 20130023604
    Abstract: A sulfopolyester containing residues of 2,2,4,4-tetralkylcyclobutane-1,3-diol such as 2,2,4,4-tetramethylcyclobutane-1,3-diol is highly water dispersible in water. This allows one to reduce the content of sulfonate groups or reduce the amount of ethylene glycol or other hydrophilic glycols to retain good water resistance in cured coatings.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Thauming Kuo, Phillip Bryan Hall
  • Patent number: 8349905
    Abstract: Disclosed herein is a proton-conducting polymer and uses thereof and, more particularly, a hydrocarbon-based proton-conducting polymer derived from a monomer having a multi-naphthyl group and comprising a plurality of acid groups on the side chain of the repeating unit, an electrolyte membrane comprising the polymer, a membrane-electrode assembly comprising the electrolyte membrane, and a fuel cell comprising the membrane-electrode assembly.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 8, 2013
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee, Jang-Bae Son
  • Patent number: 8344091
    Abstract: A polymer represented by the following Formula 1, and a membrane-electrode assembly and a fuel cell system including the polymer: In the above Formula 1, definitions of the substituents are the same as in described in the detailed description.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: January 1, 2013
    Assignee: Samsung SDI Co. Ltd.
    Inventors: Sung-Guk An, Sung-Yong Cho, Sang-Il Han, Kie Hyun Nam
  • Patent number: 8334358
    Abstract: The present invention relates to a sulfonated poly(arylene ether) copolymer, a manufacturing method thereof and a polymer electrolyte membrane for fuel cell using the same.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 18, 2012
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Ki Yun Cho, Dong Il Kim, Ju Ho Lee
  • Publication number: 20120309665
    Abstract: The invention relates to polyesters, obtainable by means of polymerisation of the components including (a) one or more sulfo group-free aromatic dicarboxylic acids and/or salts thereof and/or anhydrides thereof and/or esters thereof, b) optionally one or more sulfo group-containing dicarboxylic acids, salts thereof and/or anhydrides thereof and/or esters thereof, c) 1,2-propylene glycol, d) ethylene glycol, e) one or more compounds of the formula (1) R1O(CHR2CHR3O)nH (1), where R1 is a linear or branched, saturated or unsaturated alkyl group having from 1 to 22 C atoms, R2 and R3, independently of one another, are hydrogen or an alkyl group having from 1 to 4 carbon atoms, and N is an integer of from 1 to 50, f) optionally one or more compounds of the formula (2) H—(OCH2CH2)m—SO3X (2), in which m is an integer from 1 to 10 and X is hydrogen or an alkali metal ion, and g); optionally one or more cross-linking polyfunctional compounds, provided that at least one of the components b) or f) is present, and provid
    Type: Application
    Filed: November 24, 2010
    Publication date: December 6, 2012
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Roman Morschhaeuser, Barbara Duecker, Hans Juergen Scholz
  • Patent number: 8324338
    Abstract: An oligomer removing agent for polyester-based fiber materials comprises a polyester copolymer which is obtained by polycondensation of a dibasic acid component containing 15-65 mol % of a sulfonate group-containing dibasic acid and a dihydric alcohol component containing polyethylene glycol with a molecular weight of 900-3500, and which has a 200° C. melt viscosity of 5000-23,000 mPa·s and has 10-40 mass % polyoxyethylene chains in the molecule. The oligomer removing agent is able to overcome the problems caused by deposition of polyester oligomers, when added to the dyeing bath in a dyeing step for polyester fiber materials or for fiber materials that are composites thereof with other fiber materials.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 4, 2012
    Assignee: Nicca Chemical Co., Ltd.
    Inventors: Masaaki Hosoda, Masatoshi Hayashi
  • Patent number: 8288500
    Abstract: The present invention relates to a sulfonated poly(arylene ether) copolymer, a manufacturing method thereof and a polymer electrolyte membrane for fuel cell using the same.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: October 16, 2012
    Assignee: Hyundai Motor Company
    Inventors: Ju Ho Lee, Dong Ii Kim, Nak Hyun Kwon, Inchul Hwang
  • Patent number: 8222367
    Abstract: A proton conducting hydrocarbon-based polymer has acid groups on side chains attached to the main chain, where the acid groups are between 7 and 12 atoms away from the main chain. Another polymer includes a semi-fluorinated aromatic hydrocarbon main chain and side chains that include at least one —CF2— group and an acid group. Another polymer includes an aromatic hydrocarbon main chain and side chains that include at least one —CH2-CF2— group and an acid group. Another aromatic polymer includes acid groups attached to both the main chain and the side chains where less than about 65 weight percent of the acid groups are attached to the side chains. Another aromatic polymer includes side chains attached to the main chain that include at least one aryl ring, and acid groups attached to both the main chain and to the aryl groups. Another polymer includes an aliphatic hydrocarbon main chain, side chains that include at least one deactivating aryl ring, and acid groups attached to the deactivating aryl rings.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 17, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Ramanathan S. Lalgudi, Bhima R. Vijayendran, Jeffrey Cafmeyer, Jay R. Sayre
  • Patent number: 8163864
    Abstract: The invention relates to the field of polymer chemistry and relates to sulfonated polyarylene compounds such as can be used for example in ion exchange membranes in fuel cells, as well as a method for the production thereof and the use thereof. The object of the present invention is to disclose hydrolytically and thermally resistant sulfonated polyarylene compounds with a defined degree and position of sulfonation, from which membrane materials with an improved resistance to hydrolysis can be produced. The object is attained through sulfonated polyarylene compounds according to at least one of the general formulas (I)-(IV).
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: April 24, 2012
    Assignee: Leibniz-Institut fuer Polymerforschung Dresden E.V.
    Inventors: Dieter Lehmann, Jochen Meier-Haack, Claus Vogel, Wladimir Butwilowski
  • Patent number: 8163385
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 24, 2012
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20120094050
    Abstract: The invention relates to active oxygen-scavenger based polymer resin composition for oxygen barrier, a process for preparing such composition and articles such as bottles or other format of packaging. These compositions have an ability to consume an amount of oxygen and thereby deplete the level of the same from the immediate atmosphere surrounding the packaged content and at ambient temperatures.
    Type: Application
    Filed: November 4, 2011
    Publication date: April 19, 2012
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Uday Shankar Agarwal, B. V. Venkatakrishnan, Rajesh Jalan, Thaliyil Veedu Sreekumar, Srinivasacharya Ramacharya Ayodhya, Ashwin Kumar Jain, Shrivamurthy Padadayya Jadimath
  • Patent number: 8133592
    Abstract: A laminated adhesive thermoplastic resin film includes a laminated layer containing a polyester resin (A) and a polyester resin (B) different from each other in glass transition temperature and a melamine-based crosslinking agent (C) as components and having a surface energy of 48 to 55 mN/m, formed at least on one surface of the thermoplastic resin film, wherein the glass transition temperature of the polyester resin (A) is 110° C. or higher; the glass transition temperature of the polyester resin (B) is 60° C. to lower than 110° C.; and the amount of the melamine-based crosslinking agent (C) is 75 to 200 parts by weight per 100 parts by weight based on the weight of the polyester resin (A) and the polyester resin (B).
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: March 13, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Yasushi Takada, Mitsuhiro Horiuchi, Masato Yanagibashi
  • Patent number: 8084568
    Abstract: The present invention relates to a poly(arylene ether) copolymer having an ion exchange group, particularly a positive ion exchange group, a method for manufacturing the same, and use thereof. In the poly(arylene ether) copolymer having the ion exchange group according to the present invention, physical characteristics, ion exchanging ability, metal ion adsorption ability and a processability are excellent, and thus the copolymer can be molded in various shapes and can be extensively applied to various fields such as recovering of organic metal, air purification, catalysts, water treatment, medical fields and separating of proteins.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: December 27, 2011
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee
  • Publication number: 20110229674
    Abstract: The polymerization processes described herein provide methods for controlling the dehydration of glycols such that dimers are formed as glycol ethers and incorporated into aliphatic-aromatic copolyetheresters during polycondensation. Control over this phenomenon provides unique polymer compositions with a range of thermo-mechanical properties, crystallinity, bio-content and biodegradability.
    Type: Application
    Filed: December 14, 2009
    Publication date: September 22, 2011
    Applicant: E.I. DuPont De Nemours and Company
    Inventor: Mark F. Teasley
  • Patent number: 8012571
    Abstract: The present invention relates to multilayer optical films and birefringent copolyester films. The birefringent copolyester optical layer or birefringent copolyester film comprises a major amount of naphthalate units, ethylene units, and a minor amount of branched or cyclic C4 to C10 alkyl units. Also described are certain copolyester polymeric materials further comprising subunits of a phthalate ionomer such as dimethyl sulfosodium isophthtalate ionomer.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: September 6, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Yufeng Liu, David T. Yust, Stephen A. Johnson, Kristopher J. Derks
  • Publication number: 20110206883
    Abstract: The polymerization processes described herein provide methods for dehydrating diols such that dimers of the diols are formed and incorporated into polyesters during polycondensation. Control over this phenomenon provides unique polymer compositions with a range of thermo-mechanical properties, crystallinity, bio-content and biodegradability. Generation of a wide range of properties allows development of polymers that can be used for a wide range of applications.
    Type: Application
    Filed: December 14, 2009
    Publication date: August 25, 2011
    Applicant: E.I. DUPONT DE NEMOURS AND COMPANY
    Inventors: Noel M. Hasty, Edward J. Stancik
  • Patent number: 7947800
    Abstract: A sulfonated poly(aryl ether) (SPAE) having a poly(aryl ether) (PAE) main chain and a sulfonated phenyl group pendent from the main chain are useful in proton exchange membranes (PEMs), particularly for fuel cells. The pendent phenyl group can provide an easily sulfonable site that may be sulfonated under mild conditions, providing the ability to precisely control the sulfonic acid content of the SPAE.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: May 24, 2011
    Assignee: National Research Council of Canada
    Inventors: Baijun Liu, Michael D. Guiver, Gilles P. Robertson
  • Publication number: 20110097530
    Abstract: Non-sulfonated aliphatic-aromatic polyester compositions having improved thermal properties and biodegradability, and articles such as films, coatings and laminates, produced from the non-sulfonated aliphatic-aromatic polyester compositions, are provided.
    Type: Application
    Filed: January 6, 2011
    Publication date: April 28, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Rameshchandra M. Gohil, Noel M. Hasty, Richard Allen Hayes, Joseph V. Kurian, Yuanfeng Liang, Edward J. Stancik, Marko Strukelj, Susan Yen-Tee Tseng
  • Patent number: 7923526
    Abstract: A sulfopolyester comprising repeat residue units from the reaction product dimethyl-5-sodiosulfoisophthalate, isophthalic acid, 1,4-cyclohexanedimethanol and diethylene glycol, has at least one property selected from: a) an acidity of greater than 0.030 measured as milliequivalents H+/gram of sulfopolyester; b) a titanium concentration, measured as metal, of less than about 27 ppm, based on the amount of sulfopolyester; or c) an acidity of greater than 0.010 measured as milliequivalents H+/gram of sulfopolyester, a pH of less than 6.0 and a concentration of a base compound of less than 0.0335 moles/kg of sulfopolyester. A method for making the water-dispersible or water-dissipative sulfopolyester of the present invention is disclosed. Aqueous dispersion having from 0.001 to about 35 weight % of the sulfopolyester of the present invention is also disclosed. The sulfopolyester is useful in making hair spray formulations suitable for pump or aerosol spray applicators.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: April 12, 2011
    Assignee: Eastman Chemical Company
    Inventors: Terry Ann Oldfield, Suzanne Winegar Dobbs, Scott Ellery George, Ricky Thompson, Edward Enns McEntire, George William Tindall
  • Patent number: 7834127
    Abstract: Disclosed are amorphous copolyesters having an inherent viscosity (IV) of about 0.5 to 1.1 dL/g measured at a temperature of 25° C. at 0.5 g/dL concentration in a solvent mixture of symmetric tetrachloroethane and phenol having a weight ratio of symmetric tetrachloroethane to phenol of 2:3 comprising (1) a diacid component comprising about 90 to 100 mole percent terephthalic acid residues and 0 to about 10 mole percent isophthalic acid residues; and (2) a diol component comprising about 10 to 70 mole percent 1,4-cyclohexanedimethanol residues and about 90 to 30 mole percent neopentyl glycol residues; wherein the amorphous copolyesters comprises 100 mole percent diacid component and 100 mole percent diol component. The amorphous copolyesters are useful in the manufacture or fabrication of medical devices which have improved resistance to degradation upon exposure to lipids, as a profile produced by profile extrusion and as an injection molded article.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: November 16, 2010
    Assignee: Eastman Chemical Company
    Inventors: Sam Richard Turner, Jonathan Terrill Milburn, Robert William Seymour, Kab Sik Seo
  • Publication number: 20100212804
    Abstract: A process for the production of a polymeric film comprising a copolyester having an acid component and a diol component, said acid component comprising a dicarboxylic acid and a sulfomonomer containing a sulfonate group attached to the aromatic nucleus of an aromatic dicarboxylic acid, said process comprising the steps of: (i) melt-extruding a layer of said copolyester; (ii) stretching the extrudate in at least one direction; (iii) heat-setting the film by raising the temperature of the stretched film to a temperature T1 in a first heating zone such that (TM?T1 is in the range of from 5 to 30° C., and then raising the temperature of the film to a temperature T2 in a second heating zone such that (TM?T2 is in the range of from 0 to 10° C.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 26, 2010
    Applicant: DuPont Teijin Films U.S. Limited Partnership
    Inventors: William Alasdair MacDonald, Pierre Georges Osborne Moussalli, Kenneth Evans, Jullian Peter Attard, David Boyce, Christopher Charles Naylor, Brian John Farmer, David Edward Robins
  • Patent number: 7709594
    Abstract: A polyester composition produced without using an antimony compound as a polycondensation catalyst and including (I) composition containing, on a weight basis, 30 ppm or less of antimony, 0.5 to 50 ppm of titanium, and 0.1 to 100 ppm of phosphorus, in which the number density of titanium-containing particles, the equivalent circular diameter of which is 1?m or more, is less than 100/0.02 mg; and (II) a composition containing, on a weight basis, antimony, titanium and phosphorous as defined above, in which organic polymer particles are contained in amount of 0.1 to 5 wt%, the organic polymer particles having an average particle diameter determined by dynamic light scattering of 0.05 to 3?m and containing 0.01% or less of coarse particles relative to the total number of the particles, the coarse particles having a diameter at least twice the average particle diameter.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 4, 2010
    Assignee: TORAY Industries, Inc.
    Inventors: Jun Sakamoto, Masatoshi Aoyama, Yoshihiro Honma, Hitoshi Yoshimura, Yuzo Shimizu
  • Patent number: 7700187
    Abstract: The invention relates to a biaxially oriented polyester film, preferably PET film, which has a hydrophilic coating on at least one surface. The coating composition used to form the hydrophilic coating includes water, a sulfopolyester, a surfactant, and optionally an adhesion-promoting polymer. The inventive films have a hydrophilic surface which inhibit condensation of water droplets on the films.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: April 20, 2010
    Assignee: Mitsubishi Polyester Film GmbH
    Inventors: Matthias Konrad, Herbert Peiffer, Gottfried Hilkert
  • Publication number: 20100022741
    Abstract: A copolymer of formula 1 in which M1 is a unit obtainable from ring opening metathesis polymerisation (ROMP); R is an alkyl, ether, ester or aryl unit; M2 and M3 are independently selected from units obtainable by reversible addition fragmentation chain transfer polymerization (RAFT); X is a terminal unit selected from the group consisting of dithioester, trithiocarbonate, xanthate; and m is an integer from 2 to 1 million, n is an integer from 2 to 500,000 and k is an integer from 2 to 500,000.
    Type: Application
    Filed: November 2, 2007
    Publication date: January 28, 2010
    Inventors: Chong Cheng, Ezat Khoshdel, Karen Lynn Wooley
  • Patent number: 7638590
    Abstract: The invention provides a novel polyester adapted for use in a charge control agent for a toner for an electrophotographic process, having a charge stability, a high charge amount, an improved dispersibility and a biodegradability, and a producing method and an application technology therefore.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: December 29, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuki Fukui, Tetsuya Yano, Chieko Mihara, Shinya Kozaki, Tsutomu Honma, Takashi Kenmoku, Ako Kusakari
  • Patent number: 7635745
    Abstract: Processes for the recovery of a sulfopolyester polymer from an aqueous dispersion and a sulfopolyester concentrate are provided. Particularly, a sulfopolyester concentrate, from which the sulfopolyester may be recovered and reused, are formed by processes such as evaporation and/or nanofiltration. Final recovery of the sulfopolyester may be achieved by further evaporation of water and/or salt precipitation. In addition, the recovered sulfopolyester and articles manufactured from the recovered sulfopolyester are also provided.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: December 22, 2009
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Allen Lynn Crain, Daniel William Klosiewicz, Scott Ellery George, Kab Sik Seo
  • Patent number: 7625994
    Abstract: A sulfonated aliphatic-aromatic copolyetherester that comprises the polymerization product of 80.0 to 20.0 mole percent of an aromatic dicarboxylic acid or an ester thereof based on the total moles of dicarboxylic acid or ester thereof, 20.0 to 80.0 mole percent of an aliphatic dicarboxylic acid or an ester thereof based on the total moles of dicarboxylic acid or ester thereof, 0.1 to 10.0 mole percent of a sulfonate component, 99.9 to 91.0 mole percent of a first glycol selected from the group consisting of ethylene glycol, 1,3-propanediol and 1,4-butanediol based on the total moles of glycol, 0.1 to 4.0 mole percent of a poly(alkylene ether) glycol based on the total moles of glycol, 0 to 5.0 mole percent of an other glycol based on the total moles of glycol, and 0 to 5.0 mole percent of a polyfunctional branching agent.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: December 1, 2009
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Richard Allen Hayes
  • Publication number: 20090163402
    Abstract: A polyester textile softening agent comprising the reaction product of from about 1 to about 99 mole %, based on the total mole % of hydroxyl equivalents, of at least one glycol having a number average molecular weight of less than about 300 grams/mole; a difunctional sulfomonomer containing at least one metal sulfonate group bonded to an aromatic ring wherein the functional groups are ester, carboxyl, or hydroxyl in an amount to provide water dispersibility to the polyester; from about 1 to about 99 mole % a diacid other than a sulfomonomer; and from about 99 to about 1 mole % of a second glycol having a number average molecular weight greater than about 300 grams/mole. An aqueous dispersion comprising the textile softening agent and amount of water sufficient to disperse the textile softening agent is also disclosed.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventor: Scott Ellery George
  • Publication number: 20090131628
    Abstract: A normal-pressure cation-dyeable polyester is provided which contains an isophthalic acid component having a metal sulfonate group in a predetermined proportion based on the total of acid components present in the polyester, and contains a polyalkylene glycol having an average molecular weight of 150 to 600 in a predetermined proportion based on the polyester, wherein the proportion of diethylene glycol based on the total of glycol components and a terminal carboxyl group concentration are each set within a predetermined range. The polyester is stable in quality and excellent in dark- and pale-color light fastness when used for textile products.
    Type: Application
    Filed: March 2, 2006
    Publication date: May 21, 2009
    Applicant: KB SEIREN, LTD.
    Inventor: Keita Katsuma