With Hydrocarbon Effluent Stream Splitting For Recycle To Different Syntheses Patents (Class 585/314)
  • Patent number: 4774376
    Abstract: This invention relates to a process for producing liquid products e.g. gasoline blending components by conversion of a mixed paraffin/olefin gaseous feedstock over two types of catalysts. In a first stage, the mixed feedstock is brought into contact with a partially deactivated catalyst which converts olefins in the feed into liquid products. Gaseous products now rich in paraffins are separated and brought into contact in a second stage with another catalyst which is more active than that used in the first stage. The liquid products emerging from the second stage are thereafter separated and recovered. The catalyst is preferably a gallium oxide loaded MFI type zeolite.
    Type: Grant
    Filed: May 3, 1985
    Date of Patent: September 27, 1988
    Assignee: The British Petroleum Company, p.l.c
    Inventor: Antony H. P. Hall
  • Patent number: 4767604
    Abstract: Alkylate is produced by catalytically converting oxygenate feedstock, such as methanol, to lower olefins comprising C.sub.2 -C.sub.4 olefins. Ethene is separated by interstage sorption of C.sub.3 + components and an isoparaffin is alkylated with C.sub.3 -C.sub.4 olefins derived from sorbate. The system comprises means for fractionating an olefinic feedstream containing ethene and C.sub.3 + olefinic components by contacting the olefinic feedstream in a sorption zone with a liquid hydrocarbon sorbent to selectively sorb C.sub.3.sup.+ components; means for reacting C.sub.3.sup.+ olefins with excess isoparaffin in a catalytic alkylation reactor to produce C.sub.7 + alkylate hydrocarbons; fractionating the alkylation reactor effluent to provide a liquid hydrocarbon fraction rich in C.sub.7.sup.+ alkylate. Liquid recycle or C.sub.5.sup.+ liquid coproduced with the lower olefin may be passed to the sorption zone as lean sorbent. C.sub.7.sup.+ alkylate product and C.sub.5.sup.
    Type: Grant
    Filed: October 15, 1986
    Date of Patent: August 30, 1988
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Samuel A. Tabak, Bernard S. Wright
  • Patent number: 4746761
    Abstract: A multistage process for producing isoalkyl ethers from lower aliphatic oxygenate feedstock, such as methanol. Feedstock is catalytically converted in a primary catalyst stage at elevated temperature in contact with zeolite catalyst to predominantly C.sub.2 -C.sub.7 lower olefins comprising isobutylene and isoamylene, by-product water and a minor amount of C.sub.8.sup.+ hydrocarbons, followed by fractionation of the C.sub.2 -C.sub.7 olefins to recover a C.sub.2 -C.sub.3 -rich recycle stream for further catalytic conversion in the primary stage. C.sub.4 -C.sub.7 olefins are passed to a second catalytic etherification stage for reaction of isoalkenes with methanol to produce methyl tertiary-butyl ether, methyl isoamylether and higher isoalkyl ethers. The second stage effluent may be fractionated to recover an ether product, C.sub.5.sup.+ hydrocarbon liquid product, and unreacted butenes.
    Type: Grant
    Filed: July 2, 1987
    Date of Patent: May 24, 1988
    Assignee: Mobil Oil Corporation
    Inventors: Amos A. Avidan, Frederick J. Krambeck, Samuel A. Tabak
  • Patent number: 4686312
    Abstract: Disclosed is a multistage process for converting lower aliphatic oxygeanated hydrocarbon feedstock to hydrocarbon product rich in benzene, toluene and/or xylene which comprises:contacting said oxygenated hydrocarbons in a primary stage with a medium pore shape selective acidic zeolite to an intermediate hydrocarbon product comprising predominantly aliphatic hydrocarbons;contacting at least a portion of the aliphatic hydrocarbons from the primary stage with a secondary stage catalyst comprising gallium-promoted medium pore shape selective zeolite characterized by a constraint index within the approximate range of 1 to 12 and a silica to alumina ratio of about 20 to 100:1; thereby producing benzene, toluene and/or xylene.
    Type: Grant
    Filed: October 23, 1986
    Date of Patent: August 11, 1987
    Assignee: Mobil Oil Corporation
    Inventors: Yung-Feng Chu, Arthur W. Chester
  • Patent number: 4684757
    Abstract: A multistage process for producing ethers from lower aliphatic oxygenate feedstock, such as methanol. Feedstock is catalytically converted in a primary catalyst stage at elevated temperature in contact with zeolite catalyst to predominantly C.sub.2 -C.sub.5 lower olefins comprising isobutylene and isoamylene, by-product water and a minor amount of C.sub.6.sup.+ hydrocarbons, followed by fractionation of the C.sub.2 -C.sub.5 olefins to recover a C.sub.2 -C.sub.3 -rich recycle stream for further catalytic conversion in the primary stage. C.sub.4 -C.sub.5 olefins are passed to a second catalytic etherification stage for reaction of isoalkenes with methanol to produce methyl tertiary-butyl ether and methyl isoamylether. The second stage effluent may be fractionated to recover an ether product, C.sub.5.sup.+ hydrocarbon liquid product, and unreacted butenes.
    Type: Grant
    Filed: July 18, 1986
    Date of Patent: August 4, 1987
    Assignee: Mobil Oil Corporation
    Inventors: Amos A. Avidan, Frederick J. Krambeck, Samuel A. Tabak
  • Patent number: 4684756
    Abstract: The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.
    Type: Grant
    Filed: May 1, 1986
    Date of Patent: August 4, 1987
    Assignee: Mobil Oil Corporation
    Inventors: W. Rodman Derr, Jr., William E. Garwood, James C. Kuo, Tiberiu M. Leib, Donald M. Nace, Samuel A. Tabak
  • Patent number: 4663493
    Abstract: A process for dehydrogenating dehydrogenatable hydrocarbons is disclosed in which a heat providing stream is utilized to supply a portion of the endothermic heat requirement of the reaction zone feed thereby decreasing the temperature drop of the dehydrogenation zone material. As a result, the amount of deleterious side reactions such as thermal cracking is reduced, and an increase in conversion of the dehydrogenatable hydrocarbons is realized.
    Type: Grant
    Filed: June 12, 1985
    Date of Patent: May 5, 1987
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Roy C. Berg, Norman H. Scott
  • Patent number: 4658073
    Abstract: A process control technique for upgrading C.sub.3 -C.sub.4 hydrocarbon feed containing olefins to produce heavier liquid hydrocarbons comprising converting a major portion of C.sub.3 -C.sub.4 olefins in an oligomerization zone by contacting a shape selective medium pore zeolite catalyst at elevated temperature and pressure to make distillate and olefinic gasoline. The oligomerization stage effluent is fractionated to provide distillate and gasoline product and a C.sub.3 -C.sub.4 intermediate stream containing isobutane and unconverted propene and butylene. The C.sub.3 -C.sub.4 intermediate stream is combined under control with a portion of C.sub.3 -C.sub.4 feed and further converting the combined streams in an alkylation zone to make heavier paraffinic hydrocarbons. The olefin feed may be produced by catalytically converting methanol or similar oxygenated hydrocarbons in a known process.
    Type: Grant
    Filed: July 11, 1986
    Date of Patent: April 14, 1987
    Assignee: Mobil Oil Corporation
    Inventor: Samuel A. Tabak
  • Patent number: 4633027
    Abstract: A continuous process for upgrading C.sub.3 -C.sub.4 hydrocarbon feed containing olefins to produce heavier liquid hydrocarbons comprising converting a major portion of C.sub.3 -C.sub.4 olefins in an oligomerization zone by contacting a shape selective medium pore zeolite catalyst at elevated temperature and pressure to make distillate and olefinic gasoline; fractionating the oligomerization stage effluent to provide distillate and gasoline product and a C.sub.3 -C.sub.4 intermediate stream containing isobutane and unconverted propene and butylene; and combining the C.sub.3 -C.sub.4 intermediate stream with a portion of C.sub.3 -C.sub.4 feed and further converting the combined streams in an alkylation zone to make heavier paraffinic hydrocarbons.The olefin feed may be produced by catalytically converting methanol or similar oxygenated hydrocarbons in a known process.
    Type: Grant
    Filed: September 23, 1985
    Date of Patent: December 30, 1986
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Samuel A. Tabak, Bernard S. Wright
  • Patent number: 4582949
    Abstract: This invention relates to a two-stage conversion of olefins into aromatic hydrocarbon mixtures by contacting them in the first stage with a crystalline metal silicate and in the second stage with a crystalline gallium silicate.
    Type: Grant
    Filed: May 17, 1985
    Date of Patent: April 15, 1986
    Assignee: Shell Oil Company
    Inventor: Eduard P. Kieffer
  • Patent number: 4581474
    Abstract: In a combination alkylation-methyltertiary butyl ether (MTBE) operation, the unreacted C.sub.4 olefinic hydrocarbons produced by etherification are contacted with molecular sieves to absorb 2-butenes and the 1-butenes remaining in the stream are divided so that one portion is subjected to double bond isomerization to form 2-butenes for alkylation and another portion is subjected skeletal isomerization to form isobutene for etherification.
    Type: Grant
    Filed: March 11, 1985
    Date of Patent: April 8, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Thomas Hutson, Jr., Paul D. Hann
  • Patent number: 4558168
    Abstract: This invention relates to a process for producing a high purity butene-1 product from n-butane via a dehydrogenation process. In one embodiment of the process the n-butane is dehydrogenated over a chromia-alumina catalyst and any butadiene formed hydrogenated to monoolefins. The monoolefins are separated and the butene-1 separated from isobutylene by reacting the isobutylene with methanol to form methyl tertiary butyl ether. The methyl tertiary butyl ether is separated from the butene-1 leaving it as a high purity product. Alternatively, the dehydrogenated product from the reactor may be contacted with a solvent to extract butadiene followed by hydrogenation, separation of monoolefins and conversion to methyl tertiary butyl ether.
    Type: Grant
    Filed: June 19, 1985
    Date of Patent: December 10, 1985
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stanley Gussow, David C. Spence, William A. Schwartz
  • Patent number: 4547602
    Abstract: An integrated process is provided for converting methanol or the like to heavy hydrocarbon products, especially distillate range hydrocarbons. In a first stage catalytic process oxygenate feedstock is converted to lower olefins, which are passed through a second stage oligomerization reactor. A reactor sequencing technique is useful for multi-stage catalytic conversion systems employing a number of fixed bed catalytic reactors at various process temperatures and catalytic activity levels.
    Type: Grant
    Filed: August 28, 1984
    Date of Patent: October 15, 1985
    Assignee: Mobil Oil Corporation
    Inventor: Samuel A. Tabak
  • Patent number: 4546204
    Abstract: The invention concerns a process for the manufacture of methyl t-butyl ether in which: a hydrocarbon feedstock is cracked to give an ethylene-rich stream; an isobutane-rich stream is separated from C.sub.4 -hydrocarbon stream; the ethylene-rich stream and the isobutane-rich stream are contacted over a transhydrogenation catalyst to give a mixture comprising ethane and isobutene; the isobutene is reacted with methanol to give methyl t-butyl ether; and the residual C.sub.4 -hydrocarbon stream is recycled either to the C.sub.4 -hydrocarbon stream or to the cracker and the ethane is recycled to the cracker.It has been found that combining and interconnecting a hydrocarbon cracker, a transhydrogenation reactor and an etherification reactor results in an integrated, economic process for the production of methyl t-butyl ether.
    Type: Grant
    Filed: October 29, 1984
    Date of Patent: October 8, 1985
    Assignee: Imperial Chemical Industries Australia Limited
    Inventor: David Parris
  • Patent number: 4543435
    Abstract: A process for converting oxygenated feedstock comprising methanol, dimethyl ether or the like to liquid hydrocarbons comprising the steps ofcontacting the feedstock with zeolite catalyst in a primary catalyst stage at elevated temperature and moderate pressure to convert feedstock to hydrocarbons comprising C.sub.2 -C.sub.4 olefins and C.sub.5.sup.+ hydrocarbons;cooling and separating effluent from the primary stage to recover a liquid hydrocarbon stream and a light hydrocarbon vapor stream rich in C.sub.2 -C.sub.4 olefins;compressing the olefinic light hydrocarbon stream to condense a liquid olefinic hydrocarbon stream rich in C.sub.3.sup.
    Type: Grant
    Filed: January 17, 1985
    Date of Patent: September 24, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Ronald M. Gould, Samuel A. Tabak
  • Patent number: 4523047
    Abstract: The liquid carrier in a Fischer-Tropsch synthesis slurry reactor system is periodically or continually separated and subjected to cracking and isomerization in the presence of suitable catalysts. The treated carrier is returned to the reactor system and the accumulation of high viscosity paraffin in the reactor slurry is minimized. Suitable catalysts include a mixture of cracking and isomerization catalysts. Zeolite ZSM-45 is a novel constituent of the catalyst system.
    Type: Grant
    Filed: July 16, 1984
    Date of Patent: June 11, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Arthur W. Chester, Tai-Sheng Chou, Yung-Feng Chu
  • Patent number: 4511747
    Abstract: In the conversion of light olefins to heavier hydrocarbons, an improved recovery technique is provided for selectively removing unreacted light olefins from a catalytic reactor effluent. This system is useful in converting ethene-rich feedstocks to gasoline and/or distillate products, particularly in oligomerization processes employing shape selective siliceous catalysts such as ZSM-5 type zeolites. By recycling gasoline-range hydrocarbons as a sorbent liquid, unreacted C.sub.2.sup.+ components may be absorbed from reactor effluent vapor and returned for further contact with the catalyst.
    Type: Grant
    Filed: February 1, 1984
    Date of Patent: April 16, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Bernard S. Wright, Chung H. Hsia, Hartley Owen
  • Patent number: 4482772
    Abstract: An integrated process is provided for converting methanol or the like to heavy hydrocarbon products, especially distillate range hydrocarbons. In a first stage catalytic process oxygenate feedstock is converted to lower olefins. Byproduct aromatics are passed through a second stage oligomerization reactor with olefins. Distillate range hydrocarbons are recovered and hydrotreated to provide an improved fuel product.
    Type: Grant
    Filed: November 3, 1983
    Date of Patent: November 13, 1984
    Assignee: Mobil Oil Corporation
    Inventor: Samuel A. Tabak
  • Patent number: 4471145
    Abstract: The liquid carrier in a Fischer-Tropsch synthesis slurry reactor system is periodically or continually separated and subjected to cracking and isomerization in the presence of suitable catalysts. The treated carrier is returned to the reactor system and the accumulation of high viscosity paraffin in the reactor slurry is minimized. Suitable catalysts include a mixture of cracking and isomerization catalysts. Zeolite Beta is the novel constituent of the catalyst system.
    Type: Grant
    Filed: September 26, 1983
    Date of Patent: September 11, 1984
    Assignee: Mobil Oil Corporation
    Inventors: Yung-Feng Chu, Tai-Sheng Chou, Arthur W. Chester
  • Patent number: 4456779
    Abstract: An improved continuous process for converting lower olefinic hydrocarbon feedstock to C.sub.5.sup.+ liquid hydrocarbons by contacting vapor phase olefinic feedstream with acid zeolite catalyst in the presence of recycled diluent stream rich in C.sub.3 -C.sub.4 hydrocarbons in an enclosed reactor at elevated temperature and pressure. The improved technique comprises a system for cooling reactor effluent to recover a heavier hydrocarbon stream containing a mixture of C.sub.3 -C.sub.4 hydrocarbons and C.sub.5.sup.+ hydrocarbons and debutanizing the heavier hydrocarbons below reactor pressure to obtain a C.sub.5.sup.+ product stream and a condensed C.sub.3 -C.sub.4 hydrocarbon stream. Operating efficiencies are realized in the heat exchange system by reboiling the debutanized C.sub.5.sup.+ hydrocarbon product stream with hot reactor effluent, and by recycling and combining at least a portion of the condensed C.sub.3 -C.sub.4 hydrocarbon stream to dilute liquid olefin hydrocarbon feedstock.
    Type: Grant
    Filed: April 26, 1983
    Date of Patent: June 26, 1984
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Susan K. Marsh, Bernard S. Wright
  • Patent number: 4450311
    Abstract: A heat balanced technique for converting an olefinic feedstock comprising ethylene and C.sub.3.sup.+ olefins to heavier liquid hydrocarbon product in a catalytic exothermic process. Methods and means are provided for prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C.sub.3.sup.+ olefin, and contacting an olefinic feedstock stream from the prefractionating step with ZSM-5 type oligomerization catalyst in a series of exothermic catalytic reactors to provide a heavier hydrocarbon effluent stream comprising distillate, gasoline and lighter hydrocarbons. In a preferred embodiment a catalytic system is provided for making gasoline or diesel fuel from an olefinic feestock containing ethylene and C.sub.3.sup.+ lower olefins comprising a prefractionation system for separating and recovering ethylene and a liquid stream rich in C.sub.3.sup.
    Type: Grant
    Filed: June 29, 1983
    Date of Patent: May 22, 1984
    Assignee: Mobil Oil Corporation
    Inventors: Bernard S. Wright, Hartley Owen, Chung H. Hsia
  • Patent number: 4435606
    Abstract: Internal olefins are subjected to metathesis closely coupled after an isomerization reaction to obtain desired molecular weight range linear olefins. Specific process steps and separation conditions are necessary to obtain the desired linear olefins.
    Type: Grant
    Filed: December 24, 1981
    Date of Patent: March 6, 1984
    Assignee: Conoco Inc.
    Inventors: Kaye L. Motz, Paul H. Washecheck, Ronald L. Poe, James E. Yates
  • Patent number: 4429173
    Abstract: A process combination, with inter-cooperation, for producing high-octane alkylates comprising(a) dehydrogenating isopentane to isopentenes (amylenes),(b) introducing the mixture of said amylenes and unconverted isopentane into an HF alkylation unit for reaction with fresh or recycled isobutane,(c) separating the alkylation products into high octane alkylates, isopentane (for recycling to the dehydrogenation reactor) and isobutane (for recycling to the alkylation reactor).
    Type: Grant
    Filed: March 9, 1982
    Date of Patent: January 31, 1984
    Assignee: Phillips Petroleum Company
    Inventors: Thomas Hutson, Jr., Paul D. Hann
  • Patent number: 4423265
    Abstract: The liquid carrier in a Fischer-Tropsch synthesis slurry reactor system is periodically or continually separated and subjected to cracking and isomerization in the presence of suitable catalysts. The treated carrier is returned to the reactor system and the accumulation of high viscosity paraffin in the reactor slurry is minimized. Suitable catalysts include a mixture of cracking and isomerization catalysts.
    Type: Grant
    Filed: December 1, 1982
    Date of Patent: December 27, 1983
    Assignee: Mobil Oil Corporation
    Inventors: Yung-Feng Chu, Tai-Sheng Chou, Arthur W. Chester
  • Patent number: 4413153
    Abstract: The synthetic fuel slate of products derived from wet natural gas is expanded to include both aromatic gasoline from the methane rich dry gas portion via steam reforming to synthesis gas, the production of methanol from synthesis gas and the conversion of methanol to gasoline over a ZSM-5 type catalyst, plus high quality jet fuel, diesel fuel and lubricating oils from the C.sub.3.sup.+ paraffin rich fraction of wet natural gas via thermal cracking of the paraffin rich fraction to olefins and the conversion of the olefins to gasoline and distillate boiling range hydrocarbons over a ZSM-5 type catalyst. Methane separated from the thermal cracked product can be mixed with the dry gas fraction for synthesis gas production and a portion of the hydrogen from the synthesis gas may be used to hydrogenate the distillate fraction from the catalytic conversion of the thermal cracked product.
    Type: Grant
    Filed: October 22, 1982
    Date of Patent: November 1, 1983
    Assignee: Mobil Oil Corporation
    Inventors: William E. Garwood, Wooyoung Lee
  • Patent number: 4393259
    Abstract: A multi-step hydrocarbon conversion process for producing gasoline from propane or butane is disclosed. The feed hydrocarbon is passed into a dehydrogenation zone and the entire dehydrogenation zone effluent including hydrogen and light by-products is then passed into a catalytic condensation zone wherein the resulting olefins are converted into dimers and trimers. The condensation zone effluent stream is passed into a separation zone in which the dimers and trimers are concentrated into a product stream, with unconverted feed hydrocarbon and hydrogen being recycled to the dehydrogenation zone.
    Type: Grant
    Filed: August 5, 1981
    Date of Patent: July 12, 1983
    Assignee: UOP Inc.
    Inventors: Dennis J. Ward, Bipin V. Vora
  • Patent number: 4367357
    Abstract: An improved multiconversion zone process which results in an increased yield of motor fuel blending stocks from butanes is disclosed. A butane mixture is fractionated into isobutane-rich and normal butane-rich process streams, with the normal butane-rich stream being passed into an isomerization zone. All of the C.sub.4 's in the isomerization zone effluent and the normal butane-rich process stream are passed through a dehydrogenation zone. The entire dehydrogenation zone effluent stream is passed into an alkylation zone, and the alkylation zone effluent is fractionated. An alkylate-containing normal butane stream is recycled to the feed fractionator, and alkylate from the feed fractionator is admixed with an alkylate stream from the alkylation zone product fractionator to produce a product stream.
    Type: Grant
    Filed: June 10, 1981
    Date of Patent: January 4, 1983
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora
  • Patent number: 4341911
    Abstract: A hydrocarbon conversion process for producing C.sub.8 hydrocarbons suitable for use as motor fuel blending components from normal butane or a mixture of isobutane and normal butane. A butane feed stream is fractionated to produce a normal butane stream which is passed through a butane isomerization zone. The effluent of the isomerization zone is admixed with isobutane and passed into a butane dehydrogenation zone. The C.sub.4 effluent of the dehydrogenation zone is passed into an HF alkylation zone in which C.sub.8 hydrocarbons are produced. The alkylation zone effluent stream is passed into the feed stream fractionator. Preferably, an isobutane stream is withdrawn from the feed stream fractionator and divided into a portion which is passed into the dehydrogenation zone and a portion passed into the alkylation zone based on a measurement of the isobutane inventory of the process.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: July 27, 1982
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora
  • Patent number: 4324937
    Abstract: A hydrocarbon conversion process for the production of motor fuel blending stocks from propane and butane is disclosed. Preferably a charge stream comprising a mixture of C.sub.3 -C.sub.4 saturated hydrocarbons is split into a C.sub.3 stream passed into a dehydrogenation zone and a C.sub.4 stream passed into an isostripper column. Normal butanes are removed from the isostripper and passed into an isomerization zone, with product isobutane being concentrated by fractionation in the isostripper. Isobutane and propylene from the dehydrogenation zone are then reacted in an alkylation zone which produces C.sub.5 -plus product hydrocarbons. The effluent of the alkylation zone enters the isostripper. The product stream and a propane-containing stream are withdrawn from the isostripper, with the propane-containing stream being passed into a second separation zone. Alternative butane fractionation systems are disclosed.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: April 13, 1982
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora
  • Patent number: 4324935
    Abstract: For thermally cracking heavy liquid hydrocarbons to produce gaseous olefins comprising a catalytic hydrogenating pretreatment, a separation of the hydrogenation product into a lighter fraction and a heavier fraction; passing the heavier fraction at least in part to a thermal cracking step to produce normally gaseous olefins; and withdrawing the lighter fraction, the improvement wherein the hydrogenation is conducted within the shaded area of FIG. 2, whereby said lighter fraction has a higher octane number.
    Type: Grant
    Filed: October 16, 1980
    Date of Patent: April 13, 1982
    Assignee: Linde Aktiengesellschaft
    Inventors: Hans J. Wernicke, Claus Schliebener
  • Patent number: 4304948
    Abstract: A multi-step hydrocarbon conversion process for producing gasoline from butane is disclosed. Butane is passed into a dehydrogenation zone and the entire dehydrogenation zone effluent is then passed into a catalytic condensation zone wherein butylene is converted into C.sub.8 and C.sub.12 hydrocarbons. The condensation zone effluent, a stripper overhead stream and an absorber bottoms stream are commingled and then separated into vapor and liquid portions. The liquid is passed into the stripper, and the vapor portion is contacted with stripper bottoms liquid in an absorber. The absorber overhead stream is contacted with liquid butane in a second absorber to remove C.sub.8 hydrocarbons and is then recycled to the dehydrogenation zone. Debutanizing a portion of the stripper bottoms yields the liquid butane and a gasoline product.
    Type: Grant
    Filed: June 27, 1980
    Date of Patent: December 8, 1981
    Assignee: UOP Inc.
    Inventors: Bipin V. Vora, Dennis J. Ward
  • Patent number: 4293722
    Abstract: A multi-step hydrocarbon conversion process for producing gasoline from propane is disclosed. Propane is passed into a dehydrogenation zone and the entire dehydrogenation zone effluent is then passed into a catalytic condensation zone wherein propylene is converted into C.sub.6 and C.sub.9 hydrocarbons. The condensation zone effluent, a stripper overhead stream and an absorber bottoms stream are commingled and then separated into vapor and liquid portions. The liquid is passed into the stripper, and the vapor portion is contacted with stripper bottoms liquid in an absorber. The absorber overhead stream is contacted with liquid propane in a second absorber to remove C.sub.6 hydrocarbons and is then recycled to the dehydrogenation zone. Depropanizing a portion of the stripper bottoms yields the liquid propane and a gasoline product.
    Type: Grant
    Filed: February 14, 1980
    Date of Patent: October 6, 1981
    Assignee: UOP Inc.
    Inventors: Dennis J. Ward, Bipin V. Vora
  • Patent number: 4275255
    Abstract: A hydrocarbon conversion process for the production of motor fuel blending stocks from butanes is disclosed. The butane feed stream enters a deisobutanizer column. A normal butane-rich stream removed from the deisobutanizer is passed into an isomerization zone, with isomerization zone effluent being returned to the deisobutanizer. An isobutane-rich deisobutanizer overhead stream is passed through a dehydrogenation zone which contains a depropanizer and then into an alkylation zone. The effluent of the alkylation zone is fractionated into a product stream and recycle streams passed into the deisobutanizer and the depropanizer. The utilities cost of operating the process is lowered by integration of the heat exchange required in the process.
    Type: Grant
    Filed: January 16, 1980
    Date of Patent: June 23, 1981
    Assignee: UOP Inc.
    Inventor: Bipin V. Vora
  • Patent number: 4238628
    Abstract: Process for the production of undegraded alkylated aromatic compounds by alkylating an aromatic compound with a C.sub.3 or higher olefin polymer having terminal ethylene units.
    Type: Grant
    Filed: September 28, 1978
    Date of Patent: December 9, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Paul J. Cahill, Carl E. Johnson
  • Patent number: 4176141
    Abstract: A feed of mixed butenes is subjected to a combination process comprising skeletal isomerization, disproportionation, and appropriate fractionation to yield separate streams of isobutane, normal butane, and isoamylenes which can be dehydrogenated to isoprene.
    Type: Grant
    Filed: October 18, 1978
    Date of Patent: November 27, 1979
    Assignee: Phillips Petroleum Company
    Inventor: Rolland E. Dixon
  • Patent number: 4169865
    Abstract: A process for the dimerization and cyclization of isobutene to form, as preferred product, paraxylene in which the whole of the product of isobutene dimerization (including unreacted feedstock) is contacted with a catalyst for the cyclization of the isobutene dimer. The process is operable in a single dimerization/cyclization stage or in separate dimerization and cyclization stages with no intermediate separation of products. Optionally, the isobutene feedstock is provided by dehydrogenation of isobutane, unreacted isobutane in the resulting feedstock being carried through the dimerization/cyclization and eventually recycled.
    Type: Grant
    Filed: June 13, 1978
    Date of Patent: October 2, 1979
    Assignee: Imperial Chemical Industries Limited
    Inventors: John R. Bamforth, Raymond Higgins
  • Patent number: 4169111
    Abstract: Benzene is alkylated with ethylene in the presence of a crystalline zeolite catalyst to produce ethylbenzene and polyethylbenzenes. At least a portion of the diethylbenzene fraction is recycled to the alkylation zone while the remainder thereof plus the higher polyethylbenzenes are subjected to transalkylation with benzene in a separate transalkylation zone to produce additional ethylbenzene.
    Type: Grant
    Filed: February 2, 1978
    Date of Patent: September 25, 1979
    Assignee: Union Oil Company of California
    Inventor: Carlyle G. Wight
  • Patent number: 4167533
    Abstract: Ethylene and maximum benzene are co-produced via a combination process involving (1) thermal cracking, or pyrolysis, (2) aromatic hydrocarbon separation, or extraction, and, (3) dealkylation of alkyl-substituted aromatics to yield additional benzene. Unconverted feed paraffins are recycled to thermal cracking for additional ethylene and benzene production.
    Type: Grant
    Filed: April 7, 1978
    Date of Patent: September 11, 1979
    Assignee: UOP Inc.
    Inventor: Robert F. Raymond