Carboxylic Acid Contains At Least Four Carboxylic Acid Groups Or Is A Derivative Of A Carboxylic Acid Containing At Least Four Carboxylic Groups Patents (Class 528/353)
  • Patent number: 6440576
    Abstract: A metal-plated aromatic polyimide film composed of an aromatic polyimide resin film, a surface layer of which contains a dispersed palladium metal or a palladium compound, and a metal layer which is chemically plated on the surface layer of the polyimide resin film. The surface layer is preferably formed by placing a palladium compound on a self-supporting aromatic polyimide precursor film and heating the self-supporting film having the palladium compound on its surface layer to a temperature at which the polyimide precursor is converted into its corresponding aromatic polyimide.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: August 27, 2002
    Assignee: Ube Industries, Ltd.
    Inventors: Tomohiko Yamamoto, Jun Takagi, Hiroto Shimokawa
  • Publication number: 20020099166
    Abstract: An acid dianhydride, together with a diamine, is heated in an organic polar solvent in the presence of &ggr;-caprolactone or &bgr;-butyrolactone as an acid catalyst to prepare a polyimide having an average molecular weight of 10,000 to 300,000. This production process can realize the production of a polyimide which is soluble in a solvent and has high processability and stability.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 25, 2002
    Applicant: HITACHI CABLE,LTD.
    Inventors: Katsumoto Hosokawa, Yuuki Honda, Seiji Kamimura, Yoshiyuki Ando, Kenji Asano
  • Patent number: 6417321
    Abstract: A thermally cured polyimide is provided, and in particular a crosslinked polyimide, comprising a fluorenyl diamine and comprising an aromatic ring having at least one C1-C10 branched or unbranched alkyl substituent, where the alkyl substituent includes a benzylic hydrogen. The present invention provides a crosslinked polyimide made by a process comprising the step of crosslinking a polyimide comprising diamines comprising pendent fluorenyl groups and comprising aromatic rings having at least one C1-C10 branched or unbranched alkyl substituent, the alkyl substituent including a benzylic hydrogen, by raising the temperature of said polyimide above its glass transition temperature.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: July 9, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Kazuhiko Minami, Hiroshi Ayukawa, Toshihiro Suwa, Mitsuaki Kobayashi, Bert T. Chien, Stephen A. Ezzell
  • Patent number: 6414105
    Abstract: An aromatic polycarbodiimide comprising a structural unit represented by the following formula (I): where R is an organic group having 3 or more carbon atoms, and n is an integer of 2 to 300, and a polycarbodiimide solution, a polycarbodiimide sheet, and an insulated coated electric wire which are prepared using the aromatic polycarbodiimide. The aromatic polycarbodiimide has high solubility in an organic solvent, satisfactory workability, and excellent heat resistance and humidity resistance. The insulated coated electric wire has excellent durability and is highly reliable under high pressure, high humidity conditions.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: July 2, 2002
    Assignee: Nitto Denko Corporation
    Inventors: Sadahito Misumi, Michie Sakamoto, Takami Hikita, Michio Satsuma, Amane Mochizuki
  • Patent number: 6410677
    Abstract: The present invention provides an insulating material showing excellent thermal propeties and electrical properties in semiconductor applications.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: June 25, 2002
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Takashi Enoki, Nobuhiro Higashida, Mitsuru Murata
  • Publication number: 20020074686
    Abstract: There is provided a process for preparing a polyimide film by a method of casting a film, wherein bubble inclusion and unevenness in thickness are prevented without decrease in mechanical strength at the same time. It is an object of the present invention to provided a process for preparing a polyimide film characterized by extruding, casting and forming into a film a composition of a resin solution obtained by adding, to low viscosity varnish obtained by polymerizing a tetracarboxylic dianhydride component with a diamine component in a molar ratio of 1:1.01 to 1:1.05, or 1:0.95 to 1:0.99, a dehydrating agent in a molar ratio of at least one time and a chemically-imidizing catalyst in a molar ratio of at least half time based on 1 mole of the amic acid of the poly(amic acid) varnish.
    Type: Application
    Filed: September 11, 2001
    Publication date: June 20, 2002
    Inventors: Katsunori Yabuta, Kiyokazu Akahori
  • Patent number: 6395391
    Abstract: An adhesive tape for electronic parts which comprises a metal substrate and an adhesive layer A and an adhesive layer B and an adhesive layer C laminated in order wherein said adhesive A comprises a polyimide consisting of 100-20% by mol of the repeating unit represented by the following formula-(1a) and 0-80% by mol of the repeating unit represented by the following formula (1b), said adhesive B comprises a polyimide consisting of 100-40% by mol of the repeating unit represented by the following formula (1a) and 0-60% by mol of the repeating unit represented by the following formula (2), and the adhesive layer A and the adhesive layer B have each a different glass transition temperature: wherein Ar represents a divalent group selected from the specified structures containing aromatic rings, R is an alkylene group having 1 to 10 carbon atoms or —CH2OC6H4—, the methylene group of which attaches to Si, and n means an integer of 1 to 20.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: May 28, 2002
    Assignee: Tomoegawa Paper Co., Ltd.
    Inventors: Osamu Oka, Jun Tochihira, Fumiki Komagata
  • Patent number: 6395907
    Abstract: The present invention is directed to new polycyclicaromatic-ethynyl terminated materials that possesses excellent mechanical and chemical properties for high-performance composite application that can be cured at lower temperatures than phenyl-ethynyl terminated imide materials.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: May 28, 2002
    Assignee: Virginia Commonwealth University
    Inventors: Michel E. Wright, Derek Schorzman
  • Patent number: 6395399
    Abstract: A flexible printed substrate is constituted of metallic foil and provided thereon a polyimide layer which is produced by forming a film of a polyamic acid varnish on the metallic foil, followed by imidating. The polyimide layer has a linear expansion coefficient of 10×10−6 to 30×10−6 (1/K) and a softening point not more than the imidation temperature.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: May 28, 2002
    Assignee: Sony Chemicals Corp.
    Inventors: Noriaki Kudo, Minoru Nagashima
  • Patent number: 6392004
    Abstract: An element of a gigahertz electronic device is provided comprising a polyimide selected to have an imide equivalent weight of 375 or greater. The polyimide preferably has a dielectric loss at 12.8 GHz of 0.009 or less and a Tg of 260° C. or greater. Such elements include circuit substrates and antennas.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: May 21, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Bert T. Chien, Stephen A. Ezzell
  • Patent number: 6389215
    Abstract: An optical waveguide subsystem, and process, having at least one cladding in contact with at least one core. The cladding has a refractive index less than the refractive index of the core. Either the cladding or core contains a crosslinked polyimide that is substantially meta-linked. The polyimide has an absolute birefringence of from about 0.01 to about zero.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: May 14, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Geoffrey A. Lindsay, Andrew P. Chafin, Rena Yee, Peter Zarras
  • Patent number: 6383578
    Abstract: An angularity enhancement layer in a liquid crystal display, which display comprises a liquid crystal cell, wherein the angularity enhancement layer includes a negative birefringent polyimide layer comprising a plurality of structural units having pendant fluorene groups, said angularity enhancement layer being disposed on at least one surface of said liquid crystal cell. A liquid crystal display can comprise an angularity enhancement construction of the invention which comprises a polyimide layer.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: May 7, 2002
    Assignee: 3M Innovative Properties Co.
    Inventors: Stephen A. Ezzell, Hassan Sahouani, Ernest L. Thurber
  • Publication number: 20020052464
    Abstract: A process for production of polyimide powder, which comprises reacting a biphenyltetracarboxlic dianhydride and an aromatic diamine in an amide-based solvent optionally containing a water-soluble ketone, in the presence of an imidazole at 1-100 equivalent percent based on the carboxylic acid content of the polyimide precursor, separating and collecting the produced polyimide precursor powder from a water-soluble ketone solvent containing 3-30 wt % of an amide-based solvent, and heating the polyimide precursor powder to an imidation rate of 90% or greater, as well as polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 2, 2002
    Applicant: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Publication number: 20020052463
    Abstract: A process for production of polyimide powder, which comprises reacting an aromatic diamine with a partial ester of a biphenyltetracarboxylic dianhydride, which is a partial ester of a biphenyltetracarboxylic dianhydride with a primary alcohol of 1-5 carbon atoms of which at least 30 mole percent is a 2,3,3′,4′-biphenyltetracarboxylic acid component, in the presence of the primary alcohol, separating out and collecting the resulting solid polyimide precursor and heating for dehydrating ring closure, polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 2, 2002
    Applicant: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Publication number: 20020045127
    Abstract: Polyimide is produced by reacting two kinds of diamine compounds consisting of diaminopolysiloxane and a carboxyl group-containing diamine or three kinds of diamine compounds consisting of diaminopolysiloxane, a carboxyl group-containing diamine and an aromatic or alicyclic diamine with a dicarboxylic acid anhydride having a 2,5-dioxotetrahydrofuryl group as one acid anhydride group, thereby once forming a polyamic acid, and subjecting the polyamic acid to polyimidization reaction. The resulting polyimide itself is soluble in low boiling organic solvents for general purpose use, typically methyl ethyl ketone. A photosensitive composition comprising the polyimide, a photo crosslinking agent and a photo acid-generating agent forms a negative type polyimide pattern upon development with an aqueous alkali solution.
    Type: Application
    Filed: October 18, 2001
    Publication date: April 18, 2002
    Inventors: Lin-Chiu Chiang, Jenq-Tain Lin, Nobuyuki Sensui
  • Patent number: 6365324
    Abstract: Polyimide is produced by reacting two kinds of diamine compounds consisting of diaminopolysiloxane and a carboxyl group-containing diamine or three kinds of diamine compounds consisting of diaminopolysiloxane, a carboxyl group-containing diamine and an aromatic or alicyclic diamine with a 4,4′-(hexafluoroisopropylidene)diphthalic acid dianhydride, thereby once forming a polyamic acid, and subjecting the polyamic acid to polyimidization reaction. The resulting polyimide itself is soluble in low boiling organic solvents for general purpose use, typically methyl ethyl ketone. A photosensitive composition comprising the polyimide, a photo crosslinking agent and a photo acid-generating agent forms a negative type polyimide pattern upon development with an aqueous alkali solution.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: April 2, 2002
    Assignee: Nippon Mektron, Limited
    Inventors: Lin-chiu Chiang, Jenq-Tain Lin, Nobuyuki Sensui
  • Publication number: 20020037991
    Abstract: A 6,6′-dialkyl-3,3′,4,4′-biphenyltetracarboxylic dianhydride is prepared by brominating a 4-alkylphthalic anhydride at its 5-position, and coupling the bromination product in the presence of a nickel catalyst; A photosensitive resin composition containing a polyimide precursor having repetitive units of general formula (7) is applied onto a substrate, exposed to 1-line, developed and heated to form a polyimide relief pattern.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 28, 2002
    Applicant: Hitachi Chemical DuPont MicroSystems Ltd.
    Inventors: Noriyoshi Arai, Makoto Kaji, Akihiro Sasaki, Toshiki Hagiwara
  • Publication number: 20020035196
    Abstract: A polyimide resin composition comprising a polyimide resin (A) and at least one 1H-tetrazole (B) selected from the group consisting of 1H-tetrazole, 5,5′-bis-1H-tetrazole, and derivatives thereof, and having an excellent rust preventing effect on copper and copper alloys.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 21, 2002
    Inventors: Akira Tanaka, Satoshi Tazaki, Yasuhiro Yoneda, Kishio Yokouchi
  • Patent number: 6359107
    Abstract: A composition of and method for making high performance imide resins that are processable by resin transfer molding (RTM) and resin infusion (RI) techniques were developed. Materials with a combination of properties, making them particularly useful for the fabrication of composite parts via RTM and/or RI processes, were prepared, characterized and fabricated into moldings and carbon fiber reinforced composites and their mechanical properties were determined. These materials are particularly useful for the fabrication of structural composite components for aerospace applications. The method for making high performance resins for RTM and RI processes is a multi-faceted approach. It involves the preparation of a mixture of products from a combination of aromatic diamines and aromatic dianhydrides at relatively low calculated molecular weights (i.e. high stoichiometric offsets) and endcapping with latent reactive groups.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: March 19, 2002
    Assignee: The United States of America as represented by the Administrator, National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Paul M. Hergenrother
  • Publication number: 20020032273
    Abstract: A polyimide resin composition comprising a polyimide resin (A) and at least one 1H-tetrazole (B) selected from the group consisting of 1H-tetrazole, 5,5′-bis-1H-tetrazole, and derivatives thereof, and having an excellent rust preventing effect on copper and copper alloys.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 14, 2002
    Inventors: Akira Tanaka, Satoshi Tazaki, Yasuhiro Yoneda, Kishio Yokouchi
  • Patent number: 6355737
    Abstract: The process for producing polymer blends by reacting at least one aminonitrile with water in the presence of thermoplastic polymers and optionally further polyamide-forming monomers comprises the following steps: (1) reacting at least one aminonitrile with water at a temperature from 90 to 400° C. and a pressure from 0.1 to 35×106 Pa to obtain a reaction mixture, (2) further reacting the reaction mixture at a temperature from 150 to 400° C.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: March 12, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Ralf Mohrschladt, Martin Weber, Volker Hildebrandt
  • Patent number: 6355357
    Abstract: A flexible printed board, in which a polyimide resulting from the imidation of a polyamic acid obtained by the addition polymerization of diamines and acid dianhydrides is formed as an insulating layer on a metal foil, is characterized in that the diamines include specific imidazolyl-diaminoazines represented by the formula 1; (where A is an imidazolyl group; R1 is an alkylene group; m is 0 or 1; R2 is an alkyl group; n is 0, 1, or 2; R3 and R4 are alkylene groups; p and q are each 0 or 1; and B is an azine residue, diazine residue, or triazine residue).
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: March 12, 2002
    Assignee: Sony Chemicals Corp.
    Inventors: Satoshi Takahashi, Hidetsugu Namiki
  • Patent number: 6350844
    Abstract: A polyimide film having sufficiently excellent characteristics such as a sufficiently high elastic modulus, a low water absorption, a small coefficient of moisture-absorption expansion, a small coefficient of linear expansion and a high dimensional stability; and various electric/electronic equipment bases with the use of the polyimide film. A polyimide film having a tensile elastic modulus of 700 kg/mm2 or less and a coefficient of moisture-absorption expansion of 20 ppm or less and containing a specific repeating unit as an essential repeating unit is synthesized. Then various electric/electronic equipment bases such as a laminate for flexible print connection boards are produced by using the polyimide film.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Kazuhiro Ono, Kiyokazu Akahori, Hidehito Nishimura
  • Patent number: 6350817
    Abstract: Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: February 26, 2002
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 6350845
    Abstract: Novel polyimides substituted by a substituent having an alkyl or fluoroalkyl group and having reduced water absorption; a process for producing these novel polyimides; and novel acid dianhydrides to be used in the production thereof. A polyimide containing a structure represented by the following general formula (I): wherein X1 represents a tetravalent organic group having a substituent —R1AR2 (wherein A represents a divalent linkage group; R1 represents a single bond or a C1-3 alkylene group; and R2 represents a C1-25 alkyl group or a fluoroalkyl group); and Y represents a divalent organic group.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Koji Okada, Shoji Hara, Hitoshi Nojiri
  • Publication number: 20020016438
    Abstract: A polyimide silicone resin which contains not more than 300 ppm of a cyclic siloxane oligomer having 10 or less silicon atoms, has a glass transition point of 250° C. or below and is soluble in an organic solvent. This polyimide silicone resin is produced using a diamine containing a diaminosiloxane containing not more than 300 ppm of the cyclic siloxane oligomer. Also disclosed is a polyimide silicone resin composition including 50 to 99% by mass of the polyimide silicone resin and 1 to 50% by mass of an epoxy compound. The polyimide silicone resin has been made to less contain the cyclic siloxane oligomers causative of trouble in electrical contacts, and promises a good adhesiveness or bond strength to substrates and a high reliability.
    Type: Application
    Filed: June 28, 2001
    Publication date: February 7, 2002
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Michihiro Sugo, Hideto Kato
  • Publication number: 20020012862
    Abstract: In a photoconductive element comprising a conductive support, e.g., an electrically conductive film, drum or belt on which a negatively chargeable photoconductive layer is formed, an electrical barrier layer is formed between the support and the photoconductive layer. The barrier layer provides a high energy barrier to the injection of positive charges but transports electrons under an applied electric field. The barrier layer of the invention transports charge by electronic rather than ionic mechanisms and, therefore, is not substantially affected by humidity changes.
    Type: Application
    Filed: June 8, 2001
    Publication date: January 31, 2002
    Applicant: NexPress Solutions, LLC
    Inventors: Louis J. Sorriero, Marie B. O'Regan, Michel F. Molaire
  • Patent number: 6335418
    Abstract: A primary object of the invention is to provide a production technology for functional polyamic acid microfine particles and functional polyimide microfine particles by which the particle shape, size and size distribution can be freely controlled. The invention is concerned with a process for synthesizing polyamic acid particles having functional groups at least on the surface from a tetracarboxylic anhydride and a diamine compound characterized by its comprising (a) a first step which comprises providing a tetracarboxylic anhydride and a diamine compound at least one of which has functional groups and preparing a first solution containing the tetracarboxylic anhydride and a second solution containing the diamine compound and (b) a second step which comprises mixing the first and second solutions under ultrasonic agitation to thereby precipitate polyamic acid microfine particles from the mixed solution.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 1, 2002
    Assignees: Osaka Prefectural Government, Sumitomo Bakelite Co., Ltd.
    Inventors: Katsuya Asao, Hitoshi Morita, Hitoshi Onishi, Masaki Kimoto, Yayoi Yoshioka, Hidenori Saito
  • Patent number: 6335417
    Abstract: A novel modified polyimide resin having a polybutadiene sheleton and obtainable by reacting the following three (3) kinds of compounds, i.e., a bifunctional hydroxyl-terminal polybutadiene having a number average molecular weight of 800 to 5,000, a tetrabasic acid dianhydride, and a diisocyanate compound, imparts reduced shrinkage upon setting to a thermosetting resin composition comprising the same and also imparts heat resistance and pliability and the like to a hardened mass or article of such thermosetting resin composition. Therefore, such thermosetting resin composition is an excellent resin composition capable of fully satisfying the requirements with regard to the characteristics of an overcoat agent for a wiring circuit which should be pliable, such as a flexible wiring circuit substrate, a film carrier and the like.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: January 1, 2002
    Assignee: Ajinomoto Co., Inc.
    Inventors: Hiroshi Orikabe, Tadahiko Yokota
  • Patent number: 6335416
    Abstract: A polyimide film, which is produced from polyamide acid prepared through the reaction of p-phenylenebis(trimellitic acid monoester anhydride), oxydiphthalic acid dianhydride, p-phenylenediamine, and 4,4′-diaminodiphenylether in an organic solvent, and which has a high elastic modulus, a high elongation, a low coefficient of linear expansion which is not quite different from that of copper, and a low coefficient of hygroscopic expansion.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: January 1, 2002
    Assignee: Kaneka Corporation
    Inventors: Hitoshi Nojiri, Koichiro Tanaka
  • Patent number: 6333391
    Abstract: A process for the preparation of an oligomeric polyimide comprises: mixing a tetracarboxylic acid, a dianhydride, a partially hydrolysed dianhydride or a mixture thereof with a diamine in a reaction medium comprising greater than 80% by weight water, and heating mixture in said reaction medium at a temperature above 100° C. for a time sufficient to form said oligomeric polyimide.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: December 25, 2001
    Assignees: Commonwealth Scientific and Industrial Research Organisation, The Boeing Company
    Inventors: Bronwyn Glenice Laycock, David Geoffrey Hawthorne, Jonathan Howard Hodgkin, Trevor Charles Morton
  • Publication number: 20010051705
    Abstract: The invention relates to a fluorine-containing polybenzoxazole including a structural unit represented by the general formula (1): 1
    Type: Application
    Filed: July 16, 2001
    Publication date: December 13, 2001
    Applicant: Central Glass Company, Limited
    Inventors: Kazuhiko Maeda, Yoshihiro Moroi, Michio Ishida, Kentaro Tsutsumi
  • Patent number: 6329494
    Abstract: A 6,6′-dialkyl-3,3′4,4′-biphenyltetracarboxylic dianhydride is prepared by brominating a 4-alkylphthalic anhydride at its 5-position, and coupling the bromination product in the presence of a nickel catalyst; A photosensitive resin composition containing a polyimide precursor having repetitive units of general formula (7) is applied onto a substrate, exposed to i-line, developed and heated to form a polyimide relief pattern wherein Y is a divalent organic group, R7 and R8 are OH or a monovalent organic group, R9 and R10 are a monovalent hydrocarbon group, R11, R12 and R13 are a monovalent hydrocarbon group, a and b are an integer of 0 to 2, c is an integer of 0 to 4, and m is an integer of 0 to 3.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: December 11, 2001
    Assignees: Hitachi Chemical DuPont MicroSystems Ltd., Hitachi Chemical DuPont MicroSystems L.L.C.
    Inventors: Noriyoshi Arai, Makoto Kaji, Akihiro Sasaki, Toshiki Hagiwara
  • Publication number: 20010046570
    Abstract: The present invention provides novel polyamic acids and polyimide optical alignment layers for inducing alignment of a liquid crystal medium. The novel compositions comprise reactive diamines containing a C3-C20 linear or branched hydrocarbon chains containing 1 to 4 carbon-carbon double bonds. The invention further describes liquid crystal displays comprising the novel polyimide optical alignment layers.
    Type: Application
    Filed: December 19, 2000
    Publication date: November 29, 2001
    Inventors: Wayne M. Gibbons, Patricia A. Rose, Paul J. Shannon, Hanxing Zheng
  • Patent number: 6320019
    Abstract: A method for preparing polyamic acid and polyimide of three-dimensional molecular structure such that these polymers are superior in adhesive strength and high-temperature stability while maintaining their inherent thermal resistance and mechanical properties, and thus can be effectively used as an adhesive material for high temperature adhesive tapes suitable for semiconductor assembly.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: November 20, 2001
    Assignee: Saehan Industries Incorporation
    Inventors: Kyung Rok Lee, Soon Sik Kim, Kyeong Ho Chang, Jeong Min Kweon
  • Patent number: 6316589
    Abstract: A polyimide for optical communications, which is expressed by the formula (1) where R1 and R2 are independently selected from the group consisting of CF3, CCl3, unsubstituted aromatic ring group and halogenerated aromatic ring group; R3 and R4 are independently selected from the group consisting of Cl, F, I, Br, CF3, CCl3, unsubstituted aromatic ring group and halogenated aromatic ring group; and n is an integer from 1 to 39. The polyimides have a superior heat resistance, and can avoid the increase in optical absorption loss due to a refractive index increase and deterioration of adhesive and coating properties due to weak surface tension of a polyimide film. In addition, use of the polyimides as a material for a core layer of optical waveguides can expand the selection range of material for the cladding layer of the optical waveguide.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: November 13, 2001
    Assignee: SamSung Electronics Co., Ltd
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee
  • Patent number: 6316574
    Abstract: The present invention provides a liquid crystal display element having an adequate pre-tilt angle for preventing the reverse domain, as well as excellent electrical properties by preparation of the polyamic acid composition for the liquid crystal display element which comprises a polyamic acid A that excels in electrical properties and a polyamic acid B that has side chains, mixed in the ratio A/B of 50/50 to 95/5 (by weight).
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: November 13, 2001
    Assignee: Chisso Corporation
    Inventors: Satoshi Tanioka, Shizuo Murata, Itsuo Shimizu, Kazumi Ito
  • Patent number: 6313258
    Abstract: An aromatic polycarbodiimide having a specified structural unit is disclosed. The aromatic polycarbodiimide can give films, moldings, adhesives and the like each having excellent characteristics such as high heat resistance, high dimensional stability, high moisture resistance or the like, and therefore is suitable for use as a heat resistant covering material in, for example, production of electronic parts.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: November 6, 2001
    Assignee: Nitto Denko Corporation
    Inventors: Michie Sakamoto, Amane Mochizuki, Michiharu Yamamoto
  • Patent number: 6310135
    Abstract: A polyimide resin composition comprising a polyimide resin (A) and at least one 1H-tetrazole (B) selected from the group consisting of 1H-tetrazole, 5,5′-bis-1H-tetrazole, and derivatives thereof, and having an excellent rust preventing effect on copper and copper alloys.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: October 30, 2001
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Akira Tanaka, Satoshi Tazaki, Yasuhiro Yoneda, Kishio Yokouchi
  • Patent number: 6309791
    Abstract: A polyimide precursor having repeating units of the formula: wherein R1 is a tetravalent organic group; and R2 is a divalent diphenyl group, is excellent in image formation and particularly suitable for forming a pattern using an i-line stepper, and gives a photosensitive resin composition by imparting photosensitivity to the polyimide precursor, said photosensitive resin composition being suitable for forming surface protective films for semiconductor devices or interlaminar insulating films for multilayer wiring boards.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: October 30, 2001
    Assignee: Hitachi Chemical Co.
    Inventors: Hideo Hagiwara, Yasunori Kojima, Makoto Kaji, Mitsumasa Kojima, Haruhiko Kikkawa
  • Patent number: 6307008
    Abstract: A polymide useful as an adhesive for semiconductor assemblies having excellent thermal resistance and adhesive strength at high temperatures.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: October 23, 2001
    Assignee: Saehan Industries Corporation
    Inventors: Kyung Rok Lee, Soon Sik Kim, Kyeong Ho Chang, Jeong Min Kweon
  • Publication number: 20010031853
    Abstract: The present invention provides PMR-type polyimides that exhibit lower melt viscosities than PMR-type polyimides of the prior art. These PMR-type polyimides are created by incorporating flexible linkages, such as kinked structures and twisted or non-coplanar moietes into the backbone structure of the PMR. Specifically, the present invention provides for the production of PMR-type polyimides having 2,2′-disubstituted biaryls in the polymer backbone.
    Type: Application
    Filed: March 2, 2001
    Publication date: October 18, 2001
    Inventors: Ronald K. Eby, Michael Meador, Christopher A. Gariepy
  • Patent number: 6303744
    Abstract: Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having a formula selected from the group consisting of: wherein R1 is either a radical where R is either hydrogen or an alkyl radical of 1 to 4 carbons, R2 is either OH, NH2, F, or Cl radical, R3 is either H, OH, NH2, F, Cl or an alkylene radical, R4 is either an alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical, and R5 is either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepregs and PMR composites.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: October 16, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mary Ann B. Meador, Aryeh A. Frimer
  • Patent number: 6303742
    Abstract: The present invention provides a novel polyimide composition which includes a cinnamoyl group or a derived cinnamoyl group and has photo-reactivity and heat-reactivity inherent to the cinnamoyl group. Further, a novel diamine and an acid dianhydride according to the present invention are materials mainly used for preparing a novel polyimide composition having the cinnamoyl group or the derived cinnamoyl group in a main chain or a side chain.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: October 16, 2001
    Assignee: Kanekafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Kohji Okada, Hitoshi Nojiri
  • Patent number: 6303743
    Abstract: A polyimide for optical communications, which is expressed by the formula (1), a method of preparing the same, and a method of forming multiple polyimide films using the polyimide, wherein the formula (1) is given by X1, X2, X3, A1, A2, B1, B2, B3, D1, D2, E1, E2, Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8, are independently selected from the group consisting of hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, aryl group and halogenated aryl group; Z is a simple chemical bond or selected from the group consisting of —O—, —CO—, —SO3—, —S—, —(T)m—, —(OT)m— and —(OTO)m—, wherein T is alkylene or arylene group substituted by at least one of halogen atom and halogenated alkyl group and m is an integer from 1 to 10; and n is an integer from 1 to 39.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: October 16, 2001
    Assignee: SamSung Electronics Co., Ltd.
    Inventors: Kyung-hee You, Kwan-soo Han, Tae-hyung Rhee
  • Patent number: 6294639
    Abstract: The present invention relates to a treating agent for liquid crystal alignment, which comprises a polyamic acid compound having a reduced viscosity of from 0.05 to 5.0 dl/g (in N-methylpyrrolidone at a temperature of 30° C. at a concentration of 0.5 g/dl) and containing repeating units represented by the general formula [I]: (wherein R1 is a tetravalent organic group constituting a tetracarboxylic acid which has an alicyclic structure having from 2 to 5 rings condensed and wherein all the carbonyl groups are directly bonded to the alicyclic structure and said carbonyl groups are not bonded to adjacent carbon atoms in the alicyclic structure, and R2 is a bivalent organic group constituting a diamine), or a polyimide resin obtained by imidizing said polyamic acid compound, and a liquid crystal alignment film and a liquid crystal device employing it.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: September 25, 2001
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kiyoshi Sawahata, Hideyuki Nawata, Takayasu Nihira, Yoshikazu Ohtsuka, Yasuyuki Nakajima
  • Publication number: 20010023286
    Abstract: The present invention provides an optical polyimide compound defined by the following formula in an optical high polymer material: 1
    Type: Application
    Filed: March 7, 2001
    Publication date: September 20, 2001
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee, Eun-Ji Kim, Jung-Hee Kim, Woo-Hyeuk Jang
  • Patent number: 6288209
    Abstract: Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of reactive endcapper. The reactive endcappers studied include but should not be limited to 4-phenylethynyl phthalic anhydride (PEPA), 3-aminophenoxy-4′-phenylethynylbenzophenone (3-APEB), maleic anhydride (MA) and nadic anhydride (5-norbornene-2,3-dicarboxylic anhydride, NA). Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. By simply changing the ratio of APB to the other diamine in the polyimide backbone, a material with a unique combination of solubility, Tg, Tm, melt viscosity, toughness and elevated temperature mechanical properties can be prepared.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: September 11, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Brian J. Jensen
  • Publication number: 20010019787
    Abstract: The invention relates to sulphonated polymides, notably of formula (I) 1
    Type: Application
    Filed: April 20, 2001
    Publication date: September 6, 2001
    Inventors: Sylvain Faure, Michel Pineri, Pierre Aldebert, Regis Mercier, Bernard Sillion
  • Publication number: 20010018099
    Abstract: The present invention provides novel polyimides, poly(amic acids) and poly(amide esters) thereof, and optical alignment layers derived therefrom, for inducing alignment of liquid crystals and liquid crystal displays.
    Type: Application
    Filed: December 19, 2000
    Publication date: August 30, 2001
    Inventors: Wayne M. Gibbons, Patricia A. Rose, Paul J. Shannon, Hanxing Zheng