With Hydrocarbon Effluent Stream Splitting For Recycle To Different Syntheses Patents (Class 585/314)
  • Publication number: 20100331589
    Abstract: Processes utilizing the integration of (i) processes and the associated equipment used to purify and recover propylene from propane- and/or C4+-containing refinery hydrocarbon streams, with (ii) catalytic dehydrogenation are disclosed. This integration allows for elimination of some or all of the conventional fractionation section of the dehydrogenation process, normally used to purify propylene from unconverted propane in the reactor effluent. Significant capital and utility savings are therefore attained.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Inventors: Joseph E. ZIMMERMANN, Larry C. Erickson, Gregory J. Nedohin
  • Publication number: 20100324232
    Abstract: A system comprising a riser reactor comprising a gas oil feedstock and a first catalyst under catalytic cracking conditions to yield a riser reactor product comprising a cracked gas oil product and a first used catalyst, a intermediate reactor comprising at least a portion of the cracked gas oil product and a second catalyst under high severity conditions to yield a cracked gasoline product and a second used catalyst, and a recycle conduit to send at least a portion of the cracked gas oil product to the riser reactor.
    Type: Application
    Filed: October 8, 2008
    Publication date: December 23, 2010
    Inventors: Weijian Mo, William Cross Glenn, George A. Hadjigeorge, Wallace Phelps Wilkins
  • Patent number: 7803330
    Abstract: The present invention relates to a process for the production of light weight olefins comprising olefins having from 2 to 3 carbon atoms per molecule from an oxygenate feedstock. The process comprises passing the oxygenate feedstock to an oxygenate conversion zone containing a metal aluminophosphate catalyst to produce a light weight olefin stream. A propylene stream and/or mixed butylene is fractionated from said light weight olefin stream and a medium weight C4 to C7 stream is cracked in a separate olefin cracking reactor to enhance the yield of ethylene and propylene products.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: September 28, 2010
    Assignee: UOP LLC
    Inventors: Bipin V. Vora, Peter R. Pujado
  • Publication number: 20100174126
    Abstract: A process for oligomerization of isobutene, the process including: feeding a hydrocarbon stream comprising n-butane, 1-butene, 2-butene, isobutane, and isobutene to a catalytic distillation reactor system comprising a hydroisomerization catalyst; feeding hydrogen to the catalytic distillation reactor system; concurrently in the catalytic distillation reactor system: contacting the 1-butene with the hydrogen in the presence of the hydroisomerization catalyst to convert at least a portion of the 1 -butene to 2-butene; separating the isobutane and the isobutene from the n-butane and the 2-butene; recovering the isobutane and the isobutene from the catalytic distillation reactor system as an overheads fraction; recovering the n-butane and the 2-butene from the catalytic distillation reactor system as a bottoms fraction; contacting the overheads fraction in an oligomerization reaction system with an oligomerization catalyst to convert a portion of the isobutene to oligomers.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: Mitchell E. Loescher
  • Publication number: 20100099934
    Abstract: Embodiments disclosed herein provide processes for upgrading the hexene stream to valuable end products, including ethers, high purity 1-hexene, and, alternatively, high purity isohexene. Hexene upgrading may be performed in embodiments disclosed herein by first removing isohexene from the admixture. The isohexene may undergo etherification with one or more alcohols, facilitating the separation of the isohexene (in the form of an ether) from the normal hexenes. Second, the normal hexenes may be isomerized to convert internal hexene olefins (2-hexenes and 3-hexenes) to the desired alpha olefin, 1-hexene. The 1-hexene may then be separated from unreacted components to yield a high purity 1-hexene product.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 22, 2010
    Applicant: LUMMUS TECHNOLOGY, INC.
    Inventors: Robert J. Gartside, Thulasidas Chellppannair
  • Patent number: 7678951
    Abstract: The subject of the invention is a method for treating a natural gas containing ethane, comprising the following stages: (a) extraction of at least one part of the ethane from the natural gas; (b) reforming of at least one part of the extracted ethane into a synthesis gas; (c) methanation of the synthesis gas into a methane-rich gas; and (d) mixing of the methane-rich gas with the natural gas. Installation for implementing this method.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: March 16, 2010
    Assignee: Total S.A.
    Inventor: Denis Chretien
  • Publication number: 20100063336
    Abstract: The present invention provides a method for producing Lower olefin from the feed of methanol or/and dimethyl ether, characterized in that methanol or/and dimethyl ether are divided proportionally to be fed at 3 reaction zones; and the desired distribution of the olefin product is obtained by modulating the feeding ratio among the 3 reaction zones and the reaction conditions in each reaction zone.
    Type: Application
    Filed: July 27, 2007
    Publication date: March 11, 2010
    Applicant: Dalian Institute of Chemical Physics,Chinese Academy of Sciences
    Inventors: Yue Qi, Zhongmin Liu, Zhihui Lv, Hua Wang, Changqing He, Lei Xu, Jinling Zhang, Xiangao Wang
  • Publication number: 20100041930
    Abstract: A process for the production of propylene, the process including: fractionating a hydrocarbon stream comprising n-butenes, isobutylene, and paraffins into at least two fractions including a light C4 fraction comprising isobutylene and a heavy C4 fraction comprising n-butenes and paraffins; contacting at least a portion of the heavy C4 fraction with a metathesis catalyst to form a metathesis product comprising ethylene, propylene, C4+ olefins, and paraffins; fractionating the metathesis product into at least four fractions including an ethylene fraction, a propylene fraction, a C4 fraction comprising C4 olefins and paraffins, and a C5+ fraction; cracking the light C4 fraction and the C5+ fraction to produce a cracking product comprising ethylene, propylene, and heavier hydrocarbons; and fractionating the cracking product into at least two fractions including a light fraction comprising propylene and a fraction comprising C5 to C6 hydrocarbons.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 18, 2010
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Robert J. Gartside, Bala Ramachandran
  • Publication number: 20100022810
    Abstract: It is an object of the present invention to provide an improved process whereby the yield structure of the components can be varied by a simple method, and the products can be produced stably and efficiently in a process for producing propylene and aromatic hydrocarbons from a hydrocarbon feedstock containing C4-12 olefins using a medium pore diameter zeolite-containing catalyst. A process for producing is disclosed which comprises a propylene production step wherein a specific zeolite catalyst is used to remove a C4+ hydrocarbon component from a reaction mixture, and part of the hydrocarbon component is recycled as necessary without modification, and an aromatic hydrocarbon production step wherein all or a part of the C4+ hydrocarbon component is used as the raw material.
    Type: Application
    Filed: January 12, 2007
    Publication date: January 28, 2010
    Inventors: Mitsuhiro Sekiguchi, Yoshikazu Takamatsu
  • Patent number: 7638664
    Abstract: One exemplary embodiment can include a hydrocarbon conversion process. Generally, the process includes passing a hydrocarbon stream through a hydrocarbon conversion zone comprising a series of reaction zones. Typically, the hydrocarbon conversion zone includes a staggered-bypass reaction system having a first, second, third, and fourth reaction zones, which are staggered-bypass reaction zones, and a fifth reaction zone, which can be a non-staggered-bypass reaction zone, subsequent to the staggered-bypass reaction system.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Kenneth D. Peters, Clayton C. Sadler
  • Patent number: 7622620
    Abstract: One exemplary embodiment can include a hydrocarbon conversion process. Generally, the process includes passing a hydrocarbon stream through a hydrocarbon conversion zone comprising a series of reaction zones. Typically, the hydrocarbon conversion zone includes a staggered-bypass reaction system having a first, second, third, and fourth reaction zones, which are staggered-bypass reaction zones, and a fifth reaction zone, which can be a non-staggered-bypass reaction zone, subsequent to the staggered-bypass reaction system.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 24, 2009
    Assignee: UOP LLC
    Inventors: Kenneth D. Peters, Clayton C. Sadler
  • Publication number: 20090287030
    Abstract: A processing scheme and system for enhanced light olefin production, particularly for increased relative yield of propylene, involves oxygenate conversion to olefins and subsequent oxygenate conversion effluent stream treatment including dimerization of ethylene to butene and metathesis of butenes and/or hexenes with ethylene. The processing scheme and system may further involve isomerization of at least a portion of 1-butene to 2-butene to produce additional propylene.
    Type: Application
    Filed: July 27, 2009
    Publication date: November 19, 2009
    Inventors: Andrea G. Bozzano, Bryan K. Glover
  • Patent number: 7579511
    Abstract: Provided is a process for making cyclohexylbenzene.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: August 25, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Jihad Mohammed Dakka, Lorenzo Cophard DeCaul, Teng Xu
  • Publication number: 20090143629
    Abstract: A process for increasing the light olefin production from light paraffins is presented. The process includes separating paraffins from olefin streams and separately processing the paraffins.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Inventor: Timur V. Voskoboynikov
  • Patent number: 7528290
    Abstract: A process is disclosed for recovering 1-butene from a feed steam comprising n-butane, isobutane and butene isomers using a single, divided wall distillation column. The disclosed process includes introducing the feed steam into an inlet of a first side of a distillation column, wherein the distillation column comprises a top, a bottom and a center dividing wall extending between the bottom and the top of the column and dividing the column into the first side and a second side. The process includes taking off an isobutane stream from the top of the second side of column, taking off a 1-butene stream as a bottoms stream from the second side of the column, and taking off a combination 2-butene and n-butane stream as a bottom stream from the first side of column.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: May 5, 2009
    Assignee: UOP LLC
    Inventors: Joseph E. Zimmermann, Dennis E. O'Brien
  • Publication number: 20090112028
    Abstract: Processing schemes and arrangements are provided for obtaining ethylene and ethane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the ethylene into ethyl benzene without separating the ethane from the feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of ethylene from ethane produced by a FCC process prior to using the combined ethylene/ethane stream as a feed for an ethyl benzene process. Further, heat from the alkylation reactor is used for one of the strippers of the FCC process and at least one bottoms stream from alkylation process is used as an absorption solvent in the FCC process.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Inventor: Michael A. Schultz
  • Publication number: 20090112029
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Inventor: Michael A. Schultz
  • Patent number: 7524467
    Abstract: A process for the production of alkylbenzene includes the steps of introducing benzene and an olefin feed into a first alkylation reaction zone in the presence of a first alkylation catalyst under first alkylation reaction conditions to produce alkylbenzene and a vapor containing unconverted olefin; absorbing the unconverted olefin into an aromatic stream containing benzene and alkylbenzene; and, introducing the aromatic stream containing absorbed olefin into a second alkylation reaction zone containing a second alkylation catalyst under second alkylation reaction conditions to convert the absorbed olefin and at least some of the benzene of the aromatic stream to alkylbenzene. The process is particularly advantageous for the alkylation of benzene with ethylene to produce ethylbenzene. About 99.9% conversion of ethylene is achieved overall, with a substantial reduction in the required catalyst.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: April 28, 2009
    Assignee: Lummus Technology Inc.
    Inventor: Stephen L. Pohl
  • Patent number: 7517506
    Abstract: A process for the production of alkylbenzene includes introducing benzene and an olefin feed into a first alkylation reaction zone in the presence of a first alkylation catalyst under first alkylation reaction conditions to produce a first alkylation effluent containing alkylbenzene and a first alkylation overhead stream. The first alkylation overhead stream is separated into a liquid portion containing benzene and a vapor portion containing unconverted olefin and ethane. A major portion of the unconverted olefin in the vapor portion of the first alkylation overhead stream is absorbed into a de-ethanized aromatic lean oil stream containing benzene and alkylbenzene in an absorption zone to produce a rich oil stream containing olefins and at least some of the ethane.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: April 14, 2009
    Assignee: Lummus Technology Inc.
    Inventor: Stephen L. Pohl
  • Publication number: 20090023967
    Abstract: Dialkylbenzenes are transalkylated in the presence of benzene and solid catalyst. The transalkylation product is subjected to distillation to provide a lower-boiling, benzene-containing fraction which is fed to a transalkylation reactor as at least a portion of the benzene. Thus, high benzene to dialkylbenzene molar ratios can be economically maintained in order to enhance catalyst stability.
    Type: Application
    Filed: September 24, 2008
    Publication date: January 22, 2009
    Inventors: Stephen W. Sohn, Mark G. Riley
  • Patent number: 7476773
    Abstract: A process for preparing a gas oil cut comprises the following steps in succession: 1) oligomerizing an olefinic C2-C12 hydrocarbon cut, preferably C3-C7 and more preferably C3-C5; 2) separating the mixture of products obtained in step 1) into three cuts: a light cut containing unreacted C4 and/or C5 olefinic hydrocarbons, an intermediate cut having a T95 in the range 200-220° C. and a heavy cut comprising the complement; T95 being the temperature at which 95% by weight of product has evaporated, as determined in accordance with standard method ASTM D2887; 3) oligomerizing the intermediate cut obtained in the separation step; characterized in that in step 3), oligomerization is carried out in the presence of an olefinic C4 and/or C5 hydrocarbon cut in a weight ratio of intermediate cut to olefinic C4 and/or C5 cut in the range of 60/40 to 80/20.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 13, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Sylvain Louret, Vincent Coupard, Laurent Simon
  • Publication number: 20080207971
    Abstract: A system and/or process for increasing the isobutane to olefin ratio in an alkylation process/system is disclosed. The system and/or process includes provisions for charging a portion of the settler effluent as a feed to at least one reaction zone downflow from the first reaction zone of a multi-zone alkylation reactor along with a portion of the olefin feed to the multi-zone alkylation reactor.
    Type: Application
    Filed: April 8, 2008
    Publication date: August 28, 2008
    Inventors: Robert M. Gray, Keith W. Hovis
  • Patent number: 7411101
    Abstract: A process for producing a monoalkylation aromatic product, such as ethylbenzene and cumene, utilizing an alkylation reactor zone and a transalkylation zone in series or a combined alkylation and transkylation reactor zone.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: August 12, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shiou-Shan Chen, Henry Hwang
  • Publication number: 20080161616
    Abstract: Processing schemes and arrangements for the production of olefins and, more particularly, for the production of light olefins from an oxygenate-containing feedstock are provided. Such processing schemes and arrangements offer improved energy utilization, additional light olefin products, and provide efficient uses for product water.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventor: Lawrence W. Miller
  • Publication number: 20080154076
    Abstract: One exemplary embodiment can include a hydrocarbon conversion process. Generally, the process includes passing a hydrocarbon stream through a hydrocarbon conversion zone comprising a series of reaction zones. Typically, the hydrocarbon conversion zone includes a staggered-bypass reaction system having a first, second, third, and fourth reaction zones, which are staggered-bypass reaction zones, and a fifth reaction zone, which can be a non-staggered-bypass reaction zone, subsequent to the staggered-bypass reaction system.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: Kenneth D. Peters, Clayton C. Sadler
  • Publication number: 20080154077
    Abstract: A processing scheme and system for enhanced light olefin production, particularly for increased relative yield of propylene, involves oxygenate conversion to olefins and subsequent oxygenate conversion effluent stream treatment including cross-metathesis of 1-butene with 2-butene, metathesis of 2-butene with ethylene, conversion or removal of at least a portion of the isobutene, and/or isomerization of at least a portion of 1-butene to 2-butene to produce additional propylene. The processing scheme and system may further involve a reaction with distillation column for the metathesis of butenes with ethylene to produce propylene and/or a reaction with distillation column for the conversion of isobutenes with an oxygenate-containing material to produce a tertiary ether or alcohol.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Andrea G. Bozzano, Bryan K. Glover
  • Publication number: 20080139858
    Abstract: An HF alkylation process for producing gasoline boiling range alkylate product by the alkylation of a light olefin with an isoparaffin in the presence of hydrogen fluoride as an alkylation catalyst, in which the content of organic fluorides in the alkylation product stream is reduced by recontact with additional HF alkylation acid after which the hydrocarbon phase and the denser acid-containing phase are separated in a hydrocyclone. The use of the hydrocyclone enables the acid inventory of the unit to be significantly reduced which still achieving satisfactory removal of the unwanted fluoride by-products.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 12, 2008
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Brian A. Cunningham, Ramon A. Strauss, Jeffrey M. Fitt
  • Publication number: 20080119676
    Abstract: A process for producing propylene is provided which includes directing an ethylene stream from an ethylene reaction zone to a propylene reaction zone; directing a butene stream to the propylene reaction zone; reacting the ethylene stream with the butene stream in the propylene reaction zone to produce a propylene reaction stream; and subjecting the propylene reaction stream to a recovery operation to recover propylene. A processes is also provided for producing an alkylaromatic by directing an ethylene stream from a propylene reaction zone to an alkylaromatic reaction zone; directing an aromatic stream to the alkylaromatic reaction zone; reacting the ethylene stream with the aromatic stream in the alkylaromatic reaction zone to produce an alkylaromatic reaction stream; and subjecting the alkylaromatic reaction stream to a recovery operation to recover alkylaromatics. A process for producing propylene and an alkylaromatic is also provided.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 22, 2008
    Inventors: James M. Hildreth, Kerman Nariman Dukandar, Ronald M. Venner
  • Patent number: 7339086
    Abstract: A process is described for the hydrogenation of olefinic streams containing sulfurated compounds, obtained starting from hydrocarbon cuts containing isobutene (by means of selective dimerization), characterized by fractionating said streams in one or more distillation columns and hydrogenating separately the two fractions obtained. The stream at the head, with a minimum content of sulfurated compounds, is hydrogenated with conventional catalysts based on nickel or noble metals (Platinum and/or Palladium), extremely active but also very sensitive to sulfur, whereas the bottom of the column, rich in sulfurated compounds, is treated with bimetallic catalysts (for example Ni/Co and/or Ni/Mo), less active but not deactivated by sulfur.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: March 4, 2008
    Assignee: SNAMPROGETTI S.p.A.
    Inventors: Marco Di Gerolamo, Roberto Catani, Mario Marchionna
  • Patent number: 7030284
    Abstract: Disclosed is a method and reactor system for converting oxygenate and/or olefin contaminants in a methanol to olefin reactor system product effluent to hydrocarbons, including paraffin compounds, preferably over a sulphided catalyst of the type Nickel or Cobalt combined with Molybdenum or Tungsten. In one embodiment, the oxygenate-containing stream to be hydrogenated comprises one or more of the following streams, alone or in combination: a quench tower bottoms stream, a water absorption unit bottoms stream, a C4+ stream, and/or a C5+ stream.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 18, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: John Richard Shutt
  • Patent number: 7002052
    Abstract: An integrated process of preparing a C2-5 alkenyl-substituted aromatic compound using a C6-12 aromatic compound and a C2-5 alkane as raw materials.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: February 21, 2006
    Assignee: Dow Global Technologies Inc.
    Inventors: Simon Hamper, William M. Castor, Richard A. Pierce
  • Patent number: 6953871
    Abstract: A process for preparing a poly-ethynyl-substituted aromatic compound characterized by reacting a halogenated benzene with an ethynylzinc halide; a process for preparing a poly-ethynyl-substituted aromatic compound characterized by using a halogenated benzene having at least two kinds of halogen atoms as a halogenated benzene, and (A) reacting one kind of the halogen atoms existing in the halogenated benzene with an ethynyl group-containing compound; and (B) reacting the other kind of halogen atoms remaining in the formed compound with an ethynylzinc halide.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: October 11, 2005
    Assignee: Japan Science and Technology Corporation
    Inventors: Yoshito Tobe, Motohiro Sonoda
  • Patent number: 6897345
    Abstract: A process is described for the production of hydrocarbons with a high octane number starting from mixtures essentially consisting of n-butane and isobutane (such as for example field butanes) comprising a skeleton isomerization section, a dehydrogenation section of paraffins, a selective hydrogenation section of butadiene, two conversion sections of olefins, in which the isobutene is firstly selectively transformed by means of dimerization and/or etherification, followed by the linear butenes by means of alkylation, in order to obtain, by joining the products of the two conversion sections, a product having excellent motoristic properties (octane number, volatility and distillation curve).
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: May 24, 2005
    Assignee: Snamprogetti S.p.A.
    Inventors: Mario Marchionna, Marco Di Girolamo, Domenico Sanfilippo, Alberto Paggini
  • Patent number: 6846965
    Abstract: C2-C8-olefins are oligomerized in a process in which a stream of an olefin-containing hydrocarbon mixture is passed over a heterogeneous, nickel-containing oligomerization catalyst in n successive adiabatically operated reaction zones, where n?2, and the hydrocarbon mixture experiences a temperature increase 66 Treact in each reaction zone and the hydrocarbon mixture enters the first reaction zone at a temperature Tin and before entering each further reaction zone is cooled to a temperature which in each case may be up to 20° C. above or below Tin, and the relative catalyst volumes of the individual reaction zones are such that the difference in ?Treact between any two reaction zones is not more than 20° C.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: January 25, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Ralf Schulz, Marc Walter, Hans-Peter Neumann, Wolfgang Brox
  • Patent number: 6660896
    Abstract: In a process for isomerizing a feed comprising ethylbenzene and a mixture of xylene isomers, the feed is first contacted under xylene isomerization conditions with a first catalyst composition to produce an intermediate product having a higher para-xylene concentration than the feed, and then the intermediate product is contacted under ethylbenzene isomerization conditions with a second catalyst composition. The second catalyst composition comprises a hydrogenation-dehydrogenation component and a molecular sieve having 10-membered ring pores and is effective to selectively isomerize at least part of the ethylbenzene in the intermediate product to para-xylene and thereby produce a further product having a para-xylene concentration greater than the equilibrium concentration of para-xylene at said ethylbenzene isomerization conditions.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: December 9, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Xiaobing Feng, Gary David Mohr, David L. Stern
  • Patent number: 6583186
    Abstract: The present invention is directed to a method for hydroprocessing Fischer-Tropsch products. The invention in particular relates to an integrated method for producing liquid fuels from a hydrocarbon stream provided by Fischer-Tropsch synthesis. The method involves separating the Fischer-Tropsch products into a light fraction and a heavy fraction. The heavy fraction is subjected to hydrocracking conditions, preferably through multiple catalyst beds, to reduce the chain length. The products of the hydrocracking reaction following the last catalyst bed, optionally after a hydroisomerization step, are combined with the light fraction. The combined fractions are hydrotreated, and, optionally, hydroisomerized. The hydrotreatment conditions hydrogenate double bonds, reduce oxygenates to paraffins, and desulfurize and denitrify the products. Hydroisomerization converts at least a portion of the linear paraffins into isoparaffins.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: June 24, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Richard O. Moore, Jr.
  • Publication number: 20030028059
    Abstract: An integrated process of preparing a C2-5 alkenyl-substituted aromatic compound using a C6-12 aromatic compound and a C2-5 alkane as raw materials.
    Type: Application
    Filed: July 11, 2002
    Publication date: February 6, 2003
    Inventors: Simon Hamper, William M. Castor, Richard A. Pierce
  • Patent number: 6503465
    Abstract: A process and/or system is provided for isomerizing a hydrocarbon feedstock comprising saturated C6 hydrocarbons by contacting the hydrocarbon feedstock, in the presence of hydrogen and optionally a chloride, with a first isomerization catalyst composition in a first isomerization reactor defining a first reaction zone operated at a first reaction temperature, withdrawing a first intermediate stream comprising cyclohexane and n-hexane from the first reaction zone, separating the first intermediate stream, via a first separator, into a first product stream comprising cyclohexane and a second intermediate stream comprising n-hexane, contacting the second intermediate stream, in the presence of hydrogen and optionally a chloride, with a second isomerization catalyst composition in a second isomerization reactor defining a second reaction zone operated at a second reaction temperature greater than the first reaction temperature, and withdrawing from the second reaction zone a second product stream comprising isoh
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: January 7, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Fan-nan Lin, Edgar Durand Davis
  • Publication number: 20020182124
    Abstract: A process is provided to stabilize and/or reactivate an olefin production catalyst system which comprises contacting an olefin production catalyst system, either before or after use, with an aromatic compound.
    Type: Application
    Filed: October 14, 1997
    Publication date: December 5, 2002
    Inventors: WILLIAM M. WOODARD, WARREN M. EWERT, HARVEY D. HENSLEY, MARK E. LASHIER, BRUCE E. KREISCHER, GLYNDAL D. COWAN, JEFFREY W. FREEMAN, RALPH V. FRANKLIN, RONALD D. KNUDSEN, RICHARD L. ANDERSON, LYLE R. KALLENBACH
  • Publication number: 20020052534
    Abstract: The invention concerns a process for converting hydrocarbons using at least one globally endothermic chemical reaction, in which a hydrocarbon feed successively traverses at least two reaction zones each containing at least one solid catalyst and comprising between said reaction zones an intermediate step, in a non catalytic zone, for reheating the stream (ST) from the first of the two reaction zones prior to its introduction into said second reaction zone, and in which said reheating is carried out in a heat exchanger, with heat transfer essentially by convection using a thermal fluid TF with a coking sensitivity index CS that is less than that of the stream ST, the difference in temperature &Dgr;T between the temperature of the fluid TF at the inlet to the exchanger and the temperature of the stream ST at the heat exchanger outlet being less than 250° C. The invention also concerns the use of said process for converting hydrocarbons and a unit for carrying out the process.
    Type: Application
    Filed: October 30, 2001
    Publication date: May 2, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Eric Lenglet, Frederic Hoffmann, Nicolas Boudet
  • Patent number: 6339179
    Abstract: A process for producing alkyl aromatics using a transalkylation reaction zone and an alkylation reaction zone is disclosed. One portion of the transalkylation reaction zone effluent passes to an alkylation reaction zone where an aromatic substrate is alkylated to the desired alkyl aromatic. At least a portion of the alkylation reaction zone effluent and another portion of the transalkylation reaction zone effluent pass to a product recovery zone. This process decreases the capital and operating costs of recycling aromatic substrate to the transalkylation and/or alkylation reaction zone while maintaining operational flexibility. This process is well suited for solid transalkylation and alkylation catalysts. Ethylbenzene and cumene may be produced by this process.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: January 15, 2002
    Assignee: UOP LLC
    Inventors: Russell C. Schulz, Gregory J. Gajda, Guy B. Woodle, Andrew S. Zarchy
  • Patent number: 6313361
    Abstract: A process is provided for treating a liquid effluent from a gas to liquid conversion reactor. A synthesis gas is initially converted to a liquid hydrocarbon phase in the gas to liquid conversion reactor. The liquid hydrocarbon phase includes a heavier liquid paraffinic wax compound and a lighter liquid paraffinic compound. The liquid hydrocarbon phase is discharged from the gas to liquid conversion reactor in a reactor effluent and an abrasive solid particle medium is entrained in the reactor effluent to form a fluidizable mixture. The reactor effluent is conveyed past a heat transfer surface which is cooler than the reactor effluent. The fluidizable mixture is contacted with the heat transfer surface and the liquid hydrocarbon phase is cooled to a temperature below the melting point of the heavier liquid paraffinic wax compound. Consequently, the heavier liquid paraffinic wax compound is converted to a plurality of unconsolidated solid wax particles.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: November 6, 2001
    Assignee: Marathon Oil Company
    Inventor: John J. Waycuilis
  • Patent number: 6303839
    Abstract: The present invention relates to a process for the production of light olefins comprising olefins having from 2 to 4 carbon atoms per molecule from an oxygenate feedstock. The process comprises passing the oxygenate feedstock to an oxygenate conversion zone containing a metal aluminophosphate catalyst to produce a light olefin stream. A propylene stream and/or mixed butylene is fractionated from said light olefin stream and cracked to enhance the yield of ethylene and propylene products. This combination of light olefin product and propylene and butylene cracking in a riser cracking zone or a separate cracking zone provides flexibility to the process which overcomes the equilibrium limitations of the aluminophosphate catalyst. In addition, the invention provides the advantage of extended catalyst life and greater catalyst stability in the oxygenate conversion zone.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: October 16, 2001
    Assignee: UOP LLC
    Inventor: Terry L. Marker
  • Publication number: 20010004972
    Abstract: A process for making a lube base stock wherein an olefinic feedstock is separated into a light olefin fraction and a medium olefin fraction. The light olefin fraction is contacted with a first oligomerization catalyst in a first oligomerization zone to produce a first product. Both the medium olefin fraction and the first product are contacted with a second oligomerization catalyst in a second oligomerization zone to produce a second product. The second product is separated into a light byproduct fraction and a heavy product fraction that includes hydrocarbons in the lube base stock range.
    Type: Application
    Filed: January 11, 2001
    Publication date: June 28, 2001
    Inventors: Stephen J. Miller, Dennis J. O'Rear, Thomas V. Harris, Russell R. Krug
  • Patent number: 6248929
    Abstract: Disclosed is a rubber process oil in which the content of polycyclic aromatics (PCAs) as determined by the IP 346 method is less than 3% by mass and which is rich In aromatic hydrocarbons, and a method for producing the same. The aniline point of the rubber process oil is 80° C. or less, and the % CA value as determined by ring analysis according to the Kurtz method is from 20 to 50%. The rubber process oil is produced by using extraction of lube oil fraction with a solvent having a selective affinity for aromatics. The extraction conditions are determined so that the extraction yield is regulated to a predetermined requirement defined by the PCAs content of the lube oil fraction. Alternatively, the extract is cooled to further separate into the extract and the raffinate, and the second raffinate is used for the rubber process oil.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: June 19, 2001
    Assignee: Japan Energy Corporation
    Inventors: Takashi Kaimai, Kazumitsu Fujihara, Yoshiyuki Morishima
  • Patent number: 6218589
    Abstract: A method for improving the operation of a propane-propylene splitter in a process for the dehydrogenation of propane wherein the propane is dehydrogenated to produce a stream containing propylene and trace quantities of methyl acetylene and propadiene compounds and which stream is selectively hydrogenated to selectively saturate at least a majority of the trace quantities of methyl acetylene and propadiene compounds. The resulting effluent from the selective hydrogenation zone is fractionated in a propane-propylene splitter to produce a high-purity propylene product stream, an unconverted propane stream which is introduced to the dehydrogenation zone and a small slip stream or side-cut containing methyl acetylene and propadiene compounds which is introduced into the selective hydrogenation zone.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: April 17, 2001
    Assignee: UOP LLC
    Inventor: Paul R. Cottrell
  • Patent number: 6194626
    Abstract: A cyclic process for the purification of a diolefin hydrocarbon stream produced in a naphtha steam cracker to produce a high quality diolefin hydrocarbon stream having extremely low levels of acetylene over an extended period because of the ability to readily cyclically regenerate catalyst contained in an off-line selective hydrogenation reaction zone. The spent or partially spent catalyst is contacted with a stream containing naphtha and hydrogen to restore at least a portion of the fresh catalyst activity by the extraction of polymer compounds therefrom.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: February 27, 2001
    Assignee: UOP LLC
    Inventors: Bipin V. Vora, Paul R. Cottrell
  • Patent number: 6121501
    Abstract: A process for producing 2,6-dialkylnaphthalene from a hydrocarbon feedstock that contains at least one component selected from the group consisting of dialkylnaphthalene isomers, monoalkylnaphthalene isomers, polyalkylnaphthalenes, and naphthalene, is provided that includes the following steps:I. separating the hydrocarbon feedstock and/or a dealkylation product fed from step III into a naphthalene fraction, a monoalkylnaphthalene fraction, a dialkylnaphthalene fraction and a remaining products fraction;II. separating and purifying 2,6-dialkylnaphthalene from the dialkylnaphthalene fraction of step I;III. dealkylating the hydrocarbon feedstock and/or the remaining products fraction of step I and feeding the dealkylation product to step I; andIV. alkylating the naphthalene and monoalkylnaphthalene fractions of step I;wherein the hydrocarbon feedstock is fed to step I or step III.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: September 19, 2000
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Mobil Oil Corporation
    Inventors: Masahiro Motoyuki, Koji Yamamoto, Ajit Vishwanath Sapre, John Paul Mc Williams, Susan Patricia Donnelly
  • Patent number: RE39222
    Abstract: A process for producing 2,6-dialkylnaphthalene from a hydrocarbon feedstock that contains at least one component selected from the group consisting of dialkylnaphthalene isomers, monoalkylnaphthalene isomers, polyalkylnaphthalenes, and naphthalene, is provided that includes the following steps: I. separating the hydrocarbon feedstock and/or a dealkylation product fed from step III into a naphthalene fraction, a monoalkylnaphthalene fraction, a dialkylnaphthalene fraction and a remaining products fraction; II. separating and purifying 2,6-dialkylnaphthalene from the dialkylnaphthalene fraction of step I; III. dealkylating the hydrocarbon feedstock and/or the remaining products fraction of step I and feeding the dealkylation product to step I; and IV. alkylating the naphthalene and monoalkylnaphthalene fractions of step I; wherein the hydrocarbon feedstock is fed to step I or step III.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: August 1, 2006
    Assignees: Kobe Steel, Ltd., Mobile Oil Corporation
    Inventors: Masahiro Motoyuki, Koji Yamamoto, Ajit Vishwanath Sapre, John Paul McWilliams, Susan Patricia Donnelly
  • Patent number: RE41136
    Abstract: The present invention relates to a process of preparing dialkylnaphthylenes and polyalkylenenaphthyleneates dialkylnaphthalenes and polyalkylenenaphthalates.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: February 16, 2010
    Assignees: Kobe Steel, Ltd, ExxonMobil Chemical Patents, Inc.
    Inventors: Masahiro Motoyuki, Koji Yamamoto, Ajit Vishwanath Sapre, John Paul McWilliams, Susan Patricia Donnelly