Nonhydrocarbon Feed Patents (Class 585/408)
  • Patent number: 11878292
    Abstract: An improved MFI zeolite having low aluminum occupation at intersection sites characterized by an ortho-xylene to para-xylene uptake ratio of 0.1 to about 0.55. Processes for converting hydrocarbon or oxygenate to a product comprising light olefins and/or aromatics using the improved MFI zeolite as catalyst are also disclosed. Para-xylene in the product may be greater than about 24% of the xylenes.
    Type: Grant
    Filed: February 28, 2023
    Date of Patent: January 23, 2024
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Jaime G. Moscoso, Lijun Xu, Xi Zhao
  • Patent number: 11794159
    Abstract: A process and reactor for contacting a feed stream with a catalyst stream comprises a reaction chamber comprising two spent catalyst inlets for delivering two spent catalyst streams to the reaction chamber and at least one regenerated catalyst inlet for delivering a regenerated catalyst stream to the reaction chamber. The reaction chamber may also include a second regenerated catalyst inlet for delivering a second regenerated catalyst stream to the reaction chamber. The second spent catalyst inlet enables thorough mixing of catalyst streams.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: October 24, 2023
    Assignee: UOP LLC
    Inventors: Richard A. Johnson, II, Wolfgang A. Spieker, Mohammad-Reza Mostofi-Ashtiani
  • Patent number: 11691933
    Abstract: This disclosure provides an improved process for converting benzene/toluene via methylation with methanol/dimethyl ether for producing, e.g., p-xylene, comprising separating and recycling dimethyl ether from the methylation reaction product mixture effluent to the methylation reactor. High selectivity toward p-xylene, among others, can be achieved.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: July 4, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Seth M. Washburn, Hsu Chiang, Catherine M. Dorsi, Tan-Jen Chen
  • Patent number: 11674089
    Abstract: Systems and methods are provided for conversion of a combined feed of oxygenates (such as methanol or dimethyl ether) and olefins to a high octane naphtha boiling range product with a reduced or minimized aromatics content. The oxygenate conversion can be performed under conditions that reduce or minimize hydrogen transfer. Optionally, a catalyst that further facilitates formation of branched paraffins can be used, such as a catalyst that has some type of 12-member ring site available on the catalyst surface.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: June 13, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brandon J. O'Neill, Mark A. Deimund, Ajit B. Dandekar
  • Patent number: 11273430
    Abstract: The present discloses an aromatization catalyst, preparation process and application thereof and a low-carbon olefin aromatization process. The aromatization catalyst comprises a microporous material, a binder and a modifier; the microporous material is a zeolite molecular sieve, the binder is alumina, the modifier is phosphorus, and the molar ratio of the aluminum element in the binder to the phosphorus element is more than or equal to 1 and less than 5; the ratio of the acidity of the strongly acidic sites to the acidity of the weakly acidic sites of the olefin aromatization catalyst is less than 1.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 15, 2022
    Assignees: China Energy Investment Corporation Limited, National Institute of Clean-and-Low-Carbon Energy
    Inventors: Hui Wang, Lisa Nguyen, Junjun Shan, Joshua Miles, Jihong Cheng, Hua Liu
  • Patent number: 10927051
    Abstract: Disclosed is a method for preparing aromatic hydrocarbons, particularly relates to the preparation of the aromatic hydrocarbons by passing methanol and carbon monoxide through a reactor loaded with an acidic ZSM-5 molecular sieve catalyst containing no metal additive under reaction conditions. Compared with the prior art, the method provided by the present invention can improve and stabilize the selectivity to aromatic hydrocarbons, particularly BTX, by adding carbon monoxide in methanol aromatization, and also prolongs the single-pass life of the catalyst. The performance of an inactivated catalyst is not significantly degraded after repeated regenerations. Furthermore, the catalyst preparation process omits the step of adding a metal additive, so that not only the process is simplified, but also costs are greatly reduced, and environmental protection is facilitated.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: February 23, 2021
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Youming Ni, Wenliang Zhu, Zhongmin Liu, Zhiyang Chen, Yong Liu, Hongchao Liu, Xiangang Ma, Shiping Liu
  • Patent number: 10899682
    Abstract: Process for preparing a catalyst composition containing a modified crystalline aluminosilicate and a binder, wherein the catalyst composition comprises from 5 to 95% by weight of crystalline aluminosilicate as based on the total weight of the catalyst composition, the process being remarkable in that it comprises a step of steaming said crystalline aluminosilicate: at a temperature ranging from 100° C. to 380° C.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: January 26, 2021
    Assignees: TOTAL REFINING & TECHNOLOGY FELUY, IFP ENERGIES NOUVELLES
    Inventors: Nikolai Nesterenko, Colin Dupont, Vincent Coupard, Sylvie Maury, Thibault Heinz
  • Patent number: 10851028
    Abstract: The invention relates to a process for dehydration of a mono-alcohol, or of a mixture of at least two mono-alcohols, having at least 2 carbon atoms and at most 7 carbon atoms into olefins having the same number of carbons, wherein the process uses a catalyst composition that comprises a modified crystalline aluminosilicate has an acidity between 350 and 500 ?mol/g that comprises, and further wherein the catalyst composition is obtained by a process comprising the steps of providing a crystalline aluminosilicate having a Si/Al framework molar ratio greater than 10; and steaming said crystalline aluminosilicate, or said shaped and/or calcined crystalline aluminosilicate at a temperature ranging from 100° C. to 380° C.; and under a gas phase atmosphere, without liquid, containing from 5 wt % to 100 wt % of steam; at a pressure ranging from 2 to 200 bars; at a partial pressure of H2O from 2 bars to 200 bars; and said steaming being performed during at least 30 min and up to 144 h.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: December 1, 2020
    Assignees: TOTAL RESEARCH & TECHNOLOGY FELUY, IFP ENERGIES NOUVELLES
    Inventors: Nikolai Nesterenko, Colin Dupont, Vincent Coupard, Sylvie Maury, Thibault Heinz
  • Patent number: 10767127
    Abstract: The present invention provides a catalytic fast pyrolysis process for the production of fuel blendstocks and chemicals. In addition, the invention provides compositions of renewable blendstocks, compositions of renewable fuel blends, and compositions of 100 percent renewable fuels compatible with gasoline specifications and regulations.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: September 8, 2020
    Assignee: ANELLOTECH, INC.
    Inventor: Charles Sorensen
  • Patent number: 10590353
    Abstract: Systems and methods are provided for integration of an oxygenate conversion process with an olefin oligomerization process. The integrated process can produce gasoline of a desired octane and/or distillate fuel of a desired cetane.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: March 17, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stephen J. McCarthy, Brandon J. O'Neill
  • Patent number: 10532962
    Abstract: A method for converting shale gas to aromatic hydrocarbons includes passing a feedstock comprising ethane gas and methane gas to an aromatization reactor; converting a portion of the methane gas and ethane gas in the feedstock to liquid aromatic hydrocarbons with a zeolite based catalyst at a temperature of 750 C to 900 C; separating unconverted methane gas from liquid aromatic hydrocarbons; separating unconverted methane gas from the unconverted ethane gas; recycling the separated methane gas to the aromatization reactor; recovering aromatic hydrocarbons in a product stream after separation and removal from the aromatization reactor. Less than or equal to 95% of the ethane is converted to aromatic hydrocarbons.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: January 14, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventor: Aghaddin Kh. Mamedov
  • Patent number: 10457873
    Abstract: A process is disclosed for converting a particulate solid biomass material to a high quality bio-oil in high yield. The process comprises a pretreatment step and a pyrolysis step. The pretreatment comprises a step of at least partially demineralizing the solid biomass, and improving the accessibility of the solid biomass by opening the texture of the particles of the solid biomass. In a preferred embodiment the liquid pyrolysis product is separated into the bio-oil and an aqueous phase, and the aqueous phase is used as a solvent in the demineralization step and/or in the step of improving the accessibility of the solid biomass by opening the texture of the particles of the solid biomass.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: October 29, 2019
    Assignee: Inaeris Technologies, LLC
    Inventors: Dennis Stamires, Michael Brady, Paul O'Connor, Jacobus Cornelis Rasser
  • Patent number: 10159968
    Abstract: A method of producing propylene and ethylene from a butene-containing hydrocarbon stream by cracking olefin compounds in the butene-containing hydrocarbon stream in the presence of a core-shell ZSM catalyst, wherein the core-shell ZSM catalyst comprises a ZSM-5 core and a silica shell disposed thereon. Various embodiments of the method of producing propylene and ethylene, and the method of making the core-shell ZSM catalyst are also provided.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: December 25, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Al-Khattaf, Palani Arudra, Amr Abdalla
  • Patent number: 9682367
    Abstract: A catalyst system and a process for methanol to light olefin conversion with enhanced selectivity towards propylene. The catalyst system comprises a honeycomb monolith catalyst support coated with nanozeolite catalysts on the edges and inside the channels of the support structure. The nanozeolite catalysts have been pre-modified with metal. The catalyst system gives higher hydrothermal stability to the catalyst compared to randomly packed pellet catalyst and allows methanol to be converted to predominantly propylene at a low temperature, with decreased selectivity towards C2, higher olefins and paraffinic hydrocarbons.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: June 20, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mohammad Ashraf Ali, Shakeel Ahmed
  • Patent number: 9580660
    Abstract: The application describes a process where methane or any short chained hydrocarbon could be catalytically coupled with an oxygenate (preferably derived from thermal processing of biomass) to dehydrate and produce a deoxygenated hydrocarbon. The presence of oxygen in biomass derivatives adversely affects its ability to be further processed into hydrocarbon fuels because the resulting water poisons many catalysts (including alumina containing catalysts, zeolites, etc.) found in petrochemical refineries. While commonly used hydrodeoxygenation methods require expensive hydrogen to instigate deoxygenation, the present process uses short chained hydrocarbons (such as methane or natural gas) to instigate hydrodeoxygenation.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: February 28, 2017
    Assignee: The Texas A&M University System
    Inventors: Sandun Fernando, Duminda Anuradh Gunawardena
  • Patent number: 9533921
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: January 3, 2017
    Assignee: UT-BATTELLE, LLC.
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Patent number: 9334202
    Abstract: A process for conversion of isobutanol to make propylene includes dehydrating isobutanol to produce butenes. The process includes cracking the butenes to produce propylene.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: May 10, 2016
    Assignee: Total Research & Technology Feluy
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Patent number: 9267081
    Abstract: In an attempt to conduct an effective conversion of bioethanol into gasoline rich in aromatics and iso-paraffins, a ZSM-5 type zeolite with special features such as nano crystalline size and acidity has been synthesized. The catalyst (NZ) exhibits highest gasoline yield of about 73.8 wt % with aromatics and iso-paraffins as major components. The product measures Research Octane Number (RON) of about 95, which is desirable for the gasoline specifications. Moreover, considerable amounts of the Liquefied Petroleum Gas (LPG) (15 wt %) and light olefins (14 wt %) are also formed as by-products that add value to the process. The nano crystalline ZSM-5 catalyst (NZ) exhibits the stability in activity in terms of bioethanol conversion and aromatics yields for the reaction time period of 40 h.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 23, 2016
    Assignee: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Nagabhatla Viswanadham, Saxena Sandeep Kumar
  • Patent number: 9221726
    Abstract: A process preparing an aromatic product comprising xylene, the process comprising: a) cracking a feedstock to obtain a cracker effluent comprising olefins and aromatics; b) converting an oxygenate feedstock in an oxygenate-to-olefins conversion system, comprising a reaction zone in which an oxygenate feedstock is contacted with a catalyst to obtain a conversion effluent comprising benzene, toluene, xylene and olefins; c) combining at least part of the cracker effluent and at least part of the conversion effluent to obtain a combined effluent, the combined effluent comprising aromatics; d) separating at least a portion of the benzene and/or toluene from the combined effluent to form a benzene and/or toluene stream; e) separating the olefins from the combined effluent; f) separating xylene from the combined effluent to form a xylene stream; and g) recycling at least a part of the benzene and/or toluene streams as recycled aromatics to step b).
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 29, 2015
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Patent number: 9187704
    Abstract: The present invention is directed to the provision of a method for efficiently producing a feedstock gas for use in the synthesis of liquid fuels including methanol by gasification of harbaceous plant or woody biomass feedstocks. Specifically, the present invention relates to a method for gasifying biomass to produce a feedstock gas for use in the production of liquid fuels including methanol, characterized by comprising the step of bringing a biomass-containing organic feedstock into fluid contact with a gasification accelerator comprising a clay having a catalytic function and/or a heating medium function in a gasification reaction zone under a raised temperature condition in the presence of a gasifying agent to convert the organic feedstock to gas useful for the production of a liquid fuel.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: November 17, 2015
    Inventors: Hitoshi Inoue, Masayuki Horio
  • Patent number: 9181493
    Abstract: A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: November 10, 2015
    Assignee: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison
  • Patent number: 9169171
    Abstract: A heated reaction gas comprising methane is contacted with first and second catalysts to catalyze production of an aromatic hydrocarbon. The first catalyst is more active than the second catalyst for catalyzing aromatization of methane, and the second catalyst is more active than the first catalyst for catalyzing aromatization of ethane. A reactor for producing aromatic hydrocarbons from the reaction gas may have a conduit defining a reaction zone for the reaction gas to react therein, and the first and second catalysts may be disposed in the reaction zone.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: October 27, 2015
    Assignees: Agency for Science, Technology and Research, Mitsui Chemicals, Inc.
    Inventors: Yan Liu, Armando Borgna
  • Patent number: 9162940
    Abstract: A process for the conversion of an alcohol mixture may include introducing into a reactor a stream including the alcohol mixture mixed with a stream including olefins having 4 carbon atoms or more. The process may include contacting the stream with a single catalyst at a temperature above 500° C. in the reactor at conditions effective to dehydrate isobutanol, forming C4+ olefins, and to catalytically crack the C4+ olefins. The single catalyst may be an acid catalyst adapted to cause both the dehydration and catalytic cracking. The process may include recovering an effluent including ethylene, propylene, and water, and fractionating the effluent.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: October 20, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Patent number: 9162941
    Abstract: A process for the conversion of an alcohol mixture to make propylene may include introducing into a reactor a stream that includes the alcohol mixture. The alcohol mixture may include 20 to 100 weight percent isobutanol. The process may include contacting the stream with a single catalyst at a temperature above 450° C. in the reactor at conditions effective to dehydrate the isobutanol, forming C4+ olefins, and to catalytically crack the C4+ olefins. The single catalyst may be an acid catalyst adapted to cause both the dehydration and the catalytic cracking. The process may include recovering from the reactor an effluent that includes ethylene, propylene, water, and various hydrocarbons. The process may include fractionating the effluent to produce an ethylene stream, a propylene stream, a fraction of hydrocarbons having 4 carbon atoms or more, and water.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 20, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Patent number: 9079769
    Abstract: A method and an apparatus for producing gasoline and hydrogen from methanol are disclosed. First, methanol is supplied to a first catalyst layer located in a reaction tube arranged in a reactor via a first methanol supply path to synthesize gasoline from the methanol. At the same time, methanol is supplied to a second catalyst layer located on the outer periphery of the reaction tube provided within the reactor from a second supply path, which serves as a methanol supply path, to generate hydrogen from the methanol. Heat generated in the first catalyst layer is conducted to the second catalyst layer through the reaction tube to heat the second catalyst layer to a predetermined temperature.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: July 14, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Patent number: 9056807
    Abstract: The present invention relates to a process for the conversion of an alcohol mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) a stream comprising the mixture (A), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) at a temperature above 450° C.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: June 16, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Patent number: 9056806
    Abstract: The present invention relates to a process for the conversion of an alcohols mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) a stream comprising the mixture (A), mixed with a stream (D1) comprising olefins having 4 carbon atoms or more (C4+ olefins), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) at a temperature above 500° C.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: June 16, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20150099913
    Abstract: A methanol conversion process comprises contacting a feedstream comprising methanol, optionally with dimethyl ether or other oxygenates with a catalyst comprising a physical mixture of a molecular sieve, preferably an intermediate or small pore size zeolite such as an MFI zeolite, with a basic metal oxide to provide extended catalyst cycle life by reducing the incidence of coke formation. The process may be applied to the methanol-to-gasoline (MTG), methanol to distillate (MOD), methanol-to-olefins (MTO), methanol-to-chemicals (MTC) and combination processes such as the MTO/OCP Process.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Luc Roger Marc MARTENS, David M. MARCUS, Teng XU
  • Publication number: 20150080623
    Abstract: A catalytic process is provided which produces in a single reaction branched, cyclic and aromatic hydrocarbons, or cracked straight-chain hydrocarbons, from fatty acids in which the fatty acids are reacted over a multifunctional catalyst and undergo both decarboxylation and a further transformation (isomerization, cyclization, aromatization, or cracking) to form reaction products useful as fuels and for other applications that require a source of energy, or as feedstock for hydrocarbon-based commercial products such as surfactants, solvents and lubricants.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Paul Ratnasamy, Moises A. Carron, Masoudeh Ahmadi
  • Publication number: 20140343337
    Abstract: This application provides a catalyst for producing paraxylene by co-conversion of methanol and/or dimethyl ether and C4 liquefied gas, and preparation and application thereof. The catalyst is an aromatization molecular sieve catalyst with a shape-selective function co-modified by bimetal and siloxane compound. Methanol and/or dimethyl ether and C4 liquefied gas are fed in reactor together, wherein aromatization reaction occurring on a modified shape-selective molecular sieve catalyst. The yield of aromatics is effectively improved, in which paraxylene is the main product. In products obtained by co-conversion of methanol and/or dimethyl ether and C4 liquefied gas, the yield of aromatics is greater than 70 wt %, and the content of paraxylene in aromatics is greater than 80 wt %, and the selectivity of paraxylene in xylene is greater than 99 wt %.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 20, 2014
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Lei Xu, Zhongmin Liu, Zhengxi Yu
  • Publication number: 20140336431
    Abstract: Processes for the production of alkenes are provided. The processes make use of methane as a low cost starting material.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 13, 2014
    Inventors: Max Markus Tirtowidjojo, Brien Stears, William J. Kruper, JR., Kurt Frederick Hirsekorn, JR., Debashis Chakraborty
  • Publication number: 20140275571
    Abstract: Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Group VIII metal and a crystalline alumina support.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Virent, Inc.
    Inventors: Taylor Beck, Brian Blank, Casey Jones, Elizabeth Woods, Randy Cortright
  • Patent number: 8802908
    Abstract: Process and systems for alkane bromination and, in one or more embodiments, to separate, parallel methane and higher alkanes bromination in a bromine-based process. An embodiment discloses a bromine-based process for converting alkanes to liquid hydrocarbons that includes alkanes bromination, the process comprising: brominating a methane stream comprising methane and having less than about 2 mol % of ethane to form methane bromination products comprising brominated methane and a first fraction of hydrogen bromide; separately brominating a C2+ alkane stream comprising an alkane having 2 or more carbon atoms to form C2+ methane bromination products comprising brominated alkanes having 2 or more carbon atoms and a second fraction of hydrogen bromide; and catalytically reacting at least a portion of the brominated methane and the brominated alkanes to form higher molecular hydrocarbons.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 12, 2014
    Assignee: Marathon GTF Technology, Ltd.
    Inventors: John J. Waycullis, Sagar B. Gadewar, Raphael Thomas
  • Patent number: 8772558
    Abstract: Embodiments of methods and apparatuses for producing an aromatic hydrocarbon-containing effluent are provided herein. The method comprises the step of rapidly heating a biomass-based feedstock to a first predetermined temperature of from about 300 to about 650° C. in the presence of a catalyst, hydrogen, and an organic solvent within a time period of about 20 minutes or less to form the aromatic hydrocarbon-containing effluent. The biomass-based feedstock comprises lignocellulosic material, lignin, or a combination thereof.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 8, 2014
    Assignee: UOP LLC
    Inventor: John Qianjun Chen
  • Patent number: 8754275
    Abstract: Embodiments of methods and apparatuses for producing and aromatic hydrocarbon-rich effluent from a lignocellulosic material are provided herein. The method comprises the step of combining the lignocellulosic material and an aromatic hydrocarbon-rich diluent to form a slurry. Hydrogen in the presence of a catalyst is contacted with the slurry at reaction conditions to form the aromatic hydrocarbon-rich effluent.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Mark Koch
  • Patent number: 8742187
    Abstract: The method of the present invention provides a high yield pathway to 2,5-dimethylhexadiene from renewable isobutanol, which enables economic production of renewable p-xylene (and subsequently, terephthalic acid, a key monomer in the production of PET) from isobutanol. In addition, the present invention provides methods for producing 2,5-dimethylhexadiene from a variety of feed stocks that can act as “equivalents” of isobutylene and/or isobutyraldehyde including isobutanol, isobutylene oxide, and isobutyl ethers and acetals. Catalysts employed in the present methods that produce 2,5-dimethylhexadiene can also catalyze alcohol dehydration, alcohol oxidation, epoxide rearrangement, and ether and acetal cleavage.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: June 3, 2014
    Assignee: GEVO, Inc.
    Inventors: Thomas Jackson Taylor, Joshua D. Taylor, Matthew W. Peters, David E. Henton
  • Patent number: 8735515
    Abstract: A process is disclosed for producing plastic materials by providing a biology based feedstock and reacting the biology based feedstock to form a feedstock capable of reaction to form the plastic material, wherein the plastic material is selected from polystyrene and polyethylene terephthalate (PET).
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 27, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Scott Cooper, Olga Khabashesku
  • Publication number: 20140081063
    Abstract: In an attempt to conduct an effective conversion of bioethanol into gasoline rich in aromatics and iso-paraffins, a ZSM-5 type zeolite with special features such as nano crystalline size and acidity has been synthesized. The catalyst (NZ) exhibits highest gasoline yield of about 73.8 wt % with aromatics and iso-paraffins as major components. The product measures Research Octane Number (RON) of about 95, which is desirable for the gasoline specifications. Moreover, considerable amounts of the Liquefied Petroleum Gas (LPG) (15 wt %) and light olefins (14 wt %) are also formed as by-products that add value to the process. The nano crystalline ZSM-5 catalyst (NZ) exhibits the stability in activity in terms of bioethanol conversion and aromatics yields for the reaction time period of 40 h.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: Council of Scientific & Industrial Research
    Inventors: Nagabhatla Viswanadham, Saxena Sandeep Kumar
  • Publication number: 20140051900
    Abstract: The present invention provides a process for methanol coupled catalytic cracking reaction of naphtha using a modified ZSM-5 molecular sieve catalyst, comprising performing a co-feeding reaction of methanol and naphtha on the modified ZSM-5 molecular sieve catalyst to produce low carbon olefins and/or aromatic hydrocarbons. In the process, the modified ZSM-5 molecular sieve catalyst comprises, in term of weight percent, 25-80 wt % of a ZSM-5 molecular sieve, 15-70 wt % of a binder, and 2.2-6.0 wt % of lanthanum and 1.0-2.8 wt % of phosphorus loaded on the ZSM-5 molecular sieve. The naphtha comprises 63.8-89.5 wt % of saturated chain alkanes and 5.6-29.8 wt % of cyclic alkanes. The naphtha and methanol concurrently pass through the catalyst bed, which are reacted during contacting with the catalyst under a reaction condition of a reaction temperature of 550-670° C., a mass ratio of methanol to naphtha of 0.05-0.8, and a total mass space velocity of naphtha and methanol of 1.0-5 h?1.
    Type: Application
    Filed: June 24, 2011
    Publication date: February 20, 2014
    Applicant: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhongmin Liu, Yingxu Wei, Yue Qi, Mao Ye, Mingzhi Li, Bing Li, Xiangao Wang, Changqing He, Xinde Sun
  • Patent number: 8642822
    Abstract: A process for converting gaseous alkanes to olefins, higher molecular weight hydrocarbons or mixtures thereof wherein a gaseous feed containing alkanes may be thermally or catalytically reacted with a dry bromine vapor to form alkyl bromides and hydrogen bromide. Poly-brominated alkanes present in the alkyl bromides may be further reacted with methane over a suitable catalyst to form mono-brominated species. The mixture of alkyl bromides and hydrogen bromide may then be reacted over a suitable catalyst at a temperature sufficient to form olefins, higher molecular weight hydrocarbons or mixtures thereof and hydrogen bromide. Various methods and reactions are disclosed to remove the hydrogen bromide from the higher molecular weight hydrocarbons, to generate bromine from the hydrogen bromide for use in the process, to store and subsequently release bromine for use in the process, and to selectively form mono-brominated alkanes in the bromination step.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 4, 2014
    Assignee: Marathon GTF Technology, Ltd.
    Inventors: Raymond T. Brickey, Greg A. Lisewsky, John J. Waycuilis, Stephen D. York
  • Publication number: 20140018592
    Abstract: The present invention relates to a catalyst for the conversion of methanol to aromatics and the preparation of the same. The catalyst comprising 85 to 99 parts by weight of a ZSM-5 zeolite, 0.1 to 15 parts by weight of element M1, which is at least one selected from the group consisted of Ag, Zn and Ga, and 0 to 5 parts by weight of element M2, which is at least one selected from the group consisted of Mo, Cu, La, P, Ce and Co, wherein the total specific surface area of the catalyst ranges from 350 to 500 m2/g, and the micropore specific surface area ranges from 200 to 350 m2/g. The catalyst has high total specific surface area, micropore specific surface area and micropore volume. Good catalytic activity can be shown from the results of the reaction of aromatics preparation from methanol using the catalyst provided by the present invention.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventors: Xiqiang CHEN, Zheming Wang, Jinxian Xiao, Feng Xu
  • Publication number: 20130345472
    Abstract: A method of reacting one or more components in a liquid phase to form an organic product, the method including feeding a carbon-based gas to a high shear device; feeding a hydrogen-based liquid medium to the high shear device; using the high shear device to form a dispersion comprising the carbon-based gas and the hydrogen-based liquid medium, wherein the dispersion comprises gas bubbles with a mean diameter of less than about 5 ?m; introducing the dispersion into a reactor; and reacting the dispersion to produce the organic product.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: H R D CORPORATION
    Inventors: Abbas HASSAN, Aziz HASSAN, Rayford G. ANTHONY, Gregory BORSINGER
  • Patent number: 8609914
    Abstract: The present invention relates to a process for converting aliphatic hydrocarbons having 1 to 4 carbon atoms to aromatic hydrocarbons in the presence of a catalyst under nonoxidative conditions, wherein at least some of the hydrogen formed in the conversion electrochemically removed is by means of a gas-tight membrane-electrode assembly.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 17, 2013
    Assignee: BASF SE
    Inventors: Joana Coelho Tsou, Alexander Panchenko, Annebart Engbert Wentink, Sebastian Ahrens, Thomas Heidemann
  • Publication number: 20130303814
    Abstract: The invention relates to a process for converting a feed stream consisting of reactive components and an optional feed diluent to a product stream comprising aromatic hydrocarbons and C2-C3 olefins, wherein the reactive components comprise at least 90 vol % of an aliphatic ether selected from the group consisting of methyl tertiary butyl ether and ethyl tertiary butyl ether, the process comprising the step of contacting the feed stream with a catalyst composition comprising a zeolite catalyst, wherein the zeolite catalyst is a zeolite modified by Ga and an element M1 selected from the group consisting of Zn, Cd and Cu.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Aghaddin Kh. Mammadov, Ali Said Al-Khuraimi
  • Patent number: 8575411
    Abstract: The invention relates to a process for converting aliphatic hydrocarbons having from 1 to 4 carbon atoms into aromatic hydrocarbons, which comprises the steps: a) reaction of a feed stream E comprising at least one aliphatic hydrocarbon having from 1 to 4 carbon atoms in the presence of a catalyst under nonoxidative conditions to give a product stream P comprising aromatic hydrocarbons and hydrogen and b) electrochemical removal of at least part of the hydrogen formed in the reaction from the product stream P by means of a gastight membrane-electrode assembly comprising at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane, where at least part of the hydrogen is oxidized to protons over the anode catalyst on the retentate side of the membrane and the protons are, after passing through the membrane on the permeate side, reacted with oxygen to form water over the cathode catalyst, with the oxygen originating from an oxygen-comprising stream O whi
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: November 5, 2013
    Assignee: BASF SE
    Inventors: Joana Coelho Tsou, Alexander Panchenko, Annebart Engbert Wentink, Sebastian Ahrens, Thomas Heidemann
  • Patent number: 8552240
    Abstract: Process for producing propylene from a propanol feedstock A2 by reacting the propanol feedstock A2 in a vapor phase dehydration reactor wherein the propanol is convened at a temperature comprised between 160 and 270° C. and at a pressure of above 0.1 MPa but less than 4.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: October 8, 2013
    Assignee: BP Chemicals Limited
    Inventors: Craig Bailey, Leslie William Bolton, Benjamin Patrick Gracey, Michael Keith Lee, Stephen Roy Partington
  • Patent number: 8536393
    Abstract: The present invention provides an integrated process for producing aromatic hydrocarbons and/or C4+ non-aromatic hydrocarbons from low molecular weight alkanes, which includes contacting the low molecular weight alkanes with a halogen and coupling the monohaloalkanes to form aromatic hydrocarbons and/or C4+ non-aromatic hydrocarbons.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: September 17, 2013
    Assignee: Shell Oil Company
    Inventors: Wayne Errol Evans, Glenn Charles Komplin, Duraisamy Muthusamy
  • Patent number: 8500829
    Abstract: A pyrolysis oil derived from a lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the oil with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass oil from 0.5:1 to 5.0:1, to dissolve the oil into the reaction mixture and depolymerize, deoxygenate and hydrogenate the oil, so converting it into liquid transportation fuel precursors.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Patent number: 8502003
    Abstract: A lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the biomass material with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass material from 0.5:1 to 5.0:1, to dissolve the biomass material into the reaction mixture and depolymerize, deoxygenate and hydrogenate the lignocellulose biomass material, so converting the biomass material into liquid transportation fuel precursors.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Patent number: 8487152
    Abstract: The present invention relates to a process for converting aliphatic hydrocarbons having 1 to 4 carbon atoms to aromatic hydrocarbons, comprising the steps of: a) converting a reactant stream E which comprises at least one aliphatic hydrocarbon having 1 to 4 carbon atoms in the presence of a catalyst under nonoxidative conditions to a product stream P comprising aromatic hydrocarbons and hydrogen, and b) electrochemically removing at least some of the hydrogen formed in the conversion from the product stream P by means of a gas-tight membrane-electrode assembly which has at least one selectively proton-conducting membrane and, on each side of the membrane, at least one electrode catalyst, at least some of the hydrogen being oxidized to protons over the anode catalyst on the retentate side of the membrane, and the protons, after passing through the membrane, on the permeate side over the cathode catalyst, are partly, in b1) reduced to hydrogen with application of a voltage, and partly, in b2) reacted with oxy
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 16, 2013
    Assignee: BASF SE
    Inventors: Joana Coelho Tsou, Alexander Panchenko, Annebart Engbert Wentink, Sebastian Ahrens, Thomas Heidemann