Alcohol, Ester, Or Ether Patents (Class 585/639)
  • Patent number: 8552241
    Abstract: A method of converting ethanol to a diesel fuel base stock comprises: a reaction stage (a) of contacting the ethanol with an acid catalyst, amorphous or structured, predominantly mesoporous, for example at a temperature of 300° C. to 500° C., at a pressure of 2 to 10 MPa and at a WHSV of 0.2 to 4 h?1, producing a gas phase, an organic liquid phase and an aqueous liquid phase, and a stage (b) of separating said gas phase, said organic liquid phase and said aqueous liquid phase at a pressure close to the reaction pressure. The method can involve recycling at least part of the gas phase separated in stage (b) to stage (a), and hydrogenating at least part of the organic liquid phase separated in stage (b).
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: October 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Vincent Coupard, Sylvia Maury, Frédéric Capuano, Mohamed Bengrine
  • Patent number: 8552240
    Abstract: Process for producing propylene from a propanol feedstock A2 by reacting the propanol feedstock A2 in a vapor phase dehydration reactor wherein the propanol is convened at a temperature comprised between 160 and 270° C. and at a pressure of above 0.1 MPa but less than 4.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: October 8, 2013
    Assignee: BP Chemicals Limited
    Inventors: Craig Bailey, Leslie William Bolton, Benjamin Patrick Gracey, Michael Keith Lee, Stephen Roy Partington
  • Publication number: 20130261362
    Abstract: This invention relates to methods for deoxygenation utilizing bulk metal catalysts feedstocks derived in part or whole from biological sources and alternatively, further hydrotreatment processing of such deoxygenated feedstocks. Feedstocks containing bio-derived feed components, and preferably additionally mineral oil feed components, are deoxygenated in a first stage or zone using a bulk metal catalyst. In additional embodiments, the deoxygenated feedstock effluent from the deoxygenation stage is further subjected to a hydrodesulfurization stage or zone.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 3, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Bradley R. Fingland, Patrick Loring Hanks, Stuart Leon Soled, Sabato Miseo
  • Patent number: 8546635
    Abstract: Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: October 1, 2013
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Lance Awender Baird, Stanley Joseph Frey
  • Patent number: 8541636
    Abstract: The invention relates to a method for the catalytic hydrotreatment of a load based on a diesel fuel oil and a biological load based on plant oils and/or animal fats in a hydrotreatment unit. The invention is characterized in that the hydrotreatment unit comprises at least one hydrotreatment reactor operating on a countercurrent. The invention also relates to a hydrotreatment unit for implementing said method, and a corresponding hydrorefining unit.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: September 24, 2013
    Assignee: Total Raffinage Marketing
    Inventor: César Vergel
  • Patent number: 8536396
    Abstract: A process for converting a hydrocarbon feedstock to provide an effluent containing light olefins, the process comprising passing a hydrocarbon feedstock, the feedstock containing at least one C1 to C6 aliphatic hetero compound selected from alcohols, ethers, carbonyl compounds and mixtures thereof and steam in an amount whereby the feedstock contains up to 80 weight % steam, through a reactor containing a crystalline silicate catalyst to produce an effluent including propylene, the crystalline silicate having been subjected to de-alumination by a steaming step and being selected from at least one of an MFI-type crystalline silicate having a silicon/aluminium atomic ratio of from 250 to 500 and an MEL-type crystalline silicate having a silicon/aluminium atomic ratio or from 150 to 800.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: September 17, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 8530714
    Abstract: Disclosed is a method for production of lower olefins from a raw material containing dimethyl ether (DME), which can produce lower olefins (e.g. propylene) with good yield and in an economically advantageous manner by prolonging the time until the reversible deactivation of a zeolite catalyst and preventing the irreversible deactivation of the catalyst, can reduce the amount of water to be recycled to increase the thermal efficiency of the process, and can simplify the facilities and operations. Also disclosed is a method for improving the yield of propylene with good efficiency under practical operating conditions. A feed gas which comprises a DME-containing feedstock gas and an additive gas and further contains steam at a specific proportion is introduced into an olefin synthesis reactor to contact the feed gas with a zeolite catalyst, thereby producing a hydrocarbon product containing C2-C5 olefins.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: September 10, 2013
    Assignee: JGC Corporation
    Inventors: Hirofumi Ito, Kazunori Honda, Koji Oyama, Nobuyasu Chikamatsu, Kazutaka Hiraoka, Atsushi Okita
  • Patent number: 8524960
    Abstract: A process is disclosed for fluid catalytic cracking of oxygenated hydrocarbon compounds such as glycerol and bio-oil. In the process the oxygenated hydrocarbon compounds are contacted with a fluid cracking catalyst material for a period of less than 3 seconds. In a preferred process a crude-oil derived material, such as VGO, is also contacted with the catalyst.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 3, 2013
    Assignee: KiOR, Inc.
    Inventors: Paul O'Connor, George W. Huber, Avelino Corma Camos, Laurent Louis Andre Sauvanaud
  • Patent number: 8524970
    Abstract: In a process for producing synthetic fuels from an educt mixture containing hydrogen and oxygenates, such as methanol and/or dimethyl ether, the educt mixture is reacted on a catalyst in a first process stage to obtain a hydrocarbon product containing olefins with preferably 2 to 8 carbon atoms. In a second process stage the hydrocarbon product is oligomerized to long-chain olefins, from which gasoline and Diesel products are obtained. The hydrocarbon product obtained in the first process stage is separated into a liquid phase and a gaseous phase. The gaseous phase is supplied to the second process stage. The liquid phase is separated into a mixture rich in C6? hydrocarbons and a mixture containing C7+ hydrocarbons and aromatics. The mixture rich in C6? hydrocarbons is supplied to the second process stage. The mixture containing C7+ hydrocarbons ?+ and aromatics can be admixed to the gasoline product for quality improvement.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: September 3, 2013
    Assignee: Lurgi GmbH
    Inventors: Martin Rothaemel, Uwe Fincke, Holger Dropsch, Henning Buchold
  • Publication number: 20130217943
    Abstract: The present invention is a process for the dehydration of an alcohol having at least 2 carbon atoms to make the corresponding olefin, comprising: a) introducing in a reactor a stream (A) comprising at least an alcohol, optionally water, optionally an inert component, b) contacting said stream with an acidic catalyst in said reactor at conditions effective to dehydrate at least a portion of the alcohol to make an olefin, c) recovering from said reactor a stream (B) comprising: the inert component and at least an olefin, water and optionally unconverted alcohol, d) optionally fractionating the stream (B) to recover the unconverted alcohol and recycling said unconverted alcohol to the reactor of step a), e) optionally fractionating the stream (B) to recover the inert component, water and the olefin and optionally recycling said inert component and optionally a part of the water to the reactor of step a), wherein, f) an effective amount of a component capable to neutralize a part of the catalyst active site is i
    Type: Application
    Filed: June 20, 2011
    Publication date: August 22, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Delphine Minoux, Cindy Adam, Nikolai Nesterenko, Jean-Pierre Dath, Walter Vermeiren, Sander Van Donk
  • Publication number: 20130217935
    Abstract: The present invention relates to a process for making essentially ethylene and propylene comprising: a) providing an alcohol mixture (A) comprising about 20 w % to 100% isobutanol, b) introducing in a reactor (A) a stream comprising the mixture (A) mixed with methanol or dimethyl ether or mixture thereof, optionally water, optionally an inert component, c) contacting said stream with a catalyst (A1) in said reactor (A), the MTO reactor, at conditions effective to convert at least a part of the alcohol mixture (A) and at least a part of the methanol and/or dimethyl ether to olefins, d) recovering from said reactor (A) an effluent comprising: ethylene, propylene, butene, water, optionally unconverted alcohols, various hydrocarbons, and the optional inert component of step b), e) fractionating said effluent of step d) to produce at least an ethylene stream, a propylene stream, a fraction consisting essentially of hydrocarbons having 4 carbon atoms or more, water and the optional inert component of step a), op
    Type: Application
    Filed: July 8, 2011
    Publication date: August 22, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20130204059
    Abstract: The present invention relates to a process for the conversion of an alcohols mixture (A) comprising about 20 w % to 100% isobutanol to make essentially propylene, comprising: a) introducing in a reactor (A) a stream comprising the mixture (A), mixed with a stream (D1) comprising olefins having 4 carbon atoms or more (C4+ olefins), optionally water, optionally an inert component, b) contacting said stream with a catalyst (A1) at a temperature above 500° C.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 8, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Cindy Adam, Delphine Minoux, Nikolai Nesterenko, Sander Van Donk, Jean-Pierre Dath
  • Publication number: 20130199673
    Abstract: The invention is directed to a process to prepare metal nanoparticles or metal oxide nanoparticles by applying a cathodic potential as an alternating current (ac) voltage to a solid starting metal object which solid metal object is in contact with a liquid electrolyte comprising a stabilising cation. The invention is also directed to the use of the nanoparticles as a catalyst.
    Type: Application
    Filed: July 14, 2011
    Publication date: August 8, 2013
    Applicants: STICHTING VOOR FUNDAMENTEEL ONDERZOEK DER MATERIE, UNIVERSITEIT LEIDEN
    Inventors: Alexei Yanson, Marcus Koper, Paramaconi Rodriguez, Nuria Garcia-Araez
  • Publication number: 20130190547
    Abstract: A process for dehydration of an ethanol feedstock into ethylene, comprising the vaporization of said ethanol feedstock in a mixture with at least a portion of the recycled purified water stream from heat exchange with the effluent that is obtained from the last reactor.
    Type: Application
    Filed: July 20, 2012
    Publication date: July 25, 2013
    Applicants: IFP Energies nouvelles, TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Vincent COUPARD, Natacha Touchais, Stephanie Fleurier, Helena Gonzalez Penas, Walter Vermeiren, Delphine Minoux, Philip De Smedt, Cindy Adam
  • Publication number: 20130178674
    Abstract: A reactor design and configuration and a process for the catalytic dehydration of ethanol to ethylene where the reactor train is comprised of a multi-stage single reactor vessel or multiple reactor vessels wherein each stage and/or vessel has different length, internal diameter, and volume than the other stages and/or vessels and in addition the stages and/or reactor vessels are connected in series or in parallel arrangement, preferably used with an improved means of introducing the ethanol feedstock and a heat carrying inert gas to the improved reactor train.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 11, 2013
    Inventors: Hassan Taheri, Yogendra Sarin, Brian Ozero
  • Publication number: 20130178676
    Abstract: Methods for producing light olefins are provided. An exemplary method includes providing an oxygenate compound capable of converting to light olefins in a catalytic reaction or to a clean reaction intermediate compound of the catalytic reaction and converting the oxygenate compound to the clean reaction intermediate compound in a chemical reaction. The chemical reaction produces a gas-phase product comprising the clean reaction intermediate compound, unconverted oxygenate, and a reaction byproduct. The method further includes cooling the gas-phase product to condense unconverted oxygenate and reaction byproduct while maintaining the clean reaction intermediate compound in a gas phase and separating the clean reaction intermediate compound, the unconverted oxygenate, and the reaction byproduct into a first stream including the clean reaction intermediate compound and a second stream including the unconverted oxygenate and the reaction byproduct.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: UOP LLC
    Inventors: Bipin Virpal Vora, Michael James Cleveland
  • Patent number: 8476479
    Abstract: In processing of biomass by catalytic cracking in a fluidized catalytic cracker having a reaction zone, a separation zone, a stripping zone, and a regeneration zone, the feedstock oil containing the biomass is processed in the reaction zone using a catalyst containing 10 to 50 mass % of ultrastable Y-type zeolite under the conditions: outlet temperature of the reaction zone 580 to 680° C., catalyst/oil ratio 10 to 40 wt/wt, reaction pressure 1 to 3 kg/cm2 G, and contact time of the feedstock oil with the catalyst in the reaction zone 0.1 to 1.0 sec, and the catalyst is then treated in the regeneration zone under the conditions: regeneration zone temperature 640 to 720° C., regeneration zone pressure 1 to 3 kg/cm2 G, and exhaust gas oxygen concentration at the regeneration zone outlet 0 to 3 mol %.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: July 2, 2013
    Assignee: Nippon Oil Corporation
    Inventors: Yuichiro Fujiyama, Shigeko Okuhara
  • Patent number: 8461407
    Abstract: A process for the production of hydrocarbons by dehydrating primary alcohols with a dehydration catalyst of trifluoromethansulfonic acid is disclosed. The hydrocarbons so produced have fewer undesired secondary reactions. Accordingly, cosmetic and cleaning compositions incorporating the hydrocarbons produced by way of the process are also disclosed.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: June 11, 2013
    Assignee: Cognis IP Management GmbH
    Inventor: Markus Dierker
  • Patent number: 8450545
    Abstract: A process of modifying a zeolite catalyst to produce a modified zeolite catalyst wherein the modified zeolite catalyst has blocked pore sites. An oxygenated feed is flowed over the modified zeolite catalyst, wherein the oxygenated feed comprises hydrocarbons, methanol and dimethyl ether or a mixture thereof. The hydrocarbons, methanol and dimethyl ether in the oxygenated feed react with the modified zeolite catalyst to produce cyclic hydrocarbons, wherein the cyclic hydrocarbons produced has less than 10% durene and a median carbon number is C8.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 28, 2013
    Assignee: Phillips 66 Company
    Inventors: Glenn W. Dodwell, Joe D. Allison, Shetian Liu, Scott McQueen, Dennis G. Schultz, Byron G. Johnson, Madhu Anand, Melinda L. Johnson, Larry E. Reed, Brian C. Dunn
  • Patent number: 8450233
    Abstract: The present invention relates to a mixture comprising 0.01 to 30% by weight of at least one medium or large pore crystalline silicoaluminate, silicoaluminophosphate materials or silicoaluminate mesoporous molecular sieves (co-catalyst) (A) and respectively 99.99 to 70% by weight of at least a MeAPO molecular sieve. The present invention also relates to catalysts consisting of the above mixture or comprising the above mixture. The present invention also relates to a process (hereunder referred as “XTO process”) for making an olefin product from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock, wherein said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock is contacted with the above catalyst (in the XTO reactor) under conditions effective to convert the oxygen-containing, halogenide-containing or sulphur-containing organic feedstock to olefin products (the XTO reactor effluent).
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 28, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk
  • Patent number: 8450550
    Abstract: A process for producing propylene, which including feeding at least one of dimethyl ether and methanol to a reactor to be reacted in the presence of a catalyst; supplying an obtained reaction product to a separator by which low-boiling compounds having a boiling point of ?50° C. or lower at atmospheric pressure among the reaction product are separated; and recycling a proportion of at least 70% of a total amount of the separated low-boiling compounds to said reactor.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 28, 2013
    Assignee: JGC Corporation
    Inventors: Hirofumi Ito, Jiro Yoshida, Shuichi Funatsu, Koji Ooyama, Nobuyasu Chikamatsu
  • Publication number: 20130130336
    Abstract: A method comprising providing a starting composition comprising a polyunsaturated fatty acid, a polyunsaturated fatty ester, a carboxylate salt of a polyunsaturated fatty acid, a polyunsaturated triglyceride, or a mixture thereof; self-metathesizing the starting composition or cross-metathesizing the starting composition with at least one short-chain olefin in the presence of a metathesis catalyst to form self-/cross-metathesis products comprising: cyclohexadiene; at least one olefin; and one or more acid-, ester-, or salt-functionalized alkene; and reacting cyclohexadiene to produce at least one cycloalkane or cycloalkane derivatives.
    Type: Application
    Filed: January 15, 2013
    Publication date: May 23, 2013
    Applicant: Energy & Environmental Research Center Foundation
    Inventor: Energy & Environmental Research Center Foundation
  • Publication number: 20130129775
    Abstract: Disclosed here are compositions rich in omega-7 fatty acids, including palmitoleic acid, and products rich in omega-7 fatty acids derived from algal biomass. The algae and/or compositions rich in omega-7 fatty acids may be used in products or as ingredients of products. Methods and systems for increasing the production or concentration of omega-7 fatty acids, and isolating omega-7 fatty acids from algal biomass are also disclosed herein.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 23, 2013
    Applicant: HELIAE DEVELOPMENT, LLC
    Inventor: Heliae Development, LLC
  • Patent number: 8445740
    Abstract: A process for recovering ethylene is disclosed, the process including: recovering a ethylene-containing stream comprising methane, ethylene, and nitrogen oxides from at least one of an ethylene production process and an ethylene recovery process; separating the ethylene-containing stream via extractive distillation using at least one C2+ hydrocarbon absorbent to produce an overheads fraction comprising methane and nitrogen oxides and a bottoms fraction comprising the at least one C2+ hydrocarbon absorbent and ethylene; wherein the separating comprises operating the extractive distillation at temperatures and pressures sufficient to prevent any substantial conversion of nitrogen oxides to N2O3.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: May 21, 2013
    Assignee: Lummus Technology Inc.
    Inventors: Stephen J. Stanley, Stephen De Haan, Peter Daniel Kuzma, Jr.
  • Patent number: 8445741
    Abstract: Process for the production of a hydrocarbon by reacting, in a reactor, a reactant selected from methanol, dimethyl ether, methyl acetate and mixtures thereof, with an olefin. The process is performed in the presence of methyl halide and/or hydrogen halide and at least one compound selected from ruthenium carbonyl halides, osmium carbonyl halides and mixtures thereof.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: May 21, 2013
    Assignee: BP Oil International Limited
    Inventor: John Glenn Sunley
  • Patent number: 8440873
    Abstract: Process for producing mono-olefins(s) from a feedstock A containing ethanol and propanol, wherein ethanol and propanol are dehydrated into the corresponding same carbon number olefins. The process is performed by 1. reacting feedstock A in a vapor phase dehydration reactor wherein the ethanol and propanol alcohols are converted into a product stream B comprising ethylene, propylene, ethers, water and unconverted alcohols, 2. cooling the product stream B, 3. disengaging the cooled product stream B in a separation unit to give a first stream C containing ethylene, propylene and ethers, and a second product stream D containing water, ethers and unconverted alcohols, 4. feeding the product stream D to a dewatering column wherein the water stream F is separated from the ethers and unconverted alcohols stream E, 5. recycling the stream E into the dehydration reactor of step 1, and 6. cooling the product stream C.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: May 14, 2013
    Assignee: BP Chemicals Limited
    Inventors: Craig Bailey, Leslie William Bolton, Benjamin Patrick Gracey, Michael Keith Lee, Stephen Roy Partington
  • Patent number: 8426664
    Abstract: Process for producing ethylene from an ethanol feedstock A by (1) reacting the ethanol feedstock A in a vapor phase reactor wherein the ethanol is converted at a temperature between 160 and 270° C. and at a pressure of above 0.1 MPa but less than 4.5 MPa, into a product stream B containing ethylene, diethyl ethers, water and unconverted ethanol, (2) cooling the product stream B, (3) disengaging the cooled product stream B in a separation unit to give a first stream C containing ethylene and diethyl ethers, and a second product stream D containing water, diethyl ethers and unconverted ethanol, (4) feeding the product stream D to a dewatering unit wherein the water stream F is separated from the diethyl ethers and unconverted ethanol stream E, (5) recycling the stream E into the dehydration reactor of step 1, (6) cooling the product stream C, and (7) feeding the cooled product stream C to a purification unit wherein the diethyl ethers stream G is separated from the ethylene stream H.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: April 23, 2013
    Assignee: BP Chemicals Limited
    Inventors: Craig Bailey, Leslie William Bolton, Benjamin Patrick Gracey, Michael Keith Lee, Stephen Roy Partington
  • Publication number: 20130090510
    Abstract: A process for dehydration of an ethanol feedstock into ethylene, comprising the vaporization of said dilute hydrated ethanol feedstock in an exchanger, with heat exchange with the effluent that is obtained from a last reactor, with said mixture being introduced into said vaporization stage at a pressure that is lower than the pressure of the effluent that is obtained from the last reactor, the compression of the mixture that is vaporized in a compressor, the introduction of the vaporized and compressed mixture, into at least one adiabatic reactor that contains at least one dehydration catalyst.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 11, 2013
    Applicants: IFP ENERGIES NOUVELLES, TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: TOTAL RESEARCH & TECHNOLOGY, IFP ENERGIES NOUVELLES
  • Patent number: 8415518
    Abstract: This invention is directed to a process for producing olefin product from an oxygenate feed that includes dimethyl ether (DME). The process uses an olefin forming catalyst that contains a porous crystalline material, preferably a porous crystalline aluminosilicate molecular sieve material. The process produces high quantities of light olefin (i.e., ethylene, propylene, and mixtures thereof).
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard B. Hall, Guang Cao, Christopher David William Jenkins, James R. Lattner, Michael J. Veraa, Thomas H. Colle
  • Patent number: 8415519
    Abstract: The invention involves a process for converting an oxygenate-containing feed into an olefin-containing product comprising: (a) providing a co-catalyst oxide of a metal from Groups 2-4 of the Periodic Table of Elements, Lanthanides, Actinides, and combinations thereof, (b) contacting the metal oxide with nitromethane under conditions sufficient for the nitromethane to adsorb onto the metal oxide; (c) analyzing the nitromethane-adsorbed metal oxide using NMR to determine a basic site density of the metal oxide; (d) providing a catalyst system comprising a primary catalyst comprising aluminosilicates, aluminophosphates, silicoaluminophosphates, and metal-containing derivatives and combinations thereof, and the co-catalyst metal oxide whose basic site density is ?0.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Sebastien P. B. Kremer, Teng Xu
  • Patent number: 8410326
    Abstract: A process for producing hydrocarbons, especially C8 or larger alkenes, from lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, alcohols, or mixtures thereof, or an aqueous solution of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, alcohols, or mixtures thereof is described. The process includes reacting the starting materials with a first acid catalyst to yield a first product mixture. The first product mixture is then reacted with a second acid catalyst (which can be the same or different from the first acid catalyst) to yield a second product mixture comprising hydrocarbons, for example alkenes having a chain length of C8+. The process is suitable for producing hydrocarbons that can be used in or as liquid transportation fuels.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 2, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, David Martin Alonso, Jesse Quentin Bond, Dong Wang, Ryan M. West
  • Patent number: 8404908
    Abstract: A process is presented for the production of high value chemicals from lignin. The process comprises combining several internal steps to use the hydrogen generated by the process, rather than adding an external source of hydrogen. The process can combine the decomposition of oxygenates formed during the deoxygenation process with hydrogenation of deoxygenated lignin compounds.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventor: John Q. Chen
  • Patent number: 8399728
    Abstract: A process for conversion of methanol to olefins (MTO), including: contacting methanol and air in a methanol-to-olefins reactor; recovering an effluent from the methanol-to-olefins reactor comprising methanol, ethylene, and nitrogen oxides; separating the effluent via one or more reactive distillation and/or distillation stages using a hydrocarbon absorbent to recover a first fraction comprising ethylene and a second fraction comprising methane; wherein the separating comprises operating the one or more extractive distillation and/or distillation stages at temperatures and pressures sufficient to prevent any substantial conversion of nitrogen oxides to N2O3.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 19, 2013
    Assignee: Lummus Technology Inc.
    Inventors: Stephen De Haan, Peter Daniel Kuzma, Jr.
  • Patent number: 8395008
    Abstract: A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 12, 2013
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Publication number: 20130060073
    Abstract: A process and a plant for producing an olefin stream from a hydrocarbon mixture feed stream, wherein the olefin stream is depleted as regards its content of oxygen-containing organic compounds (oxygenates) as compared to the feed stream. The hydrocarbon mixture feed stream is charged to a separation column operated by a thermal separation process, for example to a distillation column, wherein a material stream enriched in oxygenates is withdrawn via a side outlet and removed from the process. The process according to the invention is particularly useful for processing the product streams obtained in the olefin synthesis by an OTO process.
    Type: Application
    Filed: April 21, 2011
    Publication date: March 7, 2013
    Applicant: LURGI GMBH
    Inventors: Hermann Bach, Thomas Renner, Martin Rothaemel, Michael Wilken
  • Publication number: 20130059723
    Abstract: The present invention relates to a process for the preparation of a zeolitic material having a structure comprising YO2 and optionally comprising X2O3, preferably comprising YO2 and X2O3, wherein said process comprises the steps of (1) providing a mixture comprising one or more ammonium compounds of which the ammonium cation has the formula (I): [R1R2NR3R4]+??(I) and further comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture provided in (1); wherein Y is a tetravalent element, and X is a trivalent element, and wherein in formula (I) R1 and R2 are independently from one another derivatized or underivatized methyl, and R3 and R4 are independently from one another derivatized or underivatized (C3-C5)alkyl, and wherein the molar ratio of ammonium cation having the formula (I) to Y in the mixture provided in step (1) and crystallized in step (2) is equal to or greater than 0.25.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 7, 2013
    Applicant: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Berens, Vijay Narayanan Swaminathan, Ulrich Müller, Gabriele Iffland, Laszlo Szarvas
  • Patent number: 8377288
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: February 19, 2013
    Assignee: BP Corporation North America Inc.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Publication number: 20130041196
    Abstract: The present invention (in a first embodiment) relates to a process for the dehydration of an alcohol having at least 2 carbon atoms to make the corresponding olefin, comprising: introducing in a reactor a stream (A) comprising at least an alcohol, optionally water, optionally an inert component, contacting said stream with a catalyst in said reactor at conditions effective to dehydrate at least a portion of the alcohol to make an olefin, recovering from said reactor an olefin containing stream (B), Wherein, the catalyst is a crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MIT or TON having Si/Al under 100, or a dealuminated crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MTT or TON having Si/Al under 100, or a phosphorus modified crystalline silicate of the group FER, MWW, EUO, MFS, ZSM-48, MTT or TON having Si/Al under 100, the WHSV of the alcohol is at least 4 h?1 and/or the temperature ranges from 320° C. to 600° C.
    Type: Application
    Filed: January 21, 2011
    Publication date: February 14, 2013
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Delphine Minoux, Nikolai Nesterenko, Cindy Adam, Sander Van Donk, Walter Vermeiren
  • Publication number: 20130041197
    Abstract: Disclosed is a method of preparing an alkene compound including introducing an acidic catalyst and a solvent into a reactor, increasing a temperature the reactor, and continuously removing water from the reactor while continuously supplying an alcohol into the reactor and continuously collecting an alkene compound.
    Type: Application
    Filed: May 31, 2010
    Publication date: February 14, 2013
    Applicant: SONGWON INDUSTRIAL CO., LTD
    Inventors: Dong-Kyung Park, Chang-Heon Shon, Duk-Suk Jung, Young-Tae Song
  • Patent number: 8373013
    Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 12, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
  • Publication number: 20130035532
    Abstract: This disclosure relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by an olefin metathesis catalyst. According to one aspect, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting, in the presence of a ruthenium alkylidene metathesis catalyst, an olefinic substrate comprised of at least one internal olefin with a cross metathesis partner comprised of an alpha olefinic reactant, under reaction conditions effective to allow cross-metathesis to occur, wherein the reaction conditions include a reaction temperature of at least 35° C. The methods, compositions, reactions and reaction systems herein disclosed have utility in the fields of catalysis, organic synthesis, and industrial chemistry.
    Type: Application
    Filed: September 19, 2012
    Publication date: February 7, 2013
    Applicant: Elevance Renewable Sciences. Inc
    Inventor: Elevance Renewable Sciences. Inc
  • Patent number: 8367886
    Abstract: Process for producing alkene(s) from a feedstock containing at least one monohydric aliphatic paraffinic alcohol having from 2 to 5 carbon atoms. The process is carried out by 1 converting the monohydric aliphatic paraffinic alcohol(s) containing 2 to 5 carbon atoms in a reactive distillation column at elevated pressure and temperature into a heads stream having the corresponding same carbon number alkene(s) and ether(s), 2 separating the heads stream from step 1 into an ether(s) enriched stream and an alkene(s) enriched stream, 3 recycling at least part of the ether(s) enriched stream from step 2 as a reflux return to the reactive distillation column, 4 simultaneously separating the alkene(s) enriched stream from step 2 into alkene(s) and ether(s), and 5 recycling at least part of the separated ether(s) from step 4 into the reactive distillation column. An alkene(s) stream from step 4 is then recovered.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 5, 2013
    Assignee: BP Chemicals Limited
    Inventors: Benjamin Patrick Gracey, Leslie William Bolton
  • Patent number: 8362183
    Abstract: A process to make light olefins from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock is disclosed. The process includes contacting the feedstock in a primary reactor with a catalyst that includes a metalloaluminophosphate (MeAPO) molecular sieve to form a first reactor effluent that includes a light olefins and a heavy hydrocarbon fraction. The process further includes separating the light olefins from the heavy hydrocarbon fraction and contacting the heavy hydrocarbon fraction in a second reactor to convert the heavy hydrocarbon fraction to light olefins. The MeAPO molecular sieve is expressed by the formula HxMeyAlzPkO2 where y+z+k=1, x is less than or equal to y, y is from 0.0008 to 0.4, z is from 0.25 to 0.67, and k is from 0.2 to 0.67. The MeAPO molecular sieve has a predominantly plate crystal morphology where the width divided by the thickness is greater than or equal to 10.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: January 29, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Walter Vermeiren, Nikolai Nesterenko
  • Publication number: 20130023710
    Abstract: The present invention relates to a Fluid Catalytic Cracking (FCC) additive preparation process and composition, which has high efficiency in the production of light olefins C2, C3 and C4 hydrocarbons, specifically propylene. The present invention discloses the stabilization of medium pore zeolite specifically ZSM-5 using optimum phosphate salts at a pH in the range 7-9 with synergetic combination of silica rich binder to produce FCC additive having excellent stability under severe hydrothermal conditions.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 24, 2013
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Gopal Ravichandran, Praveen Kumar Chinthala, Tejas Doshi, Arun Kumar, Amit Gohel, Sukumar Mandal, Asit Kumar Das, Srikanta Dinda, Amit Kumar Parekh
  • Publication number: 20130018213
    Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Inventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
  • Publication number: 20130012748
    Abstract: A process for converting an oxygenate-containing feedstock to a product comprising olefins comprises including in the oxygenate-containing feedstock an amount of ammonia. The presence of the ammonia increases the product's ratio of ethylene to propylene.
    Type: Application
    Filed: March 11, 2011
    Publication date: January 10, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Yu Liu, Albert E. Schweizer, JR., Andrzej M. Malek
  • Patent number: 8338656
    Abstract: This invention pertains to separating an olefin stream into at least two olefin streams. The olefin stream that is to be separated is low in diene composition, which allows the olefin stream to be compressed at a relatively high temperature without causing fouling problems in the compressor system. The invention is particularly relevant to separating olefins obtained from an oxygen to olefins unit.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: December 25, 2012
    Assignees: Lummus Technology Inc., ExxonMobil Chemical Patents Inc.
    Inventors: David Ritchie Lumgair, Michael Peter Nicoletti, Ram Mallik, Wadie Malaty, Malcolm Pettigrew
  • Publication number: 20120316312
    Abstract: In a method of synthesizing a silicoaluminophosphate molecular sieve having 90+% CHA framework-type character, a reaction mixture is prepared comprising sources of water, silicon, aluminum, and phosphorus, as well as an organic template. In one aspect, the reaction mixture is heated at more than 10° C./hour to a crystallization temperature and is retained at the crystallization temperature or within the crystallization temperature range for a crystallization time from 16 hours to 350 hours to produce the silicoaluminophosphate molecular sieve. In another aspect, the reaction mixture is heated at less than 10° C./hour to a crystallization temperature from about 150° C. to about 225° C. and is then retained there for less than 10 hours to produce the silicoaluminophosphate molecular sieve. The molecular sieve can then be recovered from the reaction mixture and, preferably, used in a hydrocarbon conversion process, such as oxygenates to olefins.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 13, 2012
    Inventors: Machteld M. Mertens, Stephen N. Vaughn
  • Publication number: 20120310026
    Abstract: A process for the preparation of an alkene from an oxygenate comprising contacting a reactant feedstream comprising at least one oxygenate reactant and water with a supported heteropolyacid catalyst at a temperature of at least 170° C., wherein the process is initiated using a start-up procedure comprising the following steps: (i) heating the supported heteropolyacid catalyst to a temperature of at least 220° C.; (ii) maintaining the heat-treated supported heteropolyacid catalyst of step (i) at a temperature of at least 220° C. for a time sufficient to remove bound water from the heteropolyacid component of the supported heteropolyacid catalyst; (iii) under an anhydrous atmosphere, reducing the temperature of the heat-treated supported heteropolyacid catalyst of step (ii) to a temperature below 220° C.; and (iv) contacting the supported heteropolyacid catalyst of step (iii) with the reactant feedstream at a temperature of at least 170° C.
    Type: Application
    Filed: February 10, 2011
    Publication date: December 6, 2012
    Inventor: Stephen Roy Partington
  • Publication number: 20120302810
    Abstract: A process for the preparation of an alkene from an oxygenate comprising contacting a reactant feedstream comprising at least one oxygenate reactant and water with a supported heteropolyacid catalyst at a temperature of at least 170° C., wherein the process is initiated using a start-up procedure comprising the following steps: (i) heating the supported heteropolyacid catalyst to a temperature of at least 220° C.; (ii) maintaining the heat-treated supported heteropolyacid catalyst of step (i) at a temperature of at least 220° C. for a time sufficient to remove bound water from the heteropolyacid component of the supported heteropolyacid catalyst; and (iii) whilst maintaining the supported heteropolyacid catalyst of step (ii) at a temperature of at least 220° C., contacting the supported heteropolyacid catalyst with the reactant feedstream having a temperature of at least 220° C.
    Type: Application
    Filed: February 10, 2011
    Publication date: November 29, 2012
    Inventor: Stephen Roy Partington