Oxy Or Peroxy Containing Reactant Patents (Class 568/485)
  • Patent number: 6797830
    Abstract: The present invention provides a process for producing an oxide from an alcohol compound, the process comprising the steps of causing silica gel to carry the alcohol compound thereon and an oxidative catalyst thereon, and oxidizing the alcohol compound in the presence of an oxidizing agent, giving an oxide higher in oxidizing degree than the alcohol compound, and also provides a process for producing an oxide from an alcohol compound, the process comprising the steps of causing silica gel to carry the alcohol compound, and subjecting the alcohol compound to an electrolytic oxidation, giving an oxide higher in oxidizing degree than the alcohol compound.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: September 28, 2004
    Assignee: Otsuka Kagaku Kabushiki Kaisha
    Inventors: Hideo Tanaka, Yutaka Kameyama
  • Patent number: 6787671
    Abstract: An osmium-assisted process for the oxidative cleavage of oxidizable organic compounds such as unsaturated organic compounds, including alkenes and olefins into aldehydes, carboxylic acids, esters, or ketones. The process uses a metal catalyst comprising osmium and a peroxy compound selected from the group consisting of peroxymonosulfuric acid and salts thereof to oxidatively cleave the oxidizable organic compound. In particular, the process enables aldehydes, carboxylic acids, esters, or ketones to be selectively produced from the corresponding mono-, 1,1-di-, 1,2-di-, tri-, or tetra-substituted olefins in a reaction that produces the result of ozonolysis but with fewer problems. The present invention further provides a process for oxidizing an aldehyde alone or with the osmium in an interactive solvent to produce an ester or carboxylic acid.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: September 7, 2004
    Assignee: Board of Trustees of Michigan State University
    Inventors: Babak Borhan, Benjamin R. Travis, Jennifer M. Schomaker
  • Publication number: 20040171874
    Abstract: A method for producing (meth)acrolein and/or (meth)acrylic acid by subjecting isobutylene and the like or propylene to a vapor-phase catalytic oxidation with molecular oxygen in the presence of a solid oxidation catalyst in a tubular type of fixed bed reactor, wherein a temperature of a hot-spot zone is sufficiently controlled and (meth)acrolein and (meth)acrylic acid are produced with a high yield.
    Type: Application
    Filed: April 20, 2004
    Publication date: September 2, 2004
    Inventors: Seigo Watanabe, Motomu Oh-Kita, Toshihiro Sato
  • Patent number: 6781018
    Abstract: Dimethyl ether is converted to formaldehyde using a supported catalyst comprising molybdenum and/or vanadium oxides. The surface density of the oxide(s) ranges from greater than that for the isolated monomeric oxides upwards, so long as there is a substantial absence of bulk crystalline molybdenum and/or vanadium oxide(s). Conversion and selectivity to formaldehyde are improved as compared to data reported for known catalysts. Also disclosed is a supported catalyst comprising molybdenum and/or vanadium oxides wherein the support comprises one or more reducible metal oxides, preferably a layer or layers of one or more reducible metal oxides disposed on the surface of a particulate alumina or zirconia support.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: August 24, 2004
    Assignee: The Regents of the University of California
    Inventors: Haichao Liu, Enrique Iglesia
  • Patent number: 6670509
    Abstract: A process for oxygenating organic substrates such as aliphatic hydrocarbons has been developed. The process involves contacting the organic substrate with oxygen in the presence of a bicyclo imide promoter and a metal co-catalyst. The process is preferably carried out using sulfolane as the solvent. Optionally, the oxygenated product can be hydrogenated to give the corresponding alcohol which can optionally in turn be dehydrated to provide the corresponding olefin.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: December 30, 2003
    Assignee: UOP LLC
    Inventors: Paul R. Kurek, David W. House
  • Publication number: 20030229254
    Abstract: 3,3-Dimethylbutanal is prepared from 3,3-dimethylbutanol. Intermediate 3,3-dimethylbutanol is obtained by reacting ethylene, isopropylene and a mineral acid to produce a 3,3-dimethylbutyl ester which is hydrolyzed to the alcohol. The hydrolysis step is effectively carried out by reactive distillation. Alternatively, 3,3-dimethylbutanal is prepared from 3,3-dimethylbutanol obtained by reduction of the corresponding carboxylic acid or 1,2-epoxy-3,3-dimethylbutane, or by hydrolysis of 1-halo-3,3-dimethylbutane. Fixed bed gas phase and stirred tank liquid phase processes are provided for converting 3,3-dimethylbutanol to 3,3-dimethylbutanal by catalytic dehydrogenation.
    Type: Application
    Filed: May 29, 2003
    Publication date: December 11, 2003
    Applicant: The Nutrasweet Company
    Inventors: Jerry R. Ebner, Zhi Guo, Arnold Hershman, Loraine M. Klein, William D. McGhee, Mark D. Paster, Indra Prakash
  • Publication number: 20030204064
    Abstract: A safe and effective process for the oxidation of a primary or secondary alcohol to the corresponding aldehyde or ketone via the reaction of said alcohol with an anhydride solution of a 1,1,1-tri(C2-C4 alkanoyloxy-1,1 -dihydro-1,2-benziodoxol-3(1H)-one, and a composition useful in this process.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 30, 2003
    Applicant: Wyeth
    Inventors: Ugo Chiacchio, Antonio Rescifina, Giuseppe Miraglia, Mariangela Magnano, Paola Di Raimondo
  • Publication number: 20030166972
    Abstract: Dimethyl ether is converted to formaldehyde using a supported catalyst comprising molybdenum and/or vanadium oxides. The surface density of the oxide(s) ranges from greater than that for the isolated monomeric oxides upwards, so long as there is a substantial absence of bulk crystalline molybdenum and/or vanadium oxide(s). Conversion and selectivity to formaldehyde are improved as compared to data reported for known catalysts. Also disclosed is a catalyst comprising molybdenum and/or vanadium oxides supported on a layer of stannic oxide that is disposed on the surface of a particulate alumina or zirconia support.
    Type: Application
    Filed: February 20, 2002
    Publication date: September 4, 2003
    Applicant: Regents of the University of California Office of Technology Licensing
    Inventors: Haichao Liu, Enrique Iglesia
  • Patent number: 6559346
    Abstract: In a process for the continuous preparation of glutaraldehyde by reaction of an alkoxydihydropyran of the formula I where R is C1-C20-alkyl, with water at from 0° C. to 200° C. and a pressure in the range from 0.01 bar to 16 bar to form glutaraldehyde and the alcohol corresponding to the alkoxy group, water and alkoxydihydropyran are fed continuously to a reaction column and a distillate enriched in the alcohol corresponding to the alkoxy group is taken off at the top of the column and a product enriched in glutaraldehyde is taken off at the bottom. This process makes it possible to prepare glutaraldehyde or C-substituted glutaraldehydes continuously in high purity in a simple manner with a low outlay in terms of apparatus.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: May 6, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Jörg Therre, Carsten Oost
  • Publication number: 20030073871
    Abstract: An alcohol is oxidized to an aldehyde or a ketone in the presence of a nitroxyl compound as catalyst, wherein the alcohol to be oxidized is contained in an organic liquid phase, and is reacted in the presence of a nitroxyl compound with an aqueous phase comprising an oxidant. The reaction is carried out continuously at a contact time of the phases of from 0.1 s to a maximum of 15 minutes, with intensive mixing of the phases. The process produces high yields with low quantities of other oxidation byproducts.
    Type: Application
    Filed: October 4, 2002
    Publication date: April 17, 2003
    Inventors: Elke Fritz-Langhals, Juergen Stohrer, Hermann Petersen
  • Patent number: 6479710
    Abstract: A solid acid-base catalyst contains vanadium pentoxide hydrate. Moreover, it is preferable that the vanadium pentoxide hydrate in the solid acid-base catalyst has a composition which is represented by the following general equation (1): V2O5.nH2O  (1) (n: 0.1-3). Creation of the vanadium pentoxide hydrate was confirmed by measuring X-ray diffraction spectrum shown in FIG. 1. In accordance with the above arrangement, the solid acid-base catalyst can sufficiently display catalytic activity under mild conditions, and it can be suitably applied to various reactions, such as the syntheses of olefins or ethers through dehydration reactions of alcohols, the syntheses of aldehydes or ketones through dehydrogenation reactions of alcohols, hydrations and isomerization reactions of olefins, alkylations, esterifications, amidations, acetalizations, aminations, hydrogen shift reactions, aldol condensation reactions and polymerization reactions.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: November 12, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 6444637
    Abstract: Lewis acid-catalyzed reaction of an alkene, including cycloalkenes, with an epoxide to provide an aldehyde which may be reduced to the corresponding alcohol. The reaction products may be used to provide perfumes or perfume products.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: September 3, 2002
    Assignee: Quest International B.V.
    Inventors: David Munro, Charles S. Sell
  • Patent number: 6441251
    Abstract: A process for producing phenol and acetone from cumene hydroperoxide is described in which the cumene hydroperoxide is contacted with a solid-acid catalyst comprising an inorganic, porous, crystalline material, designated as M41S, exhibiting, after calcination, an x-ray diffraction pattern with at least one peak at a d-spacing greater than about 18 Angstrom Units with a relative intensity of 100 and a benzene adsorption capacity of greater than 15 grams of benzene per 100 grams of said material at 50 torr and 25° C., wherein said material comprises sulfonate functionality.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: August 27, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, Jose G. Santiesteban, Lei Zhang
  • Patent number: 6441252
    Abstract: An apparatus for producing phenol and acetone from cumene hydroperoxide comprises a reactive distillation column comprising at its upper portion a distillation column and at its lower portion a catalyst bed.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 27, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, Jose G. Santiesteban
  • Patent number: 6441243
    Abstract: The invention relates to a process for the selective oxidation of alcohols to ketones or to aldehydes by means of an alkali hypohalite under alkaline conditions, which comprises carrying out the oxidation in the presence of a heterogeneous oxidation catalyst that is insoluble in the reaction medium and is selected from the group comprising the compounds of formula (I) (III), wherein n is a number from 3 to 3000; or a 4-oxy-2,2,6,6-tetramethylpiperidin-1-oxyl that is 4-oxy-bound to a Merrifield polymer. The invention relates also to the compounds of formulae (II) and (III) and to the use of the above-mentioned oxidation catalysts for the oxidation of alcohols.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: August 27, 2002
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Reinhard Sommerlade, Hansjörg Grützmacher, Souâd Boulmaâz
  • Patent number: 6441246
    Abstract: A process which makes it possible to prepare aldehydes under mild reaction conditions with a high efficiency through the reduction of carboxylic acids with molecular hydrogen. Specifically, a process of reducing an organic carboxylic acid with molecular hydrogen in the presence of a catalyst into an aldehyde corresponding to the acid, characterized by conducting the reduction in the presence of a dehydrating agent such as a carboxylic anhydride.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: August 27, 2002
    Assignee: Japan Science And Technology Corporation
    Inventors: Akio Yamamoto, Kazuhiro Nagayama
  • Patent number: 6410804
    Abstract: A process for producing phenol and acetone from cumene hydroperoxide comprises: i) introducing a cumene hydroperoxide feed into a reactive distillation column comprising at its upper portion a distillation column and at its lower portion a catalyst bed, at a point above said catalyst bed; ii) mixing a diluting portion of acetone with said cumene hydroperoxide to provide a diluted cumene hydroperoxide; iii) directing said diluted cumene hydroperoxide through said catalyst bed under conditions sufficient to effect the exothermic decomposition of said cumene hydroperoxide to a product comprising a heavy fraction comprising phenol and a vaporized light fraction comprising acetone; iv) withdrawing said heavy fraction as bottoms from said column; v) flowing said vaporized light fraction upwards through the catalyst bed and at least a portion of the reactive distillation column; vi) condensing said light fraction to provide at least a portion of said diluting portion of acetone for subsequent mixing with said
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: June 25, 2002
    Assignee: Exxon Mobil Oil Corporation
    Inventors: Doron Levin, Jose G. Santiesteban
  • Patent number: 6376718
    Abstract: A catalytic dehydrogenation of alkylene glycol ether to ether ketone or aldehyde is disclosed. The dehydrogenation is performed with copper chromite catalyst and at least 5 wt % of water based on alkylene glycol ether. It has been found that the selectivity to formation of ether ketone or aldehyde increases with increasing the amount of water in the alkylene glycol ether.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: April 23, 2002
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Prakash Balan
  • Patent number: 6350919
    Abstract: Oxygenated organic compounds exhibiting the desired combination of advantageous properties have structures represented by the formula CH3 E (CH2O)x (CHO)y E′ where E is selected from the group consisting of CH3O— and CH3CH2O—, E′ is selected from the group consisting of —CH3 and —CH2CH3, x is a number from 0 to about 10, y is number from 0 to about 10 such that the sum (x+y) is at least 2. Economical processes are disclosed for production of a mixture of oxygenated organic compounds which are suitable components for blending into fuel having improved qualities for use in compression ignition internal combustion engines (diesel engines).
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: February 26, 2002
    Assignee: BP Corporation North America Inc.
    Inventors: Gary P. Hagen, Michael J. Spangler
  • Publication number: 20020022749
    Abstract: Process for making butyraldehyde from an n-butenyl ester of a carboxylic acid, wherein the n-butenyl ester is hydrolyzed to form the corresponding n-butenyl alcohol n-butenyl alcohol so produced is isomerized to form butyraldehyde.
    Type: Application
    Filed: June 12, 2001
    Publication date: February 21, 2002
    Inventor: Benjamin Patrick Gracey
  • Patent number: 6339175
    Abstract: In a process for preparing formaldehyde from methanol by dehydrogenation in a reactor in the presence of a catalyst at a temperature in the range from 300 to 1000° C., a carrier gas stream which has a temperature above the dehydrogenation temperature is fed to the reactor.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: January 15, 2002
    Assignee: Ticona GmbH
    Inventors: Elke Schweers, Thomas Kaiser, Michael Haubs, Michael Rosenberg
  • Patent number: 6303828
    Abstract: The use of compounds of the formula (I) R1aRebOc•Ld  (I), in which a=zero or an integer from 0 to 6 b=an integer from 1 to 4 c=an integer from 1 to 12 d=an integer from 0 to 4 L=Lewis base and the total of a, b and c is such as to comply with the penta- or hepta-valency of rhenium, with the proviso that c is not greater than 3•b, and in which R1 is absent, identical or different and is an aliphatic hydrocarbon radical having 1 to 10 carbon atoms, an aromatic hydrocarbon radical having 6 to 10 carbon atoms or an arylalkyl radical having 7 to 9 carbon atoms, where the R1 radicals can, where appropriate, be substituted identically or differently, independently of one another, as catalysts for the selective oxidation of olefins with cleavage of C═C bonds to give the corresponding carbonyl compounds in the presence of a peroxide-containing compound, where the amount of substance ratio of olefin to peroxide-containing compound is in a range from 1:
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: October 16, 2001
    Assignee: Aventis Research & Technologies GmbH & Co. KG
    Inventors: Richard Walter Fischer, Wolfgang Anton Herrmann, Thomas Weskamp
  • Patent number: 6281400
    Abstract: The present invention relates to a process for preparing a microcomposite comprising a highly fluorinated ion-exchange polymer containing pendant sulfonate functional groups, said polymer existing as aggregated particles entrapped within and dispersed throughout a network of silica. Due to their high surface area and acid functionality, these microcomposites possess wide utility as improved solid acid catalysts, particularly in the substitution of aromatic compounds, in the decomposition of hydroperoxides, and in the isomerization of olefins.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: August 28, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Andrew Harmer, Qun Sun
  • Patent number: 6201156
    Abstract: An ether of the following formula (2): (wherein Ra is a hydrogen atom, a hydrocarbon group or a heterocyclic group, Rb is a hydrogen atom, a hydroxyl group or a substituted oxy group, and Rc is a hydrocarbon group or a heterocyclic group; Ra and Rc may be combined to form a ring with the adjacent carbon atom and oxygen atom) is reacted with nitrogen monoxide in the presence of a catalyst composed of an imide compound of the following formula (1): (wherein each of R1 and R2 is, identical to or different from each other, a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or an acyl group; R1 and R2 may be combined to form a double bond, or an aromatic or nonaromatic ring; X is an oxygen atom or a hydroxyl group; and one or two N-substituted cyclic imido groups indicated in the formula (1) may further be formed on R1, R2, or on the double bond or aromatic or nonaromat
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: March 13, 2001
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Yasutaka Ishii, Tatsuya Nakano
  • Patent number: 6198006
    Abstract: A process for the manufacture of citral is provided by the catalyzed rearrangement of dehydrolinalool to citral. The rearrangement is carried out in the presence of a molybdenum compound of the general formula MoO2X2 wherein X signifies an acetylacetonate or halide ion, and a dialkyl or diaryl sulphoxide as the catalyst system, in the presence of an organic acid having a pK value in the range of about 4.0 to about 6.5 and in an apolar aprotic organic solvent.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: March 6, 2001
    Assignee: Roche Vitamins Inc.
    Inventor: Werner Bonrath
  • Patent number: 6191313
    Abstract: A process for the manufacture of dihydrocitral, a valuable intermediate, through the catalyzed rearrangement of dihydrodehydrolinalool by carrying out the rearrangement in the presence of a molybdenum compound of the general formula MoO2X2 wherein X signifies an acetylacetonate or halide ion, and a dialkyl or diaryl sulphoxide as the catalyst system, in the presence of an organic acid having a pK value in the range of about 4.0 to about 6.5 and in an aprotic organic solvent.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: February 20, 2001
    Assignee: Roche Vitamins Inc.
    Inventor: Werner Bonrath
  • Patent number: 6169215
    Abstract: A process for producing phenol and acetone from cumene hydroperoxide is described in which the cumene hydroperoxide is contacted with a solid-acid catalyst produced by calcining a source of a Group IVB metal oxide with a source of an oxyanion of a Group VIB metal at a temperature of at least 400°C.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: January 2, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Doron Levin, Jose G. Santiesteban, James C. Vartuli
  • Patent number: 6169216
    Abstract: A process for producing phenol and acetone from cumene hydroperoxide is described in which the cumene hydroperoxide is contacted with a solid-acid catalyst comprising a sulfated transition metal oxide, preferably sulfated zirconia.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: January 2, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Doron Levin, Jose G. Santiesteban, James C. Vartuli
  • Patent number: 6160186
    Abstract: A particularly useful process which includes the steps of providing a source of formaldehyde formed by conversion of dimethyl ether in the presence of a catalyst comprising copper and zinc; and contacting the source of formaldehyde and a predominately dimethyl ether feedstream with a heterogeneous, condensation promoting catalyst capable of hydrating dimethyl ether under conditions of reaction sufficient to form an effluent comprising water, methanol, formaldehyde, dimethyl ether, and polyoxymethylene dimethyl ethers is disclosed. Unreacted dimethyl ether is recovered from the effluent and recycled to the formation of polyoxymethylene dimethyl ethers. The resulting dimethyl ether-free liquid mixture is heated in the presence of an acidic catalyst to convert at least the methanol and formaldehyde present to polyoxymethylene dimethyl ethers. Advantageously, methylal and higher polyoxymethylene dimethyl ethers are formed and separated in a catalytic distillation column.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: December 12, 2000
    Assignee: BP Amoco Corporation
    Inventors: Gary P. Hagen, Michael J. Spangler
  • Patent number: 6107525
    Abstract: A propene ether is selectively oxidized to an aldehyde-masked 2-hydroxypropanal using a metal-containing oxidation catalyst.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: August 22, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, Georges Marie Karel Mathys, Hans Karel Theresia Goris
  • Patent number: 5962745
    Abstract: A process for preparing 3-hydroxyalkanals having 3 to 12 carbon atoms by hydration of 2-alkenals with homogeneous catalysis, by using as catalyst a compound corresponding to the formula ##STR1## wherein: z denotes H, C.sub.1 - to C.sub.6 -alkyl, --CH.sub.2 --CH(CH.sub.3) --Y' or --(CH.sub.2).sub.o --Y'R denotes H, C.sub.1 - to C.sub.6 -alkyl, benzyl, phenyl, .omega.-hydroxy --C.sub.1 - to C.sub.6 -alkyl, --CH.sub.2 --CH(CH.sub.3)--Y' or --(CH.sub.2).sub.o --Y'Y and Y' are identical or different and denote --COOH, --P(O) (OH).sub.2, --OH, pyridyl, or --P(O) (CH.sub.2 OH)OH, wherein the acid functional group may be present partly in the form of its alkali metal salt, alkaline-earth salt or ammonium saltn denotes 1, 2, 3, 4, 5 or 6 where Y is --COOH, --P(O) (OH).sub.2, pyridyl or --P(O) (CH.sub.2 OH) OH; 2 or 3 where Y is --OHo denotes 1, 2, 3, 4, 5 or 6 where Y' is --COOH, --P(O) (OH).sub.2, pyridyl or --P(O) (CH.sub.2 OH)OH; 0, 2 or 3 where Y' is --OH.
    Type: Grant
    Filed: February 11, 1998
    Date of Patent: October 5, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Christoph Brossmer, Dietrich Arntz
  • Patent number: 5698744
    Abstract: Selective oxidation employs ferromagnetic chromium dioxide followed by magnetic separation.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: December 16, 1997
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Ross Albert Lee
  • Patent number: 5679869
    Abstract: A process for preparing aldehydes of the general formula I ##STR1## where R.sup.1, R.sup.2 and R.sup.3 are each hydrogen, C.sub.1 -C.sub.6 -alkyl, C.sub.3 -C.sub.8 -cycloalkyl, aryl, C.sub.7 -C.sub.12 -alkylphenyl, C.sub.7 -C.sub.12 -phenylalkyl and R.sup.1 and R.sup.2 are joined together to form a 3-, 4-, 5-, 6- or 7-membered cycloaliphatic ring,R.sup.1 and R.sup.3 are each C.sub.1 -C.sub.4 -alkoxy, phenoxy, methylamino, dimethylamino or halogen, andR.sup.1 is additionally hydroxyl or aminocomprises reacting a carboxylic acid or ester of the general formula II ##STR2## where R.sup.1, R.sup.2 and R.sup.3 are each as defined above, andR.sup.4 is hydrogen, C.sub.1 -C.sub.6 -alkyl, C.sub.3 -C.sub.8 -cycloalkyl, aryl, C.sub.7 -C.sub.12 -alkylphenyl or C.sub.7 -C.sub.12 -phenylalkyl,with hydrogen in the gas phase at temperatures from 200.degree. to 450.degree. C. and pressures from 0.1 to 20 bar in the presence of a catalyst whose catalytically active mass comprises from 60 to 99.
    Type: Grant
    Filed: December 5, 1995
    Date of Patent: October 21, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Schnurr, Rolf Fischer, Joachim Wulff-Doring, Michael Hesse
  • Patent number: 5559275
    Abstract: A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: September 24, 1996
    Assignee: UOP
    Inventor: Paul T. Barger
  • Patent number: 5387720
    Abstract: A process for the production of acrolein by dehydration of glycerol in the liquid phase or in the gaseous phase, in each case on acidic solid catalysts, is described. Compared with previously known processes, the space-time yield and catalyst service life may be surprisingly increased with higher selectivity by treating a glycerol-water mixture with a glycerol content of 10 to 40 wt. % at 180.degree. to 340.degree. C. (liquid phase) or at 250.degree. to 340.degree. C. (gaseous phase) on a solid catalyst with an H.sub.o value (Hammett acidity function) of less than +2, preferably less than -3.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: February 7, 1995
    Assignee: Degussa Aktiengesellschaft
    Inventors: Armin Neher, Thomas Haas, Dietrich Arntz, Herbert Klenk, Walter Girke
  • Patent number: 5367032
    Abstract: Epoxides are converted selectively to the corresponding carbonyl-containing compounds by reacting the epoxide with an oxidizing agent, typically hydrogen peroxide, in a liquid aqueous/organic two-phase system comprising:(a) an organic phase substantially containing the epoxide, and(b) an aqueous acidic phase substantially containing the oxidizing agent, in the presence of an onium compound capable of achieving phase partitioning and a catalytic system comprising a first catalyst component which is at least one element selected from tungsten, molybdenum, vanadium and chromium, or a compound containing at least one of the aforesaid elements, and a second catalyst component which is a phosphorus (V) acid or a species convertible to a phosphorus (V) acid.
    Type: Grant
    Filed: January 11, 1994
    Date of Patent: November 22, 1994
    Assignee: BP Chemicals Limited
    Inventors: David A. Hancock, David J. Moreton, Lee J. Morton
  • Patent number: 5344993
    Abstract: This invention relates to a process for making 3-hydroxyaldehydes having 4 or more carbon atoms by intimately contacting(a) 1,2-epoxides having 3 or more carbon numbers,(b) ditertiary phosphine-modified cobalt carbonyl catalyst, said phosphine being a hydrocarbylene-bis(monophosphabicyclononane) in which each phosphorus atom is joined to hydrocarbylene and is a member of a bridge linkage without being a bridgehead atom and which hydrocarbylene-bis(monophosphabicyclononane) has 11 to 80 carbon atoms, 5 to 12 carbon atoms thereof together with a phosphorus atom being members of each of the two bicyclic skeletal structures,(c) carbon monoxide, and(d) hydrogen, the molar ratio of carbon monoxide to hydrogen being from about 4:1 to about 1:6, in liquid-phase solution in an inert reaction solvent, at a temperature of from about 30.degree. C. to about 150.degree. C. and a pressure of from about 50 psi to about 10,000 psi.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: September 6, 1994
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Juan P. Arhancet
  • Patent number: 5256827
    Abstract: This invention relates to a process for making 3-hydroxypropanal and 1,3-propanediol which by intimately contacting(a) ethylene oxide,(b) tertiary phosphine-complexed cobalt carbonyl catalyst, wherein said phosphine, prior to being complexed with said cobalt carbonyl catalyst, is partially oxidized to provide an oxygen to phosphorus ratio no greater than about 0.5,(c) carbon monoxide, and(d) hydrogen, the molar ratio of carbon monoxide to hydrogen being from about 4:1 to about 1:6,in liquid-phase solution in an inert reaction solvent, at a temperature of from about 30.degree. C. to about 150.degree. C. and a pressure of from about 50 psi to about 10,000 psi. The use of the partially oxidized tertiary phosphine ligand enhances the activity of the catalyst.
    Type: Grant
    Filed: February 5, 1993
    Date of Patent: October 26, 1993
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Paul R. Weider
  • Patent number: 5243082
    Abstract: Acrolein is prepared by the heating of 3,4-dihydro-2H-pyran-2-carboxaldehyde. The process provides acrolein in very high yields and with few impurities. The process is advantageously employed to produce acrolein at the point of use.
    Type: Grant
    Filed: September 22, 1992
    Date of Patent: September 7, 1993
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: William G. Etzkorn, William D. Neilsen
  • Patent number: 5241122
    Abstract: Catalysts, catalyst precursors, and catalytic systems are provided. The catalysts generally comprise a substrate that includes a group IB metal and a porous, microcrystalline layer that includes the metal and that is disposed on at least a portion of the substrate. The catalysts are prepared by providing a substrate that includes group IB metal, oxidizing said substrate in the presence of stainless steel to produce an oxide coating of said group IB metal, and reducing substantially all of said oxidized substrate.
    Type: Grant
    Filed: March 3, 1992
    Date of Patent: August 31, 1993
    Assignee: Union Camp Corporation
    Inventors: James B. Woell, John W. Catino
  • Patent number: 5227530
    Abstract: Conversion of alcohol to organic compounds which comprises contacting the alcohol with a heterogeneous catalyst composition comprising crystallineCu.sub.2-X Cr.sub.y Al.sub.6-y B.sub.4 O.sub.17 M.sub.m M'.sub.nwhere M is a divalent metal, M' is a monovalent metal, m is a number in a range from 0 to 0.8, n is a number in a range from 0 to 1.6, X is a number in a range from 0 to 10 0.8 and is equal to the sum of m and n/2, and y is a number in a range from 0.01 to 3, having a characteristic X-ray diffraction pattern.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: July 13, 1993
    Assignee: Amoco Corporation
    Inventors: Larry C. Satek, Patrick E. McMahon
  • Patent number: 5210317
    Abstract: Disclosed is a method of producing an aldehyde in which a primary alcohol is reacted with an oxidizing agent selected from the group consisting of ketone, aldehyde and quinone in the presence of a diluent which does not participate in the reaction, in the presence of a partially dehydrated zirconium hydroxide, so as to oxidize the primary alcohol into its corresponding aldehyde.
    Type: Grant
    Filed: October 17, 1991
    Date of Patent: May 11, 1993
    Assignee: Japan Tobacco Inc.
    Inventors: Hideyuki Kuno, Makoto Shibagaki, Kyoko Takahashi, Hajime Matsushita
  • Patent number: 5196608
    Abstract: The present invention relates to the use of an allylchloride of the general formula ##STR1##wherein R is a C.sub.1 -C.sub.12 alkyl group or a C.sub.2 -C.sub.12 alkenyl group, which groups may be substituted with one or more substitutents selected from the group consisting of C.sub.1 -C.sub.4 alkoxy, halogen, unsubstituted phenyl and substituted phenyl; a (trihydrocarbyl)silyl group; a (dihydrocarbyl) (hydrocarbyloxy)silyl group; or a dihydropyran-2-yl group, a tetrahydropyran-2-yl group, a dihydrofur-2-yl group or a tetrahydrofur-2-yl group, which groups may be substituted with C.sub.1 -C.sub.6 alkyl;for preparing an aldehyde compound via an intermediate alcohol compound.The invention further relates to a new allylchloride.
    Type: Grant
    Filed: December 2, 1991
    Date of Patent: March 23, 1993
    Assignee: Duphar International Research B.V.
    Inventors: Gerrit J. Lagerweij, Cornelis Bakker, Monique E. A. De Bruin-Van Der Flier
  • Patent number: 5196609
    Abstract: The preparation of 3-alkoxycarbonyl propenals and 3-dialkoxymethyl propenals of the general formulae Ia and Ib respectively: ##STR1## (R.sup.1 =C.sub.1 -C.sub.3 -alkyl group; R.sup.2 and R.sup.3 =hydrogen, methyl, or ethyl; and R.sup.4 and R.sup.5 =C.sub.1 -C.sub.4 -alkyl groups, which may be joined to form a 5-membered or 6-membered ring), is effected by reacting a corresponding alcohol of the general formula IIa or IIb ##STR2## with oxygen or an oxygen-containing gas in the gas phase in the presence of a metal from Group IB of the Periodic Table or a compound of one such metal acting as catalyst.The target products serve as intermediates for the synthesis of carotenoids.
    Type: Grant
    Filed: March 2, 1992
    Date of Patent: March 23, 1993
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Aquila, Hans-Ulrich Scholz, Hartwig Fuchs, Wolfgang Krause, Joachim Paust, Werner Hoffmann
  • Patent number: 5177266
    Abstract: There is provided a process for the manufacture of 2-alkoxymethylacrolein compounds via the reaction of an appropriate alcohol and acrolein in the presence of an acid and a trisubstituted amine to form an intermediate and the subsequent reaction of the intermediate with formaldehyde in the presence of an acid and a disubstituted amine.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: January 5, 1993
    Assignee: American Cyanamid Company
    Inventor: Henry L. Strong
  • Patent number: 5155278
    Abstract: A process for the preparation of an aldehyde which comprises reacting the corresponding alkanol with a solubilized stable free radical nitroxide having the formula: ##STR1## wherein each of R.sub.1, R.sub.2, R.sub.3 and R.sub.4 is an alkyl, aryl or heteroatom substituted alkyl group having 1 to about 15 carbon atoms and each of R.sub.5 and R.sub.6 is alkyl, hydrogen, aryl or a substituted heteroatom, nitric acid and a non-basic polar solvent, in the presence of an oxidant, for about eight hours or less at a temperature in the range of from about -10.degree. C. to about 25.degree. C., and thereafter separating out the aldehyde.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: October 13, 1992
    Assignee: Shell Oil Company
    Inventor: Herbert E. Fried
  • Patent number: 5132465
    Abstract: Primary alcohols may be oxidized to the corresponding aldehydes using non-toxic oxidizing agents such as tert-butyl hydroperoxide (TBHP) in the presence of a transition metal phthalocyanine catalyst. Representative catalysts include ferrous phthalocyanine and chloroferric phthalocyanine. Under some conditions, 1,1-dialkoxyalkanes may be co-produced with the aldehydes. 1,1-Dialkoxyalkanes are protected aldehydes and find utility in solvents.
    Type: Grant
    Filed: April 23, 1991
    Date of Patent: July 21, 1992
    Assignee: Texaco Chemical Company
    Inventors: John R. Sanderson, Edward T. Marquis
  • Patent number: 5093538
    Abstract: A novel process for converting myrcene to citral using palladium (II) chloride in the presence of water, an immiscible solvent, a phase transfer agent, and a metal oxoanionic salt. A novel process for converting a palladium-myrcene complex to citral using a phase transfer agent and a metal oxoanionic salt in the presence of water and an immiscible solvent is also disclosed.
    Type: Grant
    Filed: January 26, 1990
    Date of Patent: March 3, 1992
    Assignee: Union Camp Corporation
    Inventor: James B. Woell
  • Patent number: 5081311
    Abstract: Muscone of the formula I ##STR1## is prepared by a process in which an open-chain 2,15-diketone of the general formula IICH.sub.3 --CO--X--CO--CH.sub.3 (II)where X is one of the radicals--(--CH.sub.2 --).sub.12 -- (a)--CH.dbd.CH--(--CH.sub.2 --).sub.8 --CH.dbd.CH-- (b)--CH.sub.2 --CH.dbd.CH--(--CH.sub.2 --).sub.6 --CH.dbd.CH--CH.sub.2 --(c)--CH.sub.2 --CH.sub.2 --CH.dbd.CH--(--CH.sub.2 --).sub.4 --CH.dbd.CH--CH.sub.2 --CH.sub.2 -- (d) or--CH.sub.2 --CH.sub.2 CH.sub.2 --CH.dbd.CH--(--CH.sub.2 --).sub.2 --CH.dbd.CH--CH.sub.2 --CH.sub.2 --CH.sub.2 -- (e)is brought into contact, at from 300.degree. to 400.degree. C. in the presence of from 5 to 15% by weight, based on the amount of catalyst, of water, in the gas phase, with a fixed-bed catalyst containing TiO.sub.2, CeO.sub.2 or the ThO.sub.2 as the catalytically active compound and the unsaturated cyclic ketone formed by intramolecular aldol condensation is subjected to catalytic hydrogenation.
    Type: Grant
    Filed: May 18, 1990
    Date of Patent: January 14, 1992
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Huellmann, Thomas Kuekenhoehner, Karl Brenner, Rainer Becker, Matthias Irgang, Charles Schommer
  • Patent number: 5068408
    Abstract: A process for oxidizing an organic compound selected from an aliphatic, aromatic, aliphatic/aromatic, cycloaliphatic and heterocyclic alcohol, thiol, sulfide, aldehyde, amine, amide, ketone, acid, ether, ester, and organic compounds containing an activated carbon-carbon double bond, which process comprises contacting said organic compound dissolved in an organic solvent with a hypochlorous acid solution.
    Type: Grant
    Filed: January 31, 1990
    Date of Patent: November 26, 1991
    Assignee: Olin Corporation
    Inventors: Robert J. Raynor, Budd L. Duncan