Using A Catalyst Patents (Class 60/299)
  • Patent number: 9227677
    Abstract: An underbody trim for the rear-end region of a motor vehicle conceals a rear exhaust muffler. For the purposes of cooling the rear exhaust muffler, an air inlet is provided in the underbody trim. The air inlet is arranged in a region in which, while the motor vehicle is traveling, a pressure is higher at the underside of the underbody trim than the region of the floor panel arranged thereabove. Cooling ambient air is thus conducted into the region of the rear exhaust muffler with low flow losses.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: January 5, 2016
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Mats Stefan Hillstroem, Ioannis Dimitriou, Jochen Mayer, Stefan Meszaros, Christian Seitz
  • Patent number: 9222392
    Abstract: The present invention relates to an exhaust gas treatment device for an exhaust system of a combustion engine, more preferably of a motor vehicle with a housing comprising a jacket and an outlet funnel, with at least one exhaust gas treatment element which is arranged in the jacket and which via a support ring is axially supported on the housing, wherein the outlet funnel comprises an outer funnel and an inner funnel. A simplified design is obtained if the outer funnel at an inner end facing the jacket is connected to the jacket in a fixed manner and at an outer end facing away from the jacket is connected in a fixed manner to the inner funnel, and if between the inner funnel and the outer funnel an insulation space circumferentially running in circumferential direction is formed and the inner funnel at an inner end facing the jacket carries the support ring and relative to the outer funnel is at least axially loose.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 29, 2015
    Assignee: Eberspaecher Exhaust Technology GmbH & Co. KG
    Inventors: Roland Schwarz, Johannes Grupp, Marco Wenz
  • Patent number: 9217348
    Abstract: An exhaust gas purification device for purifying exhaust gas flowing through an exhaust gas channel of an engine includes fins installed in the exhaust gas channel to guide the exhaust gas to generate a swirling flow; and an injection device configured to inject a reducing agent to the swirling flow of the exhaust gas. The fins are expanded and opened toward a downstream side of an injection direction of the reducing agent so as to surround an injection region of the reducing agent.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 22, 2015
    Assignee: Hino Motors, Ltd.
    Inventor: Masahiro Kimura
  • Patent number: 9169757
    Abstract: A mixer/evaporator or an exhaust system (5) of an internal combustion engine (1), includes a carrier (20) surrounding, in a circumferential direction, a flat cross section of a mixing/evaporating device (12), through which exhaust gases flow and which extends at a right angle to the axial direction (17). The carrier has opposite side walls, wherein short side walls (23, 24) connect each long side walls (21, 22) to one another. Guide blades (25) project in a direction of the respective opposite long side wall, are set at an angle in relation to the axial direction and are arranged at one of the long side walls at least one axial end (26, 27). An axial end of the first long side walls is offset in the axial direction in relation to the axial end of the second long side wall on the same side of the mixing/evaporating device.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: October 27, 2015
    Assignee: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventor: Silvia Calvo
  • Patent number: 9162182
    Abstract: An exhaust-gas cleaning device for an internal combustion engine has a catalytic converter arrangement. The catalytic converter arrangement includes, along the flow direction, a plurality of catalytically active regions which are, in particular, independent of one another. A heat dissipation device includes a heat absorbing device and one heat sink. The heat absorbing device is provided between at least two catalytically active regions. The heat absorbing device is connected to the heat sink. The exhaust-gas cleaning device includes a plurality of catalytic converter arrangements, an, in particular tubular, inner housing with a housing cover, and an outer housing which encloses the inner housing. The inner housing has a longitudinal axis, and the catalytic converter arrangements are arranged separately from one another on the housing cover of the inner housing.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: October 20, 2015
    Assignee: GE JENBACHER GMBH & CO OG
    Inventor: Friedrich Gruber
  • Patent number: 9140155
    Abstract: A modular exhaust system is disclosed for treating the exhaust from a fossil fuel powered prime mover; the exhaust system includes bricks, inserts placed inside of the bricks and funnels to direct exhaust through various flow paths in order to treat the exhaust.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: September 22, 2015
    Assignee: Caterpillar Inc.
    Inventors: Mary Jill Trumper, Christopher A. Willey, Kris E. Seitz, Andrew D. Hill, Thomas N. Brooks, Jr., Troy A. Shawgo
  • Patent number: 9114363
    Abstract: A catalyst system may include a three-way catalyst that may receive exhaust gases from an engine and convert the exhaust gases to first converted exhaust gases. An ammonia slip catalyst may receive the first converted exhaust gases and convert the first converted exhaust gases to second converted exhaust gases. A hydrocarbon oxidation catalyst may receive the second converted exhaust gases and convert the second converted exhaust gases to third converted exhaust gases.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Maruthi N. Devarakonda
  • Patent number: 9109483
    Abstract: An exhaust system for an internal combustion engine, having a first exhaust tract and a second exhaust tract, wherein a first silencer device is arranged in an end section of the first exhaust tract and a second silencer device is arranged in an end section of the second exhaust tract, and the two exhaust tracts are connected in an inter-communicating manner by a crosstalk point, and, in the first or second exhaust tract downstream of the crosstalk point, there is provided a valve for the selective closure of the respective exhaust tract, wherein a distance between the valve and the crosstalk point is dimensioned such that, at a particular rotational speed of the engine, an exhaust line path between the valve and the crosstalk point serves as a quarter lambda resonator such that, at the rotational speed of the internal combustion engine, disturbing noises of the exhaust system are reduced.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 18, 2015
    Assignee: Dr. Ing. h.c.F. Porsche Aktiengesellschaft
    Inventor: Joerg Winkel
  • Patent number: 9061245
    Abstract: An exhaust gas aftertreatment system, in particular for V-type diesel engines, is provided. The system includes, disposed in the exhaust line of the engine in the direction of the exhaust gas flow, a first SCR stage, a catalytically activated particulate filter (cDPF), a second SCR stage, and an ammonia slip catalyst (ASC). A method for purifying diesel engine exhaust gases containing hydrocarbons, carbon monoxide, soot particles, and nitrogen oxides consisting of NO and NO2 is also provided.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: June 23, 2015
    Assignee: Deutz Aktiengesellschaft
    Inventors: Meike Wittrock, Wolfgang Beberdick
  • Publication number: 20150145355
    Abstract: A prime mover assembly is suitable for use in a hazardous environment. The prime mover assembly includes a hazardous rated enclosure, a non-hazardous rated prime mover disposed in the enclosure, and a gland assembly extending through the enclosure in communication with the prime mover. The gland assembly provides power and instrumentation through the enclosure to the prime mover.
    Type: Application
    Filed: May 16, 2013
    Publication date: May 28, 2015
    Inventors: Jesse Kincaid, John Siggelkow
  • Patent number: 9038678
    Abstract: A reductant fill system is provided. A reductant tank is configured to store a reductant. A receiver is configured to receive a supply of the reductant from an off-board reservoir. A first valve is in communication with the reductant tank and is configured to control a reductant flow into the reductant tank. A reductant supply line is in fluid communication with the receiver. The reductant supply line is configured to provide the reductant flow to the first valve. The reductant level sensor is configured to generate a signal based on a level of reductant in the reductant tank. A controller is communicably coupled to the reductant level sensor. The controller is configured to purge a stranded reductant in the reductant supply line, based on the signal generated by the reductant level sensor.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 26, 2015
    Assignee: Caterpillar Inc.
    Inventors: Cameron J. Wright, Christopher M. Gruel
  • Patent number: 9038372
    Abstract: In an internal combustion engine, inside an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. The carrier (50) of the exhaust purification catalyst (13) is formed from a crystallized composite oxide of aluminum and an alkali earth metal. On this carrier (50), precious metal catalysts (51, 52) are carried. The concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to vibrate by within a predetermined range of amplitude of a 200 ppm or more and within a predetermined range of period of 5 second or less, whereby the NOx which is contained in exhaust gas is reduced at the exhaust purification catalyst (13).
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: May 26, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Koutarou Hayashi, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto
  • Patent number: 9038370
    Abstract: A method for operating an exhaust emission control system of a motor vehicle internal combustion engine, in the exhaust gas line of which an oxidation-catalytically active exhaust emission control component is arranged upstream of a SCR-catalyst is provided. An ageing state of the oxidation-catalytically active exhaust emission control component is determined by correlating a hydrocarbon fraction present in the exhaust emission upstream of the oxidation-catalytically active exhaust emission component with a simultaneous nitrogen oxide conversion of the SCR-catalyst.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: May 26, 2015
    Assignee: Daimler AG
    Inventor: Alexander Massner
  • Publication number: 20150135687
    Abstract: A motorcycle is equipped with a V-type engine in which front and rear cylinders are arranged in a V-shape along a vehicle front and rear direction. An exhaust device includes: a catalyst device disposed on an exhaust downstream side of a collection part of an exhaust pipe of the front cylinder and an exhaust pipe of the rear cylinder; and a connecting pipe via which the exhaust pipe of the front cylinder and the exhaust pipe of the rear cylinder communicate with each other, and the connecting pipe passes through a space between the exhaust pipe of the rear cylinder and the catalyst device.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Applicant: SUZUKI MOTOR CORPORATION
    Inventors: Eiji SASAKI, Yoshisato INAYAMA, Kazuhiro YAMAMOTO
  • Patent number: 9034267
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. The exhaust purification catalyst (13) is comprised of a mixture of a first catalyst in which platinum (51) and a basic layer (52) are carried on alumina (50) and a second catalyst in which rhodium (56) is carried on zirconia (55). The concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to vibrate by within a predetermined range of amplitude of a 200 ppm or more and within a predetermined range of period of 5 second or less, whereby the NOx which is contained in exhaust gas is reduced at the exhaust purification catalyst (13).
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: May 19, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Koutarou Hayashi, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto
  • Patent number: 9034286
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Patent number: 9032716
    Abstract: A motor vehicle includes a tank for storing a liquid reducing agent suppliable to the exhaust system of an internal-combustion engine, and an air delivery device, by which an excess pressure can be built-up in a cushion of air situated in the tank above the reducing agent level. Via the air delivery device, alternatively, a vacuum is generatable in the air cushion, which vacuum supports feeding of the agent into the tank. Via the vacuum in the air cushion, reducing agent can also be returned from a pipe, which leads the reducing agent to the exhaust system, back into the tank, and/or additional liquid reducing agent can be transferred from a storage tank by way of a supply duct.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 19, 2015
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Joerg Hennecke, Andreas Bruhn
  • Patent number: 9027330
    Abstract: A catalytic muffler for an internal combustion engine of a portable working tool, e.g. a chain saw or a trimmer, having a housing designed to be directly attached to an exhaust port of an engine. The housing further includes a front chamber and a rear chamber divided from each other by an intermediate baffle. The housing further having an inner housing having a first open end constituting the exhaust gas inlet located in the rear chamber. The inner housing includes a catalyst body through which essentially all exhaust gas flows when in use. A second open end of the inner housing is arranged in one of said front and rear chambers and the exhaust gas outlet of the muffler is arranged in the other chamber such that treated gas in use flows through at least one aperture in the intermediate baffle from one chamber to the other.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: May 12, 2015
    Assignee: Husqvarna Aktiebolag
    Inventor: Fredrik Edholm
  • Patent number: 9028764
    Abstract: An electro-catalytic honeycomb for controlling exhaust emissions, which adopts to purify a lean-burn exhaust, comprises a honeycomb structural body, a solid-oxide layer and a cathode layer. The honeycomb structural body includes an anode, a plurality of gas channels, and a shell. The anode is formed as a backbone, the gas channels are formed inside the backbone for passing the exhaust, and the shell covers an outer surface of the anode. The solid-oxide layer is adhered to an inner surface of the anode and connects the shell so as to encapsulate the anode. The cathode layer is adhered to a tube wall of the solid-oxide layer and has an oxidizing environment. The anode has a reducing environment. The reducing and the oxidizing environment facilitate an electromotive force to occur between the anode and the cathode layer to promote a decomposition of nitrogen oxides of the exhaust into nitrogen and oxygen.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: May 12, 2015
    Inventor: Ta-Jen Huang
  • Patent number: 9027331
    Abstract: A burner for an exhaust aftertreatment system may include a housing assembly and an ignition device. The housing assembly may include an inner shell surrounded by intermediate and outer shells. The inner shell may at least partially define a combustion chamber. The housing assembly may include an airflow passage having an opening extending through the outer shell. The airflow passage may extend between the outer shell and the intermediate shell as well as between the intermediate shell and the inner shell. The airflow passage may provide fluid communication between the opening and the combustion chamber. The ignition device may be at least partially disposed within the housing assembly and may ignite fuel received from a fuel source and air received from the airflow passage to produce a flame in the combustion chamber. The airflow passage may be in a heat transfer relationship with the flame in the combustion chamber.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: May 12, 2015
    Assignee: Tenneco Automotive Operating Company Inc.
    Inventor: Keith G. Olivier
  • Patent number: 9028761
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. The exhaust purification catalyst (13) is comprised of an upstream-side catalyst (14a) and a downstream-side catalyst (14b) arranged in series at an interval from each other. The upstream-side catalyst (14b) has a smaller cross-sectional area than the downstream-side catalyst (14b). The concentration of hydrocarbons which flow into the upstream-side catalyst (14a) is made to vibrate by within a predetermined range of amplitude of a 200 ppm or more and within a predetermined range of period of 5 seconds or less, whereby the NOx which is contained in exhaust gas is reduced at the exhaust purification catalyst (13).
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: May 12, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Umemoto, Kohei Yoshida, Mikio Inoue
  • Patent number: 9027333
    Abstract: Methods and systems for reducing hydrocarbon emissions from an internal combustion engine. The engine's exhaust aftertreatment system has at least a particulate matter (soot) filter and means for actively regenerating the particulate matter filter. During operation of the engine, the soot loading state of the particulate matter filter is monitored. The filter is regenerated when required, but the regeneration is controlled so that the particulate matter filter retains a small level of soot loading. This soot “pre-loading” ensures hydrocarbon reduction during the next cold start.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: May 12, 2015
    Assignee: Southwest Research Institute
    Inventors: Gary D. Neely, Darius Mehta
  • Patent number: 9021785
    Abstract: An engine system for a machine is disclosed. The engine system may have an intake manifold configured to direct air into a donor cylinder and a non-donor cylinder of an engine. The engine system may also have a first exhaust manifold configured to direct exhaust from the non-donor cylinder to the atmosphere. The engine system may also have a second exhaust manifold configured to receive exhaust from the donor cylinder. The engine system may further have a control valve configured to selectively direct a first amount of exhaust from the second exhaust manifold to the intake manifold. In addition, the engine system may have an orifice configured to allow a second amount of exhaust to flow from the second exhaust manifold to the first exhaust manifold.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Keith E. Moravec, Teoman Uzkan
  • Patent number: 9021804
    Abstract: An exhaust system, comprising a LP-EGR system that couples an exhaust system to an intake system and an exhaust pipe within the exhaust system with a turn greater 90 degrees and less than 270 degrees between front and rear tires and upstream of a LP-EGR exhaust inlet; and a muffler positioned in the exhaust system downstream of the LP-EGR exhaust inlet and forward of the front tires. By shortening the LP-EGR path, back pressure to sustain EGR flow can be maintained without the use of a back pressure valve.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Xiaogang Zhang
  • Patent number: 9021788
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. At the time of engine operation, the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to become within a predetermined range of amplitude by control of the injection amount of hydrocarbons from the hydrocarbon feed valve (15), the concentration of hydrocarbons flowing into the exhaust purification catalyst (13) is made to vibrate by a predetermined range of period by control of the injection period of hydrocarbons from the hydrocarbon feed valve (15), and thereby the NOx contained in the exhaust gas and the NOx stored in the exhaust purification catalyst (13) are reduced.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mikio Inoue, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto
  • Patent number: 9021779
    Abstract: The present application thus provides a gas turbine engine system. The gas turbine engine system may include a gas turbine engine, a nitrogen oxides reduction system in communication with a flow of combustion gases downstream from the gas turbine engine, and a nitrogen oxides controller to control the ratio of nitrogen dioxide to nitrogen oxides in the flow of combustion gases entering the nitrogen oxides reduction system.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 5, 2015
    Assignee: General Electric Company
    Inventor: Robert Frank Hoskin
  • Patent number: 9021792
    Abstract: A selective catalytic reduction catalyst capable of reducing the NOx in exhaust gas to N2 is arranged in an exhaust pipe of an engine. Fluid feed has a fluid injecting nozzle facing the exhaust pipe on the exhaust gas upstream side from the selective catalytic reduction catalyst. The fluid feed is configured such that a urea fluid that functions as a reducing agent is fed with the selective catalytic reduction catalyst from the fluid injecting nozzle to the exhaust pipe. Ozone feed includes an ozone injecting nozzle that faces the exhaust pipe on the exhaust gas upstream side from the selective catalytic reduction catalyst, and on the exhaust gas upstream side or the exhaust gas downstream side from the fluid injecting nozzle. The ozone feed is configured such that ozone is fed from the ozone injecting nozzle to the exhaust pipe.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 5, 2015
    Assignee: Hino Motors, Ltd.
    Inventors: Mitsuru Hosoya, Yoshihiro Kawada, Shinya Sato
  • Patent number: 9017614
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, an NOx adsorption part and an NOx purification part are arranged. The NOx purification part has the property of reducing NOx which is contained in exhaust gas if the concentration of hydrocarbons is made to vibrate by within a predetermined range of amplitude and within a predetermined range of period. When NOx is to be desorbed from the NOx adsorption part, the current NOx which is contained in the exhaust gas and the NOx which is desorbed from the NOx adsorption part are reduced by making the concentration of hydrocarbons of the NOx purification part vibrate by the amplitude and period which are set for the current engine operating state, at least of which (?T·k) has been corrected so that the amount of hydrocarbons becomes greater.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihisa Tsukamoto, Hiromasa Nishioka, Kohei Yoshida, Yuki Bisaiji, Junichi Matsuo, Takamitsu Asanuma
  • Patent number: 9016046
    Abstract: A method, comprising purging a storage catalytic converter of stored NOx by diverting only a portion of incoming exhaust flow around the catalytic device while increasing injection of reductant to the storage catalytic converter; and responsive to the diverting, adjusting injection of an ammonia-containing fluid into recombined exhaust flow upstream of an SCR catalytic converter. Bypass of the storage catalytic converter reduces available oxygen and air flow through the storage catalytic converter, providing a more advantageous environment for reduction of NOx in the storage catalytic converter.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: April 28, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Jan Harmsen, Frank Linzen
  • Patent number: 9016422
    Abstract: A saddle-ride type vehicle which includes catalyst devices in left and right exhaust flow passages can suppress effect of the catalyst devices on the reach to the ground even if the sizes of catalysts are large. The vehicle includes: exhaust flow passages connected to a multi-cylinder engine and disposed independently on left and right sides of a vehicle body; a first catalyst device provided in a middle of the left exhaust flow passage; a second catalyst device provided in a middle of the right exhaust flow passage; a swing arm pivotally supporting a rear wheel such that the rear wheel is swingable, the saddle-ride type vehicle includes silencers connected to portions of the exhaust flow passages downstream of the first catalyst device and the second catalyst device, and the first catalyst device and the second catalyst device are arranged side by side below the swing arm.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 28, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yoshitaka Hayama
  • Patent number: 9017626
    Abstract: Described are SCR catalyst systems comprising a first SCR catalyst composition and a second SCR catalyst composition arranged in the system, the first SCR catalyst composition promoting higher N2 formation and lower N2O formation than the second SCR catalyst composition, and the second SCR catalyst composition having a different composition than the first SCR catalyst composition, the second SCR catalyst composition promoting lower N2 formation and higher N2O formation than the first SCR catalyst composition. The SCR catalyst systems are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 28, 2015
    Assignee: BASF Corporation
    Inventors: Weiyong Tang, Jaya L. Mohanan
  • Patent number: 9016050
    Abstract: An aftertreatment system is disclosed. The aftertreatment system can include a hydrolysis catalyst disposed within a first canister adjacent to a downstream end of the first canister and a nozzle positioned to inject reductant into the first canister upstream of the hydrolysis catalyst. A particulate collection device, which may be catalyzed to promote NOX reduction in the presence of the reductant, can be disposed within a second canister of the aftertreatment system adjacent to an upstream end thereof. An exhaust conduit can extend from the downstream end of the first canister to the upstream end of the second canister. An interior volume within the exhaust conduit can extend from an upstream end adjacent to and in fluid communication with the hydrolysis catalyst to a downstream end adjacent to and in fluid communication with the particulate collection device.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 28, 2015
    Assignee: Caterpillar Inc.
    Inventors: Amy E. Fischer, Matthew E. Leustek, Justin W. McMenamy, Brandon T. Shull, Ronald G. Silver
  • Patent number: 9016244
    Abstract: Methods and systems are provided for injecting water during an engine cylinder deactivation event so as to reduce an exhaust catalyst regeneration requirement following the cylinder deactivation. In one example, water is injected at one or more deactivated engine cylinders to reduce oxidation of the exhaust catalyst. Then, during engine cylinder reactivation, a degree of richness of a combustion air-to-fuel ratio may be reduced to decrease fuel penalty to the engine while reducing NOx emission.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: April 28, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas G. Leone, Joseph Norman Ulrey, Mark Allen Dearth
  • Publication number: 20150107242
    Abstract: An exhaust system with post-operation cooling for a vehicle is provided. The vehicle generally has a heat generating device that generates exhaust gas. The exhaust system includes an exhaust gas conduit through which at least a portion of the exhaust gas is flowable and dischargeable, and at least one exhaust gas component in fluid communication with the exhaust gas conduit. The exhaust system also includes an air intake conduit through which outside air is flowable, and an air pump in fluid communication with the air intake conduit. The air intake conduit is in fluid communication with the exhaust gas conduit upstream of the at least one exhaust gas component. The air pump is configured to draw the outside air into the air intake conduit such that the outside air is supplied to the exhaust gas conduit to cool the at least one exhaust gas component.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael G. Long, Gerald M. Simon, Kulbir S. Dhuga
  • Patent number: 9010096
    Abstract: An exhaust treatment system including an exhaust passage in communication with an engine that produces an exhaust. An exhaust canister is coupled to the exhaust passage, and the exhaust canister supports a plurality of exhaust treatment components therein for treating the exhaust, wherein exhaust canister is removable from the exhaust passage, and the exhaust treatment components are removable from the exhaust canister.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 21, 2015
    Assignee: Tenneco Automotive Operating Company Inc.
    Inventors: Michael Golin, Dan Owen, Tanay Muthay, Keith Olivier
  • Patent number: 9011806
    Abstract: The invention relates to a method for treating a gas containing nitrogen oxides (NOx), in which an NOx-reduction reaction is carried out using a nitrogen-containing reducing agent, which invention is characterized in that the catalyst used for the reduction reaction is a catalytic system containing a composition comprising zirconium, cerium and niobium in the following percentages by weight, expressed in terms of the weight of oxide: 10-50% of cerium, 5-20% of niobium and the remainder consisting of zirconium.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 21, 2015
    Assignees: Rhodia Operations, Magnesium Elektron Limited
    Inventors: Laure Bisson, Julien Hernandez, Rui Miguel Jorge Coelho Marques, Emmanuel Rohart, Mila Bortun, Deborah Jayne Harris, Clare Jones
  • Patent number: 9010091
    Abstract: A system for storing ammonia in and releasing ammonia from a storage material capable of binding and releasing ammonia reversibly by adsorption or absorption for a process with a gradual ammonia demand that can vary over the time. The system has a container capable of housing the ammonia-containing storage material; a heating source arranged to supply heat for the desorption of ammonia from the solid storage medium; and a controller arranged to control the heating source to release ammonia. The heating source may be arranged inside the container and surrounded by ammonia storage material. A controllable dosing valve is arranged to dose released ammonia according to the ammonia demand. The controller comprises a feed-forward control arranged to control the heat supplied by the heating source, based on the ammonia demand.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 21, 2015
    Assignee: Amminex Emissions Technology A/S
    Inventors: Tue Johannessen, Henning Schmidt
  • Patent number: 9011807
    Abstract: Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: April 21, 2015
    Assignees: BASF Corporation, N. E. Chemcat Corporation, Heesung Catalysts Corporation
    Inventors: Jaya L. Mohanan, Patrick Burk, Michael J. Breen, Barbara Slawski, Makoto Nagata, Yasuyuki Banno, Eunseok Kim
  • Patent number: 9010097
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (16), an exhaust purification catalyst (13), a particulate filter (14), and an NO2 reduction catalyst (15) are arranged. At the time of engine operation, the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to become within a predetermined range of amplitude by control of the injection amount of hydrocarbons from the hydrocarbon feed valve (16). When the NO2 which is produced at the particulate filter (14) should be reduced to NO, the injection amount of hydrocarbons is increased whereby the pass through amount of hydrocarbons which pass straight through the exhaust purification catalyst (13) is increased.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mikio Inoue, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto, Masahide Iida
  • Publication number: 20150101317
    Abstract: An on-board diagnostics system for an exhaust system of an internal combustion engine is disclosed. The system comprises a catalyzed substrate having a catalyzed region and an uncatalyzed region, a first sensor, and a second sensor. The first sensor is located within the catalyzed region of the catalyzed substrate and the second sensor is located within the uncatalyzed region of the catalyzed substrate. A method for on-board diagnostics of the catalyzed substrate is also disclosed.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Inventors: Paul Richard PHILLIPS, Daniel HATCHER, David BERGEAL
  • Publication number: 20150101313
    Abstract: One form of the present application is an apparatus including an internal combustion engine structured to produce an exhaust flow, an exhaust system structured to receive the exhaust flow, and a reductant injector structured to inject reductant into a primary passage of the exhaust system upstream of a catalyst. The apparatus further includes an injector passage structured to receive a portion of exhaust upstream of the injector and further structured to flow the exhaust into the primary passage around the injector in a manner such that deposit formation is reduced.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Applicant: Cummins Emission Solutions, Inc.
    Inventors: Douglas A. Mitchell, Mihai Chiruta, Lindsey R. Henry, Jim Alonzo
  • Patent number: 9005558
    Abstract: An exhaust gas control apparatus for an internal combustion engine includes: a NOx purification catalyst arranged in an exhaust passage of the internal combustion engine; a degradation degree estimating unit estimating a degradation degree of the NOx purification catalyst; and an air-fuel ratio control unit adjusting an air-fuel ratio of exhaust gas flowing into the NOx purification catalyst, wherein, until the estimated degradation degree of the NOx purification catalyst reaches a predetermined degradation degree, the air-fuel ratio control unit adjusts the air-fuel ratio of the exhaust gas to a rich air-fuel ratio, and, when the estimated degradation degree of the NOx purification catalyst exceeds the predetermined degradation degree, the air-fuel ratio control unit changes the air-fuel ratio of the exhaust gas from the rich air-fuel ratio to a lean air-fuel ratio so that the NOx purification catalyst is regenerated.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 14, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Shigeharu Takagi, Keisuke Kishita, Noboru Otake, Akira Morikawa, Takuto Hirose, Yasutaka Nagai
  • Patent number: 9005560
    Abstract: A method to produce a NOx trap composition, and its use in a NOx trap and in an exhaust system for internal combustion engines, is disclosed. The NOx trap composition is produced by heating an iron-containing zeolite in the presence of an inert gas and an organic compound to produce a reductively calcined iron/zeolite. A palladium compound is then added to the reductively calcined iron/zeolite, and the resulting Pd—Fe/zeolite is then calcined at 400 to 600° C. in the presence of an oxygen-containing gas to produce the NOx trap composition. The NOx trap composition shows low temperature NO capacity below 200° C., as well as an additional NO storage temperature window in the 200 to 250° C. range.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: April 14, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Fiona-Mairead McKenna
  • Patent number: 9003780
    Abstract: An exhaust gas purification device capable of enhancing handling operability such as maintenance of an engine includes two gas purification bodies which purify exhaust gas discharged from the engine, inner cases in which the gas purification bodies are incorporated, and outer cases in which the inner cases are incorporated. The outer cases are arranged side by side in a moving direction of exhaust gas and connected to each other. One of the adjoining inner cases is inserted into the other inner case to form a double-layer structure. A loosely-fitting gap is formed between an inner side surface of the one inner case and an outer side surface of the other inner case.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 14, 2015
    Assignee: Yanmar Co., Ltd.
    Inventors: Masataka Mitsuda, Hiroshi Uehara
  • Patent number: 9005559
    Abstract: The invention provides an exhaust gas cleaning oxidation catalyst and in particular to an oxidation catalyst for cleaning the exhaust gas discharged from internal combustion engines of compression ignition type (particularly diesel engines). The invention further relates to a catalysed substrate monolith comprising an oxidising catalyst on a substrate monolith for use in treating exhaust gas emitted from a lean-burn internal combustion engine. In particular, the invention relates to a catalysed substrate monolith comprising a first washcoat coating and a second washcoat coating, wherein the second washcoat coating is disposed in a layer above the first washcoat coating.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: April 14, 2015
    Assignees: Johnson Matthey Public Limited Company, Johnson Matthey Japan Godo Kaisha
    Inventors: Satoshi Sumiya, Lifeng Wang, Hanako Oyamada, Philip Gerald Blakeman, Gavin Michael Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Andrew Peter Walker
  • Patent number: 9003781
    Abstract: Embodiments of a pre-turbo catalyst positioned within a turbine in a turbocharger of an engine are disclosed. In one example approach, a turbocharger for an engine comprises a turbine and a catalyst substrate mounted directly within the turbine.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 14, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Patrick Murphy
  • Patent number: 9003792
    Abstract: In an exemplary embodiment, an internal combustion engine includes an oxidation catalyst configured to receive an exhaust gas flow from the internal combustion engine, a urea injector positioned downstream of the oxidation catalyst to inject a urea flow into the exhaust gas flow and a mixer positioned downstream of the urea injector to mix the exhaust gas flow and the urea flow to form a mixed exhaust gas and urea flow. The engine also includes a particulate filter and catalytic reduction assembly positioned downstream of the mixer to receive the mixed exhaust and urea flow from the mixer to form a treated exhaust gas flow and an exhaust gas recirculation system coupled to the particulate filter to receive a portion of the treated exhaust gas flow and recirculate the portion of the exhaust gas flow to be mixed with a fresh air flow for the internal combustion engine.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Manuel Angel Gonzalez Delgado, Julian C. Tan, Joshua Clifford Bedford, Yong Miao, Naser I. Hineiti, Steven M. Yocum
  • Patent number: 9003782
    Abstract: An exhaust gas-treating device (1) for an exhaust system of an internal combustion engine, especially of a motor vehicle, has a housing (2), which has a jacket (3) extending circumferentially on the side and two end-side end bottoms (4, 5). Maintenance is simplified with at least one mounting tube (6), which passes through one or the first end bottom (4) and into the outlet end (8) of which a particle filter (7) is plugged axially from the outside, with a deflecting housing (9). The deflecting housing (9) contains a deflecting chamber (10), and has at least one inlet (11) communicating with the deflecting chamber (10) and at least one outlet (12) communicating with the deflecting chamber (10). A fastening device (13) is provided for detachably fastening the respective inlet (11) at the respective outlet end (8) of the mounting tube (6).
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: April 14, 2015
    Assignees: Eberspächer Exhaust Technology GmbH & Co. KG, Volvo Lastvagnar AB
    Inventors: Marcus Werni, Rainer Lehnen
  • Publication number: 20150096286
    Abstract: An exhaust gas purification device for an internal combustion engine purifies exhaust gas in a first exhaust path and a second exhaust path. The device includes a confluent path. The confluent path extends from a confluent section of the first exhaust path and the second exhaust path. A first auxiliary NOx catalyst is provided in the first exhaust path. A second auxiliary NOx catalyst is provided in the second exhaust path. A main NOx catalyst is provided in the confluent path. A first addition section adds an ammonia source in a first addition amount to a section upstream of the first auxiliary NOx catalyst to supply urea water to the first auxiliary NOx catalyst. A second addition section adds an ammonia source in a second addition amount to a section upstream of the second auxiliary NOx catalyst to supply urea water to the second auxiliary NOx catalyst.
    Type: Application
    Filed: November 21, 2012
    Publication date: April 9, 2015
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shunsuke Toshioka, Koichiro Fukuda, Shigeki Nakayama, Noriyoshi Takahashi, Atsushi Kidokoro, Sakutaro Hoshi, Satoshi Watanabe
  • Patent number: 8997469
    Abstract: An engine with an exhaust treatment device (2) wherein a rotation moment of a side support stay (12) is generated by a load of a side portion (50) received by side support stay fastening tool (13) via an edge portion (21) of a cutout groove (20). As a result, a load of the side portion (50) of the exhaust treatment device (2) can be supported by the side support stay (12). A one-side temporary mount portions (22) is provided in a one-side support stay (10). The one-side support stay (10) can be temporarily mounted on the one-side temporary mount portions (22).
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 7, 2015
    Assignee: KUBOTA Corporation
    Inventors: Mitsugu Okuda, Kozo Yoshida