From At Least Two Organic Polyamines Patents (Class 528/340)
  • Publication number: 20140094399
    Abstract: Poly(?-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
    Type: Application
    Filed: September 17, 2013
    Publication date: April 3, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, David M. Lynn, David A. Putnam, Mansoor M. Amiji, Daniel Griffith Anderson
  • Patent number: 8642716
    Abstract: The present invention relates to branched polyamides comprising unsaturated ends comprising: at least one unit originating from a multifunctional monomer (A) having more than two functional groups, at least sequences resulting from the condensation, in the presence of at least one unsaturated monoacid, either of at least two different lactams, or of at least one lactam, at least one dicarboxylic acid and at least one diamine, or of a lactam or of an ?,?-aminocarboxylic acid, or of a diamine and of a diacid. The invention also relates to thermofusible adhesives comprising these branched polyamides comprising unsaturated ends, and to the use of these branched polyamides comprising unsaturated ends in sheathing electrical cables.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: February 4, 2014
    Assignee: Arkema France
    Inventors: Annett Linemann, Thierry Briffaud
  • Publication number: 20130324695
    Abstract: Provided is a polyether polyamide elastomer not only having excellent melt moldability, crystallinity and flexibility but having heat resistance. The polyether polyamide elastomer includes a diamine constituent unit derived from a polyether diamine compound (A-1) and a xylylenediamine (A-2) and a dicarboxylic acid constituent unit derived from an ?,?-linear aliphatic dicarboxylic acid having a carbon number of from 4 to 20.
    Type: Application
    Filed: February 13, 2012
    Publication date: December 5, 2013
    Applicant: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Mayumi Takeo, Tomonori Katou
  • Publication number: 20130324696
    Abstract: Provided is a polyether polyamide elastomer not only having excellent melt moldability, crystallinity and flexibility but having heat resistance. The polyether polyamide elastomer includes a diamine constituent unit derived from a polyether diamine compound (A-1) and a xylylenediamine (A-2) and a dicarboxylic acid constituent unit derived from an ?,?-linear aliphatic dicarboxylic acid having a carbon number of from 4 to 20.
    Type: Application
    Filed: February 13, 2012
    Publication date: December 5, 2013
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Mayumi Takeo, Tomonori Katou
  • Publication number: 20130289207
    Abstract: The present invention provides membrane lytic poly(amido amine) polymers, polyconjugates, compositions and methods for the delivery of oligonucleotides for therapeutic purposes.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 31, 2013
    Inventors: Marina Busuek, Rubina G. Parmar, Michael Steven Poslusney, Weimin Wang, J. Michael Williams
  • Publication number: 20130289234
    Abstract: The invention relates to a method for obtaining high-tenacity aramid yarn, wherein the yarn is made of a copolymer obtained from a mixture of monomers comprising DAPBI, an aromatic para-diamine, and an aromatic para-diacid, wherein the yarn is heated in at least two process steps, characterized in that in a first step the yarn is heated at a temperature of 200 to 360° C. at a tension of at least 0.2 cN/dtex, followed by a second step wherein the yarn is heated at a temperature of 370 to 500° C. at a tension of less than 1 cN/dtex. The invention further pertains to a multifilament aramid yarn spun from a sulfuric acid spin dope and having a tenacity of at least 2500 mN/tex.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Applicant: Teijin Aramid B.V.
    Inventors: Hanneke BOERSTOEL, Johannes BOS, Adriaan Anton SCHAAP, Dennis WILBERS, Leonardus Antonuis Godfried BUSSCHER, Antonius Henricus Maria SCHOTMAN, Kurt Rainer Hans-Heinrich STOLZE
  • Publication number: 20130261256
    Abstract: An object of the present invention is to provide a copolymer polyamide which has excellent strength, high-temperature strength, low water absorbance, low blocking properties, releasability and plasticizing time stability, and a copolymer polyamide composition which has excellent vibration fatigue characteristics, surface appearance and continuous productivity. A copolymer polyamide of the present invention is obtained by polymerizing (a) at least one alicyclic dicarboxylic acid, (b) one diamine having 8 or more carbon atoms, and (c) at least one copolymer component selected from the group consisting of the following (c-1) to (c-3): a (c-1) dicarboxylic acid other than the alicyclic dicarboxylic acid; a (c-2) diamine having fewer carbon atoms than the (b) diamine; and a (c-3) lactam and/or aminocarboxylic acid, and the copolymer polyamide satisfies specific conditions.
    Type: Application
    Filed: January 6, 2012
    Publication date: October 3, 2013
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Shinji Ieda, Kazunori Terada, Yu Nitto
  • Patent number: 8530571
    Abstract: Disclosed is a thermoplastic composition including (A) a polyamide resin independently selected from the group consisting of Group (I) Polyamides having a melting point of at least 260° C., and comprising (a) greater than 95 mole percent semiaromatic repeat units and (b) less than 5 mole percent aliphatic repeat units; (B) 0 to 60 weight percent of one or more reinforcement agents; and (C) 0 to 50 weight percent of one or more a polymeric tougheners; wherein the weight percentages are based on the total weight of said thermoplastic composition; and wherein said polyamide resin has at least 50 meq/Kg of acid ends.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 10, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Toshikazu Kobayashi, Marvin M. Martens, Shengmei Yuan
  • Publication number: 20130231424
    Abstract: A semi-aromatic polyamide film including a semi-aromatic polyamide resin including a dicarboxylic acid mainly composed of terephthalic acid and a diamine mainly composed of an aliphatic diamine having 9 carbon atoms, wherein a number density of fish-eyes of 0.01 mm2 or more in size present in the film is 100/1000 cm2 or less.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 5, 2013
    Applicants: KURARAY CO., LTD., UNITIKA LTD.
    Inventors: Arihiro Anada, Kozo Tamura, Yuji Munesawa
  • Patent number: 8513376
    Abstract: The present disclosure provides polyamides and amidoamine curing agents including the reaction product of (1) a modified amine component comprising at least one multifunctional amine of structure 1: wherein R1 is selected from C1-C16 linear, cyclic, and branched alkyl, alkenyl, and alkaryl groups; R2 and R4 are hydrogen, R3 is R1 or hydrogen, X, Y, and Z are independently selected from C2-C10 alkylene, hexylene and cycloalkylene groups, n=0, 1, 2, 3, 4, 5, 6, or 7; and (2) a fatty acid component. Exemplary fatty acid components include at least one of monomer fatty acids, dimer fatty acids, trimer fatty acids, polymer fatty acids, esters of monomer, dimer, trimer, and polymer fatty acids and combinations thereof. The method for making the curing agents and articles formed therefrom are also disclosed.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 20, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Williams Rene Edouard Raymond, David Alan Dubowik, Gamini Ananda Vedage
  • Publication number: 20130203955
    Abstract: The invention concerns processes for forming a polymer comprising residues of 2-(4-amino phenyl)-5(6) amino phenyl benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of DAPBI in a solvent system comprising an organic solvent and an inorganic salt; (b) adding terephthaloyl dichloride to the slurry terephthaloyl dichloride in the amount of up to one-half mole for every mole of DAPBI in the slurry; (c) agitating the slurry to react the DAPBI and terephthaloyl dichloride to form an oligomeric solution; (d) adding PPD to the oligomeric solution and agitating until substantially all of the PPD is dissolved, (e) adding terephthaloyl dichloride in an amount of greater than one mole for every mole of PPD in the solution to form a prepolymer solution; and (e) agitating the prepolymer solution to form a polymer.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 8, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: KIU-SEUNG LEE
  • Publication number: 20130197147
    Abstract: The invention concerns processes for forming polymer crumb comprising residues of 2- (4-amino phenyl)-5 (6) amino phenyl benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of b mole percent DAPBI and y mole percent PPD in a solvent system comprising organic solvent and c weight percent of an inorganic salt, wherein the inorganic salt is present in an amount of at least 5 weight percent of the organic solvent, DAPBI and PPD being present in an amount sufficient for providing a polymer solution having a weight percent solids of 12 percent or greater on a polymer basis; and (b) contacting the slurry of step a) with a stoichiometric amount of terephthaloyl dichloride to form a product comprising the polymer; wherein the sum of y+b is 100 and the product of b×c is 225 or greater.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 1, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: FREDERICK K. MALLON
  • Publication number: 20130197185
    Abstract: The invention concerns polymer comprising residues of 2-(4-amino phenyl)-5 (6) amino phenyl benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, made by a process comprising the steps of: (a) forming a slurry of b mole percent DAPBI and y mole percent PPD in a solvent system comprising organic solvent and c weight percent of an inorganic salt, wherein the inorganic salt is present in an amount of at least 5 weight percent of the organic solvent, DAPBI and PPD being present in an amount sufficient for providing a polymer solution having a weight percent solids of 12 percent or greater on a polymer basis; and (b) contacting the slurry of step a) with a stoichiometric amount of terephthaloyl dichloride to form a product comprising the polymer; wherein the sum of y+b is 100 and the product of b×c is 225 or greater.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 1, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: FREDERICK K. MALLON
  • Publication number: 20130197148
    Abstract: The invention concerns processes for forming a polymer comprising residues of 2-(4-amino phenyl)-5(6)amino phenyl benzimidazole (DAPBI), paraphenylene diamine, and terephthaloyl dichloride, the process comprising: (a) forming a solution of oligomers having chloride end groups from one mole of paraphenylene diamine and 1.3 to 5 moles of terephthaloyl dichloride a solvent system comprising an organic solvent and an inorganic salt; and (b) adding DAPBI and terephthaloyl dichloride to the solution of oligomers to form a polymer.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 1, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: KIU-SEUNG LEE
  • Publication number: 20130190433
    Abstract: The invention concerns processes for forming a polymer comprising residues of 2-(4-amino phenyl)-5(6)amino phenyl benzimidazole (DAPBI), paraphenylene diamine (PPD), and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of DAPBI in a solvent system comprising an organic solvent and an inorganic salt; (b) adding less than a stoichiometric amount, relative to the amount of DAPBI, of terephthaloyl dichloride to the slurry; (c) agitating the slurry to react the DAPBI and terephthaloyl dichloride to form an oligomeric solution; (d) adding PPD to the oligomeric solution and agitating until essentially all of the PPD is dissolved, followed by the addition of terephthaloyl dichloride to form a prepolymer solution; and (e) allowing the prepolymer solution to form a polymer.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 25, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: KIU-SEUNG LEE
  • Patent number: 8487039
    Abstract: Disclosed is a polyamide composition including at least one semi-aromatic copolyamide, said semi-aromatic copolyamide consisting essentially of 40 to 60 mole percent repeat units of the formula —C(O)(CH2)4C(O)NHCH2ArCH2NH—??(I) and 40 to 60 mole percent repeat units of the formula —C(O)(CH2)4C(O)NH(CH2)6NH—??(II) wherein Ar is a meta-substituted benzene ring. Also disclosed are molded articles including the polyamide composition.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 16, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Anna Kutty Mathew
  • Patent number: 8440783
    Abstract: Enhanced oligomeric polyols are reported. The enhanced oligomeric polyols may be prepared by a method comprising the steps of: (a) providing an oligomeric polyol that comprises at least one glycerol fatty acid ester having at least one glycerol fatty acid ester bond; wherein at least 5% of the ethyldenyl groups (*C?C*) in the glycerol fatty acid ester are substituted with a bonding structure selected from the group consisting of: C-*C—C*-C; O-*C—C*-O; C=*C—C*-C, and mixtures thereof, where * is used to denote the original carbon atoms in the ethylidenyl group; and (b) cleaving at least a portion of the glycerol fatty acid ester bonds to form the enhanced oligomeric polyol. The enhanced oligomeric polyols are useful in making polymers such as polyurethanes.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 14, 2013
    Assignee: Cargill, Incorporated
    Inventors: Timothy W. Abraham, Jeff Malsam, Xiuguang A. Guo, Milhail Ionescu, Ivan J. Javni, Zoran S. Petrovic
  • Publication number: 20130046074
    Abstract: This is to provide a polyamide resin which can sufficiently ensure all of a relative viscosity ?r (high degree of polymerization), moldable temperature range estimated from a temperature difference (Td?Tm), heat resistance estimated from a melting point Tm, melt moldability estimated from a temperature difference (Tm?Tc), and low water absorbability as compared with the conventional polyoxamide resin. This is a polyamide resin comprising a dicarboxylic acid-derived unit and a diamine-derived unit being bonded, wherein the above-mentioned dicarboxylic acid contains oxalic acid (Compound A), and the above-mentioned diamine contains 1,6-hexanediamine (Compound B) and 2-methyl-1,5-pentanediamine (Compound C).
    Type: Application
    Filed: April 27, 2011
    Publication date: February 21, 2013
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Shuichi Maeda, Tomoyuki Nakagawa
  • Patent number: 8357455
    Abstract: The invention relates to the use of a molding composition which comprises at least 50% by weight of a copolyamide, which is composed of the following monomer combination: a) from 65 to 99 mol % of a substantially equimolar mixture composed of an unbranched aliphatic diamine having from 6 to 18 carbon atoms and of an unbranched aliphatic dicarboxylic acid having from 6 to 18 carbon atoms, ?where the mixture composed of diamine and dicarboxylic acid comprises an average of from 8 to 12 carbon atoms, b) from 1 to 35 mol % of a substantially equimolar mixture composed of a cycloaliphatic diamine having from 8 to 20 carbon atoms and of a dicarboxylic acid having from 6 to 18 carbon atoms, for production of a printable or printed item, such as a ski topcoat.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: January 22, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Franz-Erich Baumann, Roland Wursche, Harald Häger, Sonja Bollmann, Kirsten Alting
  • Publication number: 20130014329
    Abstract: The present invention concerns yarns comprising copolymer derived from the copolymerization of para-phenylenediamine, 5(6)-amino-2-(p-aminophenyl)benzimidazole; and terephthaloyl dichloride wherein the ratio of moles of 5(6)-amino-2-(p-aminophenyl)benzimidazole to the moles of para-phenylenediamine is 30/70 to 85/15. The yarns have a sulfur content greater than 0.1%; and have an effective polymer cation to sulfur content molar ratio of at least 0.3. Additional aspects of the invention concern methods of producing such yarns.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 17, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: WARREN FRANCIS KNOFF, Christopher William Newton
  • Patent number: 8338561
    Abstract: Polyamide having a melting point between 330° C. and 370° C., said polyamide comprising: a diamine component (a) comprising between 0 and 55 mole %, based on the total number of moles of the diamine component (a), of at least one aliphatic diamine having more than 6 carbon atoms, and between 45 and 100 mole %, based on the total number of moles of the diamine component (a), of at least one aliphatic diamine having at most 6 carbon atoms, and a dicarboxylic acid component (b) comprising more than 50 mole %, based on the total number of moles of the dicarboxylic acid component (b), of terephthalic acid, with the exception of a certain specific polyamide (P*).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: December 25, 2012
    Assignee: Solvay Advanced Polymers, L.L.C.
    Inventors: Dale R. Warren, Nancy Singletary, Mark G. Reichmann
  • Patent number: 8297832
    Abstract: A process for producing polyamide which comprises directly melt polymerizing a diamine component, which comprises 70% by mole or more of xylylenediamine comprising 20% by mole or more of para-xylylenediamine, and a dicarboxylic acid component in the substantial absence of solvents in a reaction apparatus of the batch type, wherein a stirring apparatus disposed in the reaction apparatus and used for stirring the melted polymer in the apparatus comprises: (1) a rotating shaft connected to a driving member for stirring, (2) two or more stirring rods disposed in the substantially vertical direction which are cylinder-shaped members or plate-shaped members moving along the circumference of a circle having the center at the rotating shaft, and (3) a connecting member which connects the rotating shaft and the stirring rods; distances between the center line of the rotating shaft and center lines of the two or more stirring rods are each 15% or greater of the inner diameter of the reaction apparatus; the connecting m
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: October 30, 2012
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hideyuki Kurose, Katsumi Shinohara, Minoru Kikuchi, Tomomichi Kanda
  • Patent number: 8293863
    Abstract: The present invention provides polyamide curing agent compositions comprising the reaction products of (1) multifunctional amines of structure 1 where R1 is CH2CH2CH2NH2; R2, R3 and R4 independently are H or CH2CH2CH2NH2, and X is CH2CH2 or CH2CH2CH2 with (2) dimer fatty acids, optionally in combination with monofunctional fatty acids, the reaction product preferably comprising at least 15 wt % tetrahydropyrimidine-containing components. The curing agent compositions are useful for crosslinking epoxy resins to produce coatings, adhesives, floorings, composites and other articles.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: October 23, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gamini Ananda Vedage, Stephan Francis Monaghan, Williams René Edouard Raymond, Michael Ian Cook, Michael Paul Popule
  • Patent number: 8268956
    Abstract: The invention is directed to a transparent mold made of a polyamide molding material containing at least one polyamide formed from at least one diamine selected from the group of hexamethylene diamine (HMDA), bis-(4-amino-3-methylcyclohexyl)methane (MACM) and/or bis-(4-amino-cyclohexyl)methane (PACM) as well as from at least one dicarboxylic acid selected from the group of isophthalic acid (IPS), terephthalic acid (TPS) and/or dodecanedioic acid (DDS) or from the aforementioned diamines and dicarboxylic acids in combination with lactams and/or ?-/?-amino acids.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: September 18, 2012
    Assignee: Ems-Chemie AG
    Inventors: Friedrich Severin Bühler, Christian Rytka
  • Patent number: 8268937
    Abstract: The invention pertains to an aramid copolymer composition comprising an aramid copolymer having at least one arylene carboxylic acid moiety and at least one hydroxyarylene moiety, or comprising an aramid copolymer having at least one arylene carboxylic acid moiety or having at least one hydroxyarylene moiety, and a crosslinker agent. The invention further relates to crosslinked copolymers derived thereof and shaped articles comprising said crosslinked copolymers.
    Type: Grant
    Filed: September 1, 2007
    Date of Patent: September 18, 2012
    Assignee: Teijin Aramid B.V.
    Inventors: Johannes Bos, Sandra Corien Noordewier
  • Publication number: 20120165466
    Abstract: [Problem to be Solved] To provide a polyamide having a high melting point, which has excellent strength, toughness, and stability under heating. [Solution] This polyamide is obtained by polymerizing an (a) dicarboxylic acid comprising at least 50 mol % of an alicyclic dicarboxylic acid and a (b) diamine comprising at least 50 mol % of a diamine having a pentamethylenediamine skeleton, wherein the polyamide has a cyclic amino end amount of 30 to 60? equivalents/g.
    Type: Application
    Filed: September 7, 2010
    Publication date: June 28, 2012
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Yu Nitto, Yasukazu Shikano, Shinji Ieda, Kazunori Terada, Masaaki Aramaki
  • Patent number: 8178598
    Abstract: A curing agent for epoxy resin, and a coating composition using the curing agent curing agent that delivers excellent recoatability and overcoatability after a long time exposure. (A) An epoxy curing agent that is derived by adduction between amide-type reactants from polyamine compounds comprising from 25-75 mol % of a polyoxyalkylene-polyamine and carboxylic acids or a mixture thereof and glycidyl ether compound; (B) An epoxy curing agent of the mixture of (B1) amide-type reactants prepared through polyoxyalkylene-polyamine and carboxylic acids or a mixture thereof, and (B2) a reactant is derived by adduction between other aliphatic polyamines or a mixture thereof and glycidyl ether compound. Coating composition comprising the epoxy curing agent of the above described A or B.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 15, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Keisuke Hakuya, Michael Ian Cook, Kouichi Sakasegawa, Yoshimi Hasegawa
  • Publication number: 20120095161
    Abstract: A molding compound, containing at least 30% by weight of a copolyamide, which is derived from the following monomers: a) 50 to 95 mole percent of the combination of a diamine, selected from the group consisting of 1,9-nonane diamine, 1,10-decane diamine, 1,11-undecane diamine and 1,12-dodecane diamine, and terephthalic acid, and b) 5 to 50 mole percent of the combination of a diamine, selected from the group consisting of 2,2,4-trimethylhexamethylene diamine, 2,4,4-trimethylhexamethylene diamine, and mixtures thereof, and terephthalic acid. The copolyamide is crystalline and has low water absorption.
    Type: Application
    Filed: July 8, 2010
    Publication date: April 19, 2012
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Andreas Pawlik, Martin Roos, Franz-Erich Baumann, Harald Haeger
  • Patent number: 8158268
    Abstract: A metal-coated polyimide film is excellent in long-term adhesion reliability, exhibits various dimensional stabilities, and is particularly suitable for FPC, COF and TAB applications. The metal-coated polyimide film comprises a non-thermoplastic polyimide film; and a metal layer being directly formed on one surface or both surfaces of the non-thermoplastic polyimide film without using an adhesive, wherein the non-thermoplastic polyimide film contains a non-thermoplastic polyimide resin having a thermoplastic polyimide block component.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: April 17, 2012
    Assignee: Kaneka Corporation
    Inventors: Hisayasu Kaneshiro, Takashi Kikuchi, Shogo Fujimoto
  • Publication number: 20120029134
    Abstract: Disclosed is a polyamide composition including at least one semi-aromatic copolyamide, said semi-aromatic copolyamide consisting essentially of about 25 to about 55 mole percent repeat units of the formula —C(O)(CH2)mC(O)NHCH2ArCH2NH—??(I) and about 45 to about 75 mole percent repeat units of the formula —C(O)(CH2)mC(O)NH(CH2)2NH—(II) wherein m is 8, 10, and/or 12, n is 6, 10 and/or 12 and Ar is a meta-substituted benzene ring; and said polyamide has a melting point equal to or less than 225° C.; and 0.1 to 15 weight percent of one or more polyhydric alcohols having more than two hydroxyl groups and having a number average molecular weight (Mn) of less than 2000. Also disclosed are molded or extruded articles including the polyamide composition.
    Type: Application
    Filed: January 28, 2011
    Publication date: February 2, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: SHAILESH RATILAL DOSHI, Annakutty Mathew, Marvin M. Martens
  • Publication number: 20110301324
    Abstract: A liquid crystal display is provided which is capable of reducing the occurrence of defective display due to variations in the initial alignment direction of a liquid crystal alignment control film in a liquid crystal display of an IPS scheme, realizing the stable liquid crystal alignment, providing excellent mass productivity, and having high image quality with a higher contrast ratio. The liquid crystal display has a liquid crystal layer disposed between a pair of substrates, at least one of the substrates being transparent, and an alignment control film formed between the liquid crystal layer and the substrate. At least one of the alignment control films 109 comprises photoreactive polyimide and/or polyamic acid provided with an alignment control ability by irradiation of substantially linearly polarized light.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Inventors: Yasushi Tomioka, Hidetoshi Abe, Katsumi Kondo
  • Patent number: 8058386
    Abstract: Polyether poly(ester-amide) block copolymer having a softening point between 60° C. and 180° C., formed from reaction mixtures comprising a diacid, a poly(alkyleneoxy)diamine, and a poly(alkyleneoxy)polyol, wherein said diacid is a cyclohexane dicarboxylic acid; or formed from reaction mixtures comprising a diacid, a short chain aliphatic diamine having 2-6 carbons, and a poly(alkyleneoxy)polyol. Methods for making and using said block copolymers, compositions and articles comprising said block copolymers.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: November 15, 2011
    Assignee: Arizona Chemical Company, LLC
    Inventor: Mark S. Pavlin
  • Publication number: 20110275760
    Abstract: Novel modified polyamides are prepared by polymerization of diacid and diamine monomers in the presence of certain multifunctional and, optionally, monofunctional compounds; such novel polyamides are formulated into molding compositions which can be converted into useful shaped articles.
    Type: Application
    Filed: September 29, 2008
    Publication date: November 10, 2011
    Inventors: Lise Trouillet-Fonti, Marco Amici, Jean-Francois Thierry
  • Patent number: 7993755
    Abstract: A polyamide molding composition is described, comprising at least one transparent polyesteramide in a proportion by weight of from 70 to 99.99% by weight; at least one further polymer in a proportion by weight of from 0 to 30% by weight; at least one photochromic dye in a proportion by weight of from 0.01 to 2% by weight; and also optionally further dyes and/or additives. The invention further encompasses articles manufactured therefrom, e.g. foils, for the coating of photochromic ophthalmic lenses, or the like.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: August 9, 2011
    Assignee: EMS-Patent AG
    Inventors: Ralf Hala, Botho Hoffmann, Nikolai Lamberts
  • Patent number: 7989081
    Abstract: A resin composite copper foil comprising a copper foil and a resin layer containing a block copolymer polyimide and a maleimide compound, the resin layer being formed on one surface of the copper foil, a production process thereof, a copper-clad laminate using the resin composite copper foil, a production process of a printed wiring board using the copper-clad laminate, and a printed wiring board obtained by the above process.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: August 2, 2011
    Assignees: Mitsubishi Gas Chemical Company, Inc., PI R&D Co., Ltd.
    Inventors: Mitsuru Nozaki, Morio Gaku, Yasuo Tanaka, Eiji Nagata, Yasuo Kikuchi, Masashi Yano
  • Publication number: 20110149220
    Abstract: An alignment layer according to an exemplary embodiment of the present invention includes a polyimide, wherein the polyimide is derived from a composition including a dianhydride-based compound, and a compound represented by a Chemical Formula 1: wherein, in the above Chemical Formula 1, X1 and X2 are independently F, Cl, or CN, and R1 is a substituted or non-substituted C1-C12 alkyl group, a substituted or non-substituted C1-C12 alkoxy group, a substituted or non-substituted C1-C12 halogen-containing alkyl group, a substituted or non-substituted C1-C12 halogen-containing alkoxy group, or a combination thereof.
    Type: Application
    Filed: June 17, 2010
    Publication date: June 23, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ho-Yun BYUN, Jeong-Uk Heo, Ji-Yoon Jung, Na-Young Shin
  • Publication number: 20110147052
    Abstract: Disclosed is a polyimide film for insulating material prepared by reacting an acid anhydride and diamine compounds comprising p-phenylenediamine. The polyimide film has excellent electric properties such as a coefficient of thermal expansion, an elongation, a intensity, a dielectric strength and a bulk resistance, and suitable for use in a TAB tape employing a polyimide film, and a flexible printed wiring board.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: Kolon Industries, Inc.
    Inventor: Hak Gee JUNG
  • Publication number: 20110123817
    Abstract: The present invention is directed to polyamides that are crosslinkable in the presence of water having desirable properties including long open time, good adhesion and cold flexibility. Notably, the polyamides of the present invention are suitable for structural and semi-structural bonding applications utilizing a hot melt process, roll coater or bead extrusion process.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Applicant: HENKEL CORPORATION
    Inventors: Dwight Heinrich, Tina Nataniel
  • Publication number: 20110105683
    Abstract: Disclosed is a polyamide resin which is produced by the polycondensation of (A) pentamethylenediamin, (B) terephthalic acid and/or a derivative thereof, and (C) at least one member selected from adipic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, isophthalic acid, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane, caprolactam, undecalactam, laurolactam, aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and derivatives of these compounds. In the polyamide resin, the ratio of a repeating unit derived from the component (C) is 10 to 50 wt % (inclusive) relative to the total weight of the polymer. A solution of the polyamide resin in 98% sulfuric acid, which contains the polyamide resin at a concentration of 0.01 g/ml, has a relative viscosity of 1.5 to 4.5 at 25° C.
    Type: Application
    Filed: June 29, 2009
    Publication date: May 5, 2011
    Inventors: Koya Kato, Masaru Akita, Hideo Matsuoka
  • Patent number: 7879953
    Abstract: This disclosure provides a medical device and a method of forming the medical device. The medical device comprises a coating comprising a type-one polymer and a type-two polymer. The type-one polymer comprises at least two different blocks, at least one L1 block with the formula ; and at least one L2 block with the formula Medical devices comprising these polymers, mixtures of these polymers with therapeutic agents, and methods of making these polymers and mixtures are within the scope of this disclosure.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 1, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Stephen D. Pacetti
  • Patent number: 7875361
    Abstract: Relates to the use of a thermoplastic polymer molding compound for producing metallically coated light-reflecting components based on thermoplastics, which are suitable for operating temperatures of at least 200° C. The polymer molding compound used according to the present invention is characterized in that it comprises polyamides which are selected from a group which comprises homopolyamides, copolyamides, and mixtures (blends) made of homopolyamides and copolyamides and mixtures made of homopolyamides or copolyamides, these polyamides being selected from a group which comprises amorphous and transparent polyamides, and these polyamides having a glass transition temperature (Tg) of at least 205° C. Light-reflecting components produced according to the use according to the present invention are suitable for operating temperatures of at least 200° C. and comprise reflectors for traveling lights of vehicles, for signal and lighting devices, and reflectors for solar collectors.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 25, 2011
    Assignee: EMS-Chemie AG
    Inventors: Ralf Hala, Michael Kaisser, Friedrich Buhler
  • Patent number: 7843045
    Abstract: The object of the present invention is to provide an adhesion film for semiconductor that is capable of bonding a semiconductor chip to a lead frame tightly at an adhesion temperature lower than that of the adhesion film of a traditional polyimide resin without generation of voids and that can also be used for protection of lead frame-exposed area, a thermoplastic resin composition for semiconductor for use in the adhesive agent layer therein, and a lead frame having the adhesive film and a semiconductor device; and, to achieve the object, the present invention provides a thermoplastic resin composition for semiconductor, comprising a thermoplastic resin obtained in reaction of an amine component containing an aromatic diamine mixture (A) containing 1,3-bis(3-aminophenoxy)benzene, 3-(3?-(3?-aminophenoxy)phenyl)amino-1-(3?-(3?-aminophenoxy)phenoxy)benzene and 3,3?-bis(3?-aminophenoxy)diphenylether, and an acid component (C), an adhesion film for semiconductor using the same, a lead frame having the adhesion fi
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: November 30, 2010
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Kiyohide Tateoka, Toshiyasu Kawai, Yoshiyuki Tanabe, Tomohiro Nagoya, Naoko Tomoda
  • Patent number: 7838091
    Abstract: A novel aromatic polyamide compound, a polymerization method thereof, and an optical film for use in a flexible display substrate produced using the same are disclosed. The aromatic polyamide compound is a copolymer comprising a repeating unit of a para-substituted aromatic diamine and a repeating unit of a meta- or meta-para-substituted aromatic diamine. The aromatic polyamide compound is colorless and transparent, excellent in heat resistance, and excellent in processability such as the compound being easily dissolved in a polar organic solvent without the addition of an inorganic salt. Therefore, the aromatic polyamide compound is suitable for producing the optical film for use in a display substrate.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: November 23, 2010
    Assignee: Kyung-Pook National University Industry-Academic Cooperation Foundation
    Inventor: Tae-Jin Oh
  • Patent number: 7834130
    Abstract: A single-stage melt polymerization process is demonstrated for production of a polybenzimidazole which comprises the following steps. First, a high intensity reactor having a means for controlling agitation and rate of, atmosphere, and temperature is provided. Second, the high intensity reactor is degassed and filled with nitrogen. Third, a tetraminobiphenyl (TAB), compound A and an isophthalic acid (IPA), compound B are provided. Fourth, the high intensity reactor is charged with compounds A and B. Fifth, compound A and compound B are reacted under high intensity agitation in an absence of catalyst, to temperature of between 340° C. to 430° C. to produce a polybenzimidazole having an IV of at least 0.45 and a plugging value of greater than or equal to 1.0 g/cm2.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 16, 2010
    Assignee: PBI Performance Products, Inc.
    Inventors: Bobby G. Dawkins, J. Dean Baker
  • Patent number: 7834099
    Abstract: An imide-naphthoxazine copolymer comprising a repeating unit represented by General Formula (1) below: (wherein X and Y independently represent a single bond, an oxygen atom, a carbonyl group, or an organic group which may be substituted by a heteroatom; R represents CH3 or H, n represents an integer from 1 to 10; and m represents an integer from 1 to 20).
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: November 16, 2010
    Assignees: Sekisui Chemical Co., Ltd., Case Western Reserve University
    Inventors: Hatsuo Ishida, Masanori Nakamura
  • Patent number: 7811660
    Abstract: A non-thermoplastic polyimide film exhibits high adherability without expensive surface treatment and is made from a precursor solution having high storage stability. The non-thermoplastic polyimide film comprises a non-thermoplastic polyimide resin having a block component derived from a thermoplastic polyimide. Preferably, the block component of the thermoplastic polyimide is present in an amount of 20 to 60 mol % of the entire polyimide so that the precursor solution thereof exhibits high storage stability and that the film can exhibit high adherability, in particular, high adherability to polyimide adhesives.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: October 12, 2010
    Assignee: Kaneka Corporation
    Inventors: Hisayasu Kaneshiro, Hiroyuki Tsuji, Takashi Kikuchi
  • Patent number: 7786249
    Abstract: This disclosure covers polymers, which are useful in medical device applications. The polymers comprise at least two different blocks, at least one L1 block with the formula and at least one L2 block with the formula Medical devices comprising these polymers, mixtures of these polymers with therapeutic agents, and methods of making these polymers and mixtures are within the scope of this disclosure. Some of these medical devices are implantable within a mammalian body, such as in a body lumen.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: August 31, 2010
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Stephen D. Pacetti
  • Patent number: 7772359
    Abstract: This disclosure provides a method device and a method of forming the medical device. The medical device comprises a coating comprising a polymer. The polymer comprises at least two different blocks, at least one L1 block with the formula and at least one L2 block with the formula Medical devices comprising these polymers, mixtures of these polymers with therapeutic agents, and methods of making these polymers and mixtures are within the scope of this disclosure.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: August 10, 2010
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Stephen D. Pacetti
  • Patent number: 7632914
    Abstract: Provided herein is a coating comprising a polymer.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: December 15, 2009
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Stephen D. Pacetti
  • Publication number: 20090299027
    Abstract: A process for producing polyamide which comprises directly melt polymerizing a diamine component, which comprises 70% by mole or more of xylylenediamine comprising 20% by mole or more of para-xylylenediamine, and a dicarboxylic acid component in the substantial absence of solvents in a reaction apparatus of the batch type, wherein a stirring apparatus disposed in the reaction apparatus and used for stirring the melted polymer in the apparatus comprises: (1) a rotating shaft connected to a driving member for stirring, (2) two or more stirring rods disposed in the substantially vertical direction which are cylinder-shaped members or plate-shaped members moving along the circumference of a circle having the center at the rotating shaft, and (3) a connecting member which connects the rotating shaft and the stirring rods; distances between the center line of the rotating shaft and center lines of the two or more stirring rods are each 15% or greater of the inner diameter of the reaction apparatus; the connecting m
    Type: Application
    Filed: May 26, 2009
    Publication date: December 3, 2009
    Applicant: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hideyuki KUROSE, Katsumi Shinohara, Minoru Kikuchi, Tomomichi Kanda