Plural Amino Nitrogens Containing Patents (Class 564/511)
  • Patent number: 11798818
    Abstract: The present invention provides a container for containing a plate to be used to remove particles in a processing apparatus for processing a substrate, comprising: a charging unit configured to charge the stored plate, wherein the charging unit includes a contactor configured to be in contact with the plate, and is configured to charge the plate by supplying electric charges to the plate via the contactor and then separating the contactor from the plate.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 24, 2023
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Masami Yonekawa
  • Patent number: 11365283
    Abstract: Epoxy resin-based fibre matrix compositions contain alkyl substituted ethylene amines such as dimethyldiethylenetriamine (DMDETA, also dimethyl-1,4,7-triazaheptane), as a curing agent. These curing agents are characterized by a short curing time for a comparatively long processing time, and make it possible to obtain cured epoxy resins that exhibit low brittleness and high tensile strength and have a high glass transition temperature; as a result of which the fibre matrix composition is suitable particularly for use in pultrusion and winding processes.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: June 21, 2022
    Assignee: BASF SE
    Inventors: Matthaeus Kopczynski, Ansgar Gereon Altenhoff, Dieter Kolassa, Hannes Ferdinand Zipfel, Christian Eidamshaus, Joerg Pastre
  • Patent number: 9328039
    Abstract: Selective hydrogenation of a polyunsaturated hydrocarbon feed containing at least 2 carbon atoms per molecule and having an end point of 250° C. or less, by contacting said feed with a catalyst having an active phase of at least one metal from group VIII deposited on a support formed by at least one oxide, said catalyst being prepared using a process involving at least: i) contacting said support with at least one solution containing at least one precursor of metal from group VIII; ii) contacting said support with at least one organic compound formed from at least one cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; iii) calcining to obtain metal from group VIII in oxide form; i) and ii) possibly being carried out separately, in any order, or simultaneously.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 3, 2016
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Fabrice Diehl, Anne Claire Dubreuil, Josselin Janvier, Cecile Thomazeau
  • Publication number: 20150114884
    Abstract: Treatment compositions for neutralizing acidic species and reducing hydrochloride and amine salts in a fluid hydrocarbon stream are disclosed. The treatment compositions may comprise at least one amine with a salt precipitation potential index of equal to or less than about 1.0. Methods for neutralizing acidic species and reducing deposits of hydrochloride and amine salts in a hydrocarbon refining process are also disclosed. The methods may comprise providing a fluid hydrocarbon stream and adding a treatment composition to the fluid hydrocarbon stream. The treatment compositions used may have a salt precipitation potential index of equal to or less than about 1.0 and comprise either water-soluble or oil-soluble amines.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: General Electric Company
    Inventors: Alagarsamy Subbiah, Rebika Mayanglambam Devi, Nimeshkumar Kantilal Patel, Muthukumar Nagu, Rhomit Ghosh, Sathees Kesavan, Ashok Shankar Shetty, Manish Joshi
  • Patent number: 9000219
    Abstract: A method for treating an isocyanate residue, which comprises carrying out a thermal decomposition reaction of a carbamate that is produced by the reaction among an amine, urea and/or an N-unsubstituted carbamic acid ester and an alcohol to produce a decomposition solution, separating an isocyanate and the alcohol from the decomposition solution to produce the isocyanate residue, and bringing the isocyanate residue into contact with high-pressure/high-temperature water to decompose the isocyanate residue into an amine; and a method for treating a carbonate, which comprises bringing the carbonate into contact with high-pressure/high-temperature water to decompose the carbonate into an alcohol.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 7, 2015
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yoshiki Shimokawatoko, Koichi Murayama, Hiroshi Takeuchi, Takashi Kanno, Masaaki Sasaki, Kazuhiko Okubo
  • Patent number: 8987518
    Abstract: The present invention relates to polyamines and to a process for preparing polyamines.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: March 24, 2015
    Assignee: BASF SE
    Inventors: Ansgar Gereon Altenhoff, Christoph Mueller, Christian Mueller, Andreas Kunst, Thomas Reissner, Kirsten Dahmen
  • Publication number: 20150045501
    Abstract: The present invention relates to semiaromatic semicrystalline thermoplastic copolyimides obtained by polymerization of at least: (a) an aromatic compound comprising two anhydride functions and/or carboxylic acid and/or ester derivatives thereof; (b) a diamine of formula (I) NH2-R—NH2 in which R is a divalent aliphatic hydrocarbon-based radical optionally comprising heteroatoms, the two amine functions being separated by a number X of carbon atoms, X being between 4 and 12; and (c) a diamine of formula (II) NH2-R?—NH2 in which R? is a divalent aliphatic hydrocarbon-based radical optionally comprising heteroatoms, the two amine functions being separated by a number Y of carbon atoms, Y being between 10 and 20; it being understood that diamine (b) is different from diamine (c).
    Type: Application
    Filed: September 18, 2012
    Publication date: February 12, 2015
    Inventor: Stéphane Jeol
  • Patent number: 8952156
    Abstract: A process is disclosed for separating the output from the reaction of EDDN or EDMN with hydrogen in the presence of THF, a catalyst, TETA or DETA, water, and optionally organic compounds having higher and lower boiling points than TETA or DETA. Hydrogen is removed, and the output is supplied to a distillation column DK1 in which an azeotrope, optionally comprising organic compounds with a boiling point lower than TETA or DETA, is removed from the top. A product comprising TETA or DETA is removed from the bottom and passed into a distillation column DK2, removing THF. A stream comprising TETA or DETA passes from the bottom of DK2. The DK1 azeotrope is condensed. Phase separation is induced by the addition of an organic solvent essentially immiscible with water, and the mixture is separated. The organic phase is recycled into DK1 and the water phase is discharged.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 10, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Publication number: 20150038522
    Abstract: To provide an anti-cancer agent sensitivity determination marker, which marker can determine whether or not the patient has a therapeutic response to the anti-cancer agent, and novel cancer therapeutic means employing the marker. The anti-cancer agent sensitivity determination marker, the anti-cancer agent including oxaliplatin or a salt thereof and fluorouracil or a salt thereof, contains one or more substances selected from among an amino-acid-metabolism-related substance, a nucleic-acid-metabolism-related substance, a substance in the pentose phosphate pathway, a substance in the glycolytic pathway, a substance in the TCA cycle, a polyamine-metabolism-related substance, 7,8-dihydrobiopterin, 6-phosphogluconic acid, butyric acid, triethanolamine, 1-methylnicotinamide, NADH, NAD+, and a substance involved in the metabolism of any of these substances.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 5, 2015
    Applicants: KEIO UNIVERSITY, KABUSHIKI KAISHA YAKULT HONSHA
    Inventors: Yusuke Tanigawara, Akito Nishimuta, Junya Tsuzaki, Hiroyuki Takahashi
  • Patent number: 8946411
    Abstract: Processes are disclosed for the conversion of adipic acid to caprolactam employing a chemocatalytic reaction in which an adipic acid substrate is reacted with ammonia and hydrogen, in the presence of particular heterogeneous catalysts and employing unique solvents. The present invention also enables the conversion of other adipic acid substrates, such as mono-esters of adipic acid, di-esters of adipic acid, mono-amides of adipic acid, di-amides of adipic acid, and salts thereof to caprolactam. Solvents useful in the process that do not react with ammonia are also disclosed. Catalyst supports are disclosed which catalyze the reaction of the substrate with ammonia in the absence of added metal. Metals on the catalyst supports comprise ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and/or platinum (Pt). Heterogeneous catalysts comprising ruthenium (Ru) and rhenium (Re) on titania and/or zirconia supports are also disclosed.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Rennovia, Inc.
    Inventors: Eric L. Dias, Vincent J. Murphy, James Longmire, Hong Jiang
  • Publication number: 20150005487
    Abstract: The present invention relates to a sorbent comprising a solid support material, the surface of which comprises a residue of a general formula (I), wherein the residue is attached via a covalent single bond to a functional group on the surface of either the bulk solid support material itself or of a polymer film on the surface of the solid support material. Furthermore, the present invention relates to the use of the sorbent according to the invention for the purification of organic molecules, in particular pharmaceutically active compounds, preferably in chromatographic application.
    Type: Application
    Filed: September 17, 2012
    Publication date: January 1, 2015
    Applicant: INSTRACTION GMBH
    Inventors: Markus Arendt, Björn Degel, Thomas Schwarz, Gerhard Stumm, Martin Welter
  • Patent number: 8921602
    Abstract: The invention relates to an improved method for synthesizing bis[3-(N,N-dialkylamino)propyl]ethers from acrylonitrile, comprising the following reactions: first addition reaction of a water molecule and an acrylonitrile molecule to produce 3-hydroxypropionitrile (reaction 1), second addition reaction of a 3-hydroxypropionitrile molecule obtained by reaction 1 and an acrylonitrile molecule to produce bis(2-cyanoethyl)ether (reaction 2), hydrogenation reaction of the bis(2-cyanoethyl)ether to conduct a reduction of the nitrile functions to primary amine functions in order to produce bis(3-aminopropyl)ether (reaction 3), aminoalkylation reaction of the bis(3-aminopropyl)ether to produce bis[3-(N,N-dialkylamino)propyl]ether (reaction 4).
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: December 30, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Bruno Delfort, Dominique Le Pennec, Julien Grandjean
  • Publication number: 20140378708
    Abstract: [Object] An object is to provide a method for producing a polyamine composition with high production efficiency that has a low salt concentration and is derived from plant material. [Solution] A method for producing a polyamine composition includes (1) a step of treating a plant and/or a processed plant product with ethanol; (2) a step of treating the plant and/or the processed plant product with water; (3) a step of treating the plant and/or the processed plant product under an acidic condition; and (4) a step of separating and collecting a liquid fraction.
    Type: Application
    Filed: September 28, 2012
    Publication date: December 25, 2014
    Applicant: TOYOBO CO., LTD.
    Inventors: Chiaki Yamada, Hiroaki Kitazawa, Shusaku Yanagidani
  • Publication number: 20140371417
    Abstract: The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, gamma-butyrolactone, 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-CoA and/or putrescine or related products using the microbial organisms.
    Type: Application
    Filed: April 25, 2014
    Publication date: December 18, 2014
    Applicant: Genomatica, Inc.
    Inventors: Priti PHARKYA, Anthony P. BURGARD, Stephen J. VAN DIEN, Robin E. OSTERHOUT, Mark J. BURK, John D. TRAWICK, Michael P. KUCKINSKAS, Brian STEER
  • Publication number: 20140329916
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as adipate, 6-aminocaproate, hexamethylenediamine or caprolactam. Also provided herein are methods for using such an organism to produce adipate, 6-aminocaproate, hexamethylenediamine or caprolactam.
    Type: Application
    Filed: December 16, 2013
    Publication date: November 6, 2014
    Applicant: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Patent number: 8877979
    Abstract: Provided are polyhydroxy-diamine compounds of the formula I: or salt thereof, wherein R1, R2, and R3 are as defined herein. The compounds are useful as low additives for paints, coatings and epoxy formulations.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: November 4, 2014
    Assignees: Dow Global Technologies LLC, ANGUS Chemical Company
    Inventors: Ian A. Tomlinson, Asghar A. Peera
  • Patent number: 8865941
    Abstract: Provided is a process for preparing alkyl diamine compounds in high purity. The process utilizes an alkyl amine compound during the reduction of a nitroamine, resulting in reduction of the concentration of undesired byproducts.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: October 21, 2014
    Inventors: Michael D. Major, David W. Moore
  • Publication number: 20140286927
    Abstract: A engineered composition and method of delivery of said composition providing effective therapy for the treatment of ulcerative colitis, and Crohn's disease.
    Type: Application
    Filed: June 19, 2012
    Publication date: September 25, 2014
    Inventor: Peter Edward Smith
  • Publication number: 20140275569
    Abstract: The present application provides methods for decarboxylation of amino acids via imine formation with a catalyst under superheated conditions in either a microwave or oil bath.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Richard W. Morrison, Douglas Michael Jackson
  • Patent number: 8816078
    Abstract: Compositions and methods related to the removal of acidic gas. In one embodiment, compositions and methods are provided for the removal of acidic gas from a gas mixture using an aqueous amine solvent comprising water, a first amine, and a second amine, wherein the first amine contributes at least 50% by weight of the solvent's total amine concentration.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: August 26, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gary Rochelle, Stephanie Freeman, Xi Chen, Thu Nguyen, Alexander Voice, Humera Rafique
  • Publication number: 20140200371
    Abstract: Provided is a process for preparing alkyl diamine compounds in high purity. The process utilizes an alkyl amine compound during the reduction of a nitroamine, resulting in reduction of the concentration of undesired byproducts.
    Type: Application
    Filed: May 17, 2012
    Publication date: July 17, 2014
    Applicant: ANGUS CHEMICAL COMPANY
    Inventors: Michael D. Major, David W. Moore
  • Patent number: 8765634
    Abstract: A catalytically active composition comprising, prior to reduction with hydrogen: 10 to 75% by weight of an oxygen compound of zirconium, calculated as ZrO2; 1 to 30% by weight of an oxygen compound of copper, calculated as CuO; 10 to 50% by weight of an oxygen compound of nickel, calculated as NiO; 10 to 50% by weight of an oxygen compound of cobalt, calculated as CoO; and 0.1 to 10% by weight of one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In, calculated as PbO, Bi2O3, SnO, Sb2O3 or In2O3, respectively.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: July 1, 2014
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Publication number: 20140171683
    Abstract: The present invention relates to a novel process for converting a substrate of formula (III) and/or (IV) into a product of formula (I) or (II) comprising the following reactions: a) oxidation of at least one terminal C-atom, b) dehydratation, c) decarboxylation and d) reduction and/or amination. At least step b is enzyme-catalyzed. In a preferred embodiment, all reactions are enzymatically catalyzed. The enzymes catalyzing the reactions are selected from oxidoreductases, decarboxylases, dehydratases and/or aminotransferases. The process may be performed in a cell-free in vitro production system or in an improved fermentative production system.
    Type: Application
    Filed: March 26, 2012
    Publication date: June 19, 2014
    Inventors: Volker Sieber, André Pick, Broder Rühmann
  • Publication number: 20140162934
    Abstract: The present invention provides novel amino-lipids, compositions comprising such amino-lipids and methods of producing them. In addition, lipid nanoparticles comprising the novel amino-lipids and a biologically active compound are provided, as well as methods of production and their use for intracellular drug delivery.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: AXOLABS GMBH
    Inventors: Rainer CONSTIEN, Anke Geick, Philipp Hadwiger, Torsten Haneke, Ludger Markus Ickenstein, Carla Alexandra Hernandez Prata, Andrea Schuster, Timo Weide
  • Patent number: 8729204
    Abstract: Compositions and methods for producing polymerization initiators comprising at least two protected primary amine groups. Polymers prepared using such polymerization initiators can comprise a residue of the polymerization initiator and can initially comprise the at least two protected primary amine groups. Such polymers can undergo a deprotection process thereby yielding a polymer having one or more unprotected primary amine groups. Polymers having primary amine groups can be employed in rubber compositions, which have a variety of potential applications, such as, for example, in tire manufacturing.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: May 20, 2014
    Assignee: Bridgestone Corporation
    Inventors: Eiju Suzuki, Terrence E. Hogan
  • Patent number: 8728504
    Abstract: A process for solubilizing hydrophobic active ingredients in aqueous medium, which comprises using, as an assistant, at least one hyperbranched polymer (A) which is obtainable by reacting at least one hyperbranched polymeric compound having at least one primary or secondary amino group per molecule (a), selected from (a1) hyperbranched polyamides and (a2) hyperbranched polyureas, with (b) at least one mono-, di- or oligosaccharide.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: May 20, 2014
    Assignee: BASF SE
    Inventors: Bernd Bruchmann, Holger Türk, Daniel Schönfelder, Monika Haberecht, Dietmar Appelhans, Victor Boyko
  • Publication number: 20140121387
    Abstract: The present invention relates to diionic liquid salts of dicationic or dianionic molecules, as well as solvents comprising diionic liquids and the use of diionic liquids as the stationary phase in a gas chromatographic column.
    Type: Application
    Filed: January 2, 2014
    Publication date: May 1, 2014
    Applicant: Sigma-Aldrich Co. LLC
    Inventors: DANIEL W. ARMSTRONG, JARED ANDERSON
  • Patent number: 8658829
    Abstract: A method of preparing polyalkylated oligoalkylenepolyamines is provided. The method includes contacting oligoalkylenepolyamine with a reagent composition comprising (a) alkyl bromide and/or alkyl chloride; (b) a basic agent; and (c) iodide salt. The alkylation reaction may be carried out in a polar, aprotic organic solvent.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: February 25, 2014
    Assignee: NDSU Research Foundation
    Inventor: Arumugasamy Elangovan
  • Publication number: 20130309733
    Abstract: One aspect of the present disclosure relates to a stabilized recombinant expression plasmid vector comprising a polynucleotide encoding an antitoxin gene which expresses a polypeptide that neutralizes a polypeptide toxic to a host cell, the toxic polypeptide being expressed by a toxin gene in the host cell, and a polynucleotide encoding a polypeptide expression product, and the stabilized recombinant expression plasmid vector is derived from a Hafnia alvei autonomously replicable backbone plasmid. Other aspects of the present disclosure relate to a transformant transformed with the stabilized recombinant expression plasmid vector disclosed herein, a method of producing biobased cadaverine using the transformant disclosed herein, and biobased cadaverine prepared by the method disclosed herein. Another aspect of the present disclosure relates to a polyamide formed using biobased cadaverine disclosed herein, and a composition thereof.
    Type: Application
    Filed: March 12, 2013
    Publication date: November 21, 2013
    Applicants: CATHAY R&D CENTER CO., LTD., CATHAY INDUSTRIAL BIOTECH LTD.
    Inventors: Zhenhua PANG, Naiqiang LI, Charlie LIU
  • Publication number: 20130303723
    Abstract: The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
    Type: Application
    Filed: December 28, 2012
    Publication date: November 14, 2013
    Inventors: Mark J. Burk, Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya
  • Publication number: 20130289312
    Abstract: Disclosed herein are processes for preparing an ?,?-Cn-diol, wherein n is 5 or greater, from a feedstock comprising a Cn oxygenate. In some embodiments, the process comprises contacting the feedstock with hydrogen gas in the presence of a catalyst comprising metals M1, M2, and M3 and optionally a support, wherein: M1 is Mn, Cr, V, or Ti; M2 is Ni, Co, or Fe; and M3 is Cu, Ag, Pt, Pd or Au; or M1 is Pt or Rh; M2 is Cu, Ni or Pd; and M3 is Mo, Re or W. The Cn oxygenate may be obtained from a biorenewable resource.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Applicant: E I DU PONT DE MEMOURS AND COMPANY
    Inventors: Alan Martin Allgeier, Wathudura Indika Namal De Silva, Carl Menning, Joachim C. Ritter, Sourav Kumar Sengupta
  • Publication number: 20130289311
    Abstract: Disclosed herein are processes for preparing an ?,?-Cn-diol, wherein n is 5 or greater, from a feedstock comprising a Cn oxygenate. In one embodiment, the process comprises contacting the feedstock with hydrogen gas in the presence of a catalyst comprising Cu, a Cu oxide, or mixtures thereof; a heteropoly acid component comprising H3[P(W3O10)4], H4[Si(W3O10)4], H4[P(Mo3O10)4], H4[Si(Mo3O10)4], Cs2.5H0.5[P(W3O10)4], Cs2.5H0.5[Si(W3O10)4], or mixtures thereof; optionally a second metal component comprising Cr, a Cr oxide, Ni, a Ni oxide, Mn, a Mn oxide, Fe, an Fe oxide, Co, a Co oxide, Mo, a Mo oxide, W, a W oxide, Re, a Re oxide, Zn, or a Zn oxide, Ag, a Ag oxide, SiO2, or Al2O3; optionally at least one promoter comprising Na, K, Mg, Rb, Cs, Ca, Sr, Ba, Ce, or mixtures thereof; and optionally a support.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Inventors: ALAN MARTIN ALLGEIER, WATHUDURA INDIKA NAMAL DE SILVA, CARL MENNING, JOSEPH E. MURPHY, JOACHIM C. RITTER, SOURAV KUMAR SENGUPTA
  • Publication number: 20130190340
    Abstract: Certain aspects of the invention relate to compounds, compositions and methods that are useful for treating or preventing a disease in a subject by enhancing the degradation of a protein. In other aspects, said compounds can be useful research tools for investigating protein degradation. In other aspects, said compounds are useful research tools for investigating protein function. In certain embodiments, the degraded protein is implicated in a disease or disorder whose pathology is related at least in part to the excessive expression of the protein or the expression of a mutant form of the protein.
    Type: Application
    Filed: June 30, 2011
    Publication date: July 25, 2013
    Applicant: Brandeis University
    Inventors: Lizbeth K. Hedstrom, Marcus Long, Deviprasad R. Gollapalli
  • Publication number: 20130184495
    Abstract: Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceeding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 18, 2013
    Applicant: RENNOVIA, INC.
    Inventor: Rennovia, Inc.
  • Publication number: 20130137901
    Abstract: Process for the preparation of polyalkylenepolyamines by homogeneously catalyzed alcohol amination, in which aliphatic amino alcohols are reacted with one another or aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a homogeneous catalyst and in the presence of hydrogen gas. Polyalkylenepolyamines obtainable by such processes and polyalkylenepolyamines comprising hydroxy groups, secondary amines or tertiary amines. Uses of such polyalkylenepolyamines as adhesion promoters for printing inks, adhesion promoters in composite films, cohesion promoters for adhesives, crosslinkers/curing agents for resins, primers for paints, wet-adhesion promoters for emulsion paints, complexing agents and flocculating agents, penetration assistants in wood preservation, corrosion inhibitors, immobilizing agents for proteins and enzymes.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 30, 2013
    Inventors: Julia STRAUTMANN, Thomas Schaub, Stephan Hueffer, Steffen Maas, Rocco Paciello
  • Publication number: 20130079486
    Abstract: In a method for producing 1,5-pentamethylenediamine, a lysine decarboxylase-expressing microorganism that is subjected to a treatment is used.
    Type: Application
    Filed: February 25, 2011
    Publication date: March 28, 2013
    Inventors: Tomonori Hidesaki, Akiko Natsuji, Toshihiko Nakagawa, Goro Kuwamura, Daisuke Hasegawa, Satoshi Yamasaki, Kuniaki Sato, Hiroshi Takeuchi
  • Patent number: 8404900
    Abstract: An absorbent for separating acidic gases is disclosed. The absorbent or an absorbent composition for separating acidic gases has more than 3 kinds of compounds along with Chemical Formula 1 and 2, and has ability of rapid carbon dioxide elimination, excellent absorption ability, and less energy consumption for regenerating an absorbent due to easy desorption of carbon dioxide.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 26, 2013
    Assignee: Korea Electric Power Corporation
    Inventors: Jun-Han Kim, Jae-Goo Shim, Kyung-Ryong Jang, Ji-Hyun Lee
  • Publication number: 20130066112
    Abstract: The invention relates to multi-amine functional oligomers and multi-oxime functional oligomers in addition to a method for producing the same by means of the co-polymerisation of carbonyl carriers such as olefins or dienes, reaction with hydroxylamine and a subsequent selective catalytic hydrogenation.
    Type: Application
    Filed: March 8, 2011
    Publication date: March 14, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Christoph Gürtler, Thomas Ernst Müller, Ewa Gebauer, Henning Vogt, Yevgen Berezhanskyy, Burkhard Köhler, Walter Leitner
  • Patent number: 8378036
    Abstract: A method for drying a material such as a polymer hydrogel which passes through a cohesive phase as it dries is disclosed. The method comprises agitating a composition while removing liquid until the solids content of the composition reaches a level at which the composition enters a cohesive phase, halting agitation, removing liquid from the composition in the absence of agitation, and resuming agitation. Practice of the present invention can eliminate the problems associated with adhesion of a material to itself and to process equipment during the cohesive phase.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 19, 2013
    Assignee: Genzyme Corporation
    Inventor: Gary S. Rea
  • Patent number: 8361426
    Abstract: Absorption medium for acid gases comprising an oligoamine (A) of the general formula (I) and a piperazine derivative (B) of the general formula (II) in which the weight ratio of oligoamine (A) to the piperazine derivative (B) is 0.2 to 25, and also process for removing acid gases from a gas stream by contacting the gas stream at a pressure of 0.05 to 10 MPa abs with an aqueous solution of said absorption medium which is brought to and maintained at a temperature of 20 to 80° C.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: January 29, 2013
    Assignee: BASF SE
    Inventors: Ute Lichtfers, Robin Thiele, Susanna Voges, Georg Sieder, Oliver Spuhl, Hugo Rafael Garcia Andarcia
  • Publication number: 20130011916
    Abstract: Nucleic acids comprising a nucleic acid moiety and two or more transfection enhancer elements (TEE's) according to the general formula (I): Hydrophobic moiety—pH-responsive hydrophilic moiety, wherein said pH sensitive hydrophilic moiety of said TEE is independently a weak acid having a pka of between 4 and 6.5 or is a zwitterionic structure comprising a combination of acidic groups with weak basis having a pKa of between 4.5 and 7.
    Type: Application
    Filed: April 30, 2012
    Publication date: January 10, 2013
    Applicant: Lipocalyx GmbH
    Inventor: Steffen Panzner
  • Patent number: 8318117
    Abstract: Absorption medium for acid gases comprising an oligoamine (A) of the general formula (I) and a primary or secondary alkanolamine (B) of the general formula (II) in which the weight ratio of oligoamine (A) to the primary or secondary alkanolamine (B) is 0.2 to 4, and also the process for removing acid gases from a gas stream by contacting the gas stream at a pressure of 0.05 to 10 MPa abs with an aqueous solution brought to and maintained at a temperature of 20 to 80° C. of said absorption medium.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 27, 2012
    Assignee: BASF SE
    Inventors: Ute Lichtfers, Robin Thiele, Susanna Voges, Georg Sieder, Oliver Spuhl, Hugo Rafael Garcia Andarcia
  • Publication number: 20120289748
    Abstract: A method of preparing polyalkylated oligoalkylenepolyamines is provided. The method includes contacting oligoalkylenepolyamine with a reagent composition comprising (a) alkyl bromide and/or alkyl chloride; (b) a basic agent; and (c) iodide salt. The alkylation reaction may be carried out in a polar, aprotic organic solvent.
    Type: Application
    Filed: February 4, 2011
    Publication date: November 15, 2012
    Inventor: Arumugasamy Elangovan
  • Publication number: 20120272868
    Abstract: Graphene particulates, especially graphene nanoribbons (GNRs) and graphene quantum dots Ds and and a high-throughput process for the production of such particulates is provided. The graphene particulates are produced by a nanotomy process in which graphene blocks are cut from a source of graphite and then exfoliated into a plurality of graphene particulates. Graphene particulates having narrow widths, on the order of 100 nm or less, can be produced having band gap properties suitable for use in a variety of electrical applications.
    Type: Application
    Filed: November 22, 2010
    Publication date: November 1, 2012
    Applicants: THE UNIVERSITY OF KANSAS, KANSAS STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Vikas Berry, Nihar Mohanty, David S. Moore
  • Publication number: 20120259140
    Abstract: Use of compounds of molecular formula (I) as curing activators of mixes having a cross-linkable unsaturated-chain polymer base: ([R1R2R3NR5(NR4R6R7)n](n+1)+)y (n+1)Xy? (I); where: X is an anionic atom or group; R1, R2 and R3, which may be the same or different, are each CmH2m+1, where m ranges between 1 and 3, or CH2CHCH2 or CHCHCH3; R4, R6 and R7, which may be the same or different, are each CH2CHCH2 or CHCHCH3; n is 0 or 1; y is 1 when n is 1; y is 1 or 2 when n is 0; R5 is an aliphatic group C15-C22 when n is 0; and is an aliphatic group C8-C16 when n is 1; when n is 0, at least one of R1, R2, R3 and R5 comprises a double bond.
    Type: Application
    Filed: October 7, 2010
    Publication date: October 11, 2012
    Applicant: BRIDGESTONE CORPORATION
    Inventors: Salvatore Cotugno, Paolo Straffi, Barbara Secchi
  • Publication number: 20120190795
    Abstract: Provided is a low-cost, highly active, environmentally friendly living radical polymerization catalyst which does not require a radical initiator. An organic compound having an oxidation-reduction capability is used as a catalyst. Even if a radical initiator is not used, a monomer can be subjected to a radical polymerization to obtain a polymer having narrow molecular weight distribution. The cost of the living radical polymerization can be remarkably reduced. It is made possible to prevent adverse effects of using a radical initiator. The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages of the catalyst such as low toxicity of the catalyst, low amount of the catalyst necessary, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor (which do not require a post-treatment for a molded article), etc.
    Type: Application
    Filed: May 10, 2010
    Publication date: July 26, 2012
    Inventors: Atsushi Goto, Yoshinobu Tsujii, Takeshi Fukuda
  • Publication number: 20120116122
    Abstract: The instant invention is a process for the conversion of aliphatic cyclic amines to aliphatic diamines. The process for conversion of aliphatic cyclic amines to aliphatic diamines comprises the steps of: (1) selecting one or more cyclic amines; (2) contacting said one or more cyclic amines with ammonia and hydrogen, optionally water, and optionally one or more solvents in the presence of one or more heterogeneous metal based catalyst systems at a temperature in the range of from 120° C. to about 250° C.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 10, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Shawn D. Feist, Daniel A. Hickman, Erich J. Molitor, David C. Molzahn, Stacie Santhany, Abraham D. Schuitman
  • Patent number: 8158827
    Abstract: Disclosed are cationic lipid compounds and compositions of lipid aggregates for delivery of macromolecules and other compounds into cells. The compounds can be used alone or in combination with other compounds to prepare liposomes and other lipid aggregates suitable for transfection or delivery of compounds to target cells, either in vitro or in vivo. The compounds are preferably polycationic and preferably form highly stable complexes with various anionic macromolecules, particularly polyanions such as nucleic acids. These compounds have the property, when dispersed in water, of forming lipid aggregates which associate strongly, via their cationic portion, with polyanions. Also disclosed are intermediates for preparing the compound and compositions of the invention and methods of using the compounds to introduce other compounds into cells.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: April 17, 2012
    Assignee: Life Technologies Corporation
    Inventors: Yongliang Chu, Malek Masoud, Gulilat Gebeyehu
  • Publication number: 20110313186
    Abstract: The present invention relates to catalysts and processes for preparation thereof, said catalysts being obtainable by contacting a monolithic catalyst support with a suspension which comprises one or more insoluble or sparingly soluble compounds of the elements selected from the group of the elements cobalt, nickel and copper. The invention further relates to the use of the inventive catalyst in a process for hydrogenating organic substances, especially for hydrogenating nitriles, and to a process for hydrogenating organic compounds, which comprises using an inventive catalyst in the process.
    Type: Application
    Filed: February 1, 2010
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Patent number: 8076518
    Abstract: This invention provides chain extender compositions. These compositions comprise (i) an aliphatic secondary diamine, and (ii) a component selected from the group consisting of: (a) a cycloaliphatic primary diamine; (b) an aliphatic secondary diamine; (c) an aliphatic secondary diamine and an aliphatic primary diamine; (d) an aliphatic diimine; and (e) a combination of any two or more of (a) through (d), with the proviso that when (ii) is (a), (i) is a noncyclic aliphatic secondary diamine. Processes for producing polyurethanes, polyureas, and polyurea-urethanes are also provided.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: December 13, 2011
    Assignee: Albemarle Corporation
    Inventors: Paul L. Wiggins, John Y. Lee, Judit Orgad, David W. Owens