Using A Catalyst Patents (Class 60/299)
  • Patent number: 8858903
    Abstract: Oxidation ZPGM catalyst systems and three way ZPGM catalyst systems are disclosed. ZPGM catalyst systems may oxidize toxic gases, such as carbon monoxide and hydrocarbons, optionally some ZPGM catalyst systems may as well reduce nitrogen oxides that may be included in exhaust gases. ZPGM catalyst systems may include: a substrate, a washcoat, and an overcoat. The washcoat may include at least one ZPGM catalyst and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: October 14, 2014
    Assignee: Clean Diesel Technology Inc
    Inventor: Zahra Nazarpoor
  • Publication number: 20140301923
    Abstract: Described are SCR catalyst systems comprising a first SCR catalyst composition and a second SCR catalyst composition arranged in the system, the first SCR catalyst composition promoting higher N2 formation and lower N2O formation than the second SCR catalyst composition, and the second SCR catalyst composition having a different composition than the first SCR catalyst composition, the second SCR catalyst composition promoting lower N2 formation and higher N2O formation than the first SCR catalyst composition. The SCR catalyst systems are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Application
    Filed: March 13, 2014
    Publication date: October 9, 2014
    Applicant: BASF Corporation
    Inventors: Weiyong Tang, Jaya L. Mohanan
  • Patent number: 8850802
    Abstract: A system for NOx reduction in combustion gases, especially from diesel engines, incorporates an oxidation catalyst to convert at least a portion of NO to NO2, particulate filter, a source of reductant such as NH3 and an SCR catalyst. Considerable improvements in NOx conversion are observed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 7, 2014
    Assignees: Daimler AG, HJS Emission Technology GmbH & Co. KG, Johnson Matthey Public Ltd. Co.
    Inventors: Anders Andreasson, Guy Richard Chandler, Claus Fnednch Goersman, James Patrick Warren, Georg Huethwohl
  • Patent number: 8850803
    Abstract: A system includes a main engine operating on gaseous fuel from a tank. An auxiliary engine operates using gaseous fuel vented from the tank. A first exhaust passage receives a first stream of exhaust gas from the main engine. A second exhaust passage receives exhaust gas from the auxiliary engine, which passes through an ammonia-producing catalyst. A third exhaust passage is fluidly connected to the first and second exhaust passages and routes exhaust gas through a NOx reducing catalyst. The system operates such that a mass flow of ammonia generated by the ammonia-producing catalyst substantially matches a total mass flow of NOx gas in the third exhaust passage that is treated within the ammonia-producing catalyst.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 7, 2014
    Assignee: Caterpillar Inc.
    Inventor: Cory A. Brown
  • Publication number: 20140290225
    Abstract: A control apparatus for a hybrid vehicle includes an engine, an exhaust gas purification catalyst, a first motor-generator, an output section, a differential mechanism, a second motor-generator, and a controller. The output section is configured to transfer torque to driving wheels of the hybrid vehicle. The differential mechanism is configured to distribute the torque from the engine to the first motor-generator and the output section. The second motor-generator is connected to the output section through gears. The controller is configured to: (a) execute a temporarily changing the air-fuel ratio of the engine to a rich side as a rich spike operation when a specified condition is satisfied, and (b) set the specified condition so that the rich spike operation is easily executed as a motor torque of the second motor-generator increases.
    Type: Application
    Filed: March 24, 2014
    Publication date: October 2, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daiki SATO, Tetsuo HORI
  • Patent number: 8844275
    Abstract: An exhaust-gas aftertreatment system, having a catalytic converter and/or particle filter which are/is assigned a burner arranged upstream in an exhaust line, to which burner fuel can be supplied via a fuel nozzle device and also combustion air can be supplied, and wherein the combustion air and the fuel emerging from the fuel nozzle device are mixed in a downstream air swirl vaporizer nozzle. An exhaust-gas aftertreatment system having a burner which operates reliably with a compact design and in which the supplied energy for operating the burner is reduced in relation to known systems. The fuel nozzle device has a nozzle body which extends at least from an inlet to an outlet and which has arranged therein a support body, which nozzle body and support body together produce a film-forming fuel supply duct.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: September 30, 2014
    Assignee: Deutz Aktiengesellschaft
    Inventors: Rolf Miebach, Peter Broll, Stephan Schraml
  • Patent number: 8845987
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a Cu—Mn spinel structure and an overcoat that includes PGM supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under stoichiometric operating conditions and especially under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also enhances the reduction of carbon monoxide and hydrocarbon within catalytic converters. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalyst activity compared to commercial PGM catalyst system, showing that there is a synergistic effect among PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 30, 2014
    Assignee: Clean Diesel Technologies Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 8839611
    Abstract: An internal combustion engine is coupled to an electric power generator. An exhaust manifold for the engine includes an exhaust gas conduit. A housing includes a catalyst in fluid communication with the conduit to receive exhaust produced by the engine. The catalyst is operable to reduce one or more constituents of the exhaust.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 23, 2014
    Assignee: Cummins Power Generation IP, Inc
    Inventors: Mark E. Turpin, Clayton Smith, Gary A. Salmonson, Brian G. Haupt, Shawn John Kipka, Kurt Butz, Lee Severtson, David W. Strombeck
  • Patent number: 8839613
    Abstract: An exhaust system for an engine is disclosed herein. The exhaust system includes a catalytic converter, a heat collector downstream from the catalytic converter, and a heat transfer system receiving waste exhaust heat via a thermosyphon evaporator for storage and/or use in a cabin heating system. In this way, waste heat is utilized to provide better cabin heating, particularly at engine cold start.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: September 23, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Levin, Furqan Zafar Shaikh, Danrich Henry Demitroff, Donald Masch, Lawrence Marshall
  • Publication number: 20140260196
    Abstract: Described herein is an air dithering system for an internal combustion engine generating exhaust gas that includes an exhaust line in exhaust gas receiving communication with the internal combustion engine. The system also includes an exhaust aftertreatment component positioned within the exhaust line in exhaust gas receiving communication with exhaust gas in the exhaust line. Further, the system includes an air injector in air injecting communication with exhaust gas in the exhaust line at a location downstream of the internal combustion engine and upstream of the exhaust aftertreatment component.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Leon A. LaPointe, Scott Miles, Jay Shah
  • Publication number: 20140271427
    Abstract: A catalyst material for the oxidation of NO comprising a catalyst carrier including a ceria-alumina support having platinum and optionally palladium dispersed on the support is described. When palladium is present, the ratio of platinum to palladium by weight is at least 1:1. The amount of ceria in the support is in the range of 1% to 12% by weight. The catalyst material is useful for methods and systems of abating pollutants from automotive exhaust gas from lean burn engines.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventors: Jeffrey B. Hoke, Olga Gerlach, Andreas Sundermann
  • Publication number: 20140260204
    Abstract: An exhaust gas purification apparatus includes a SCR converter selectively reducing and purifying NOx in exhaust gas upon being supplied with ammonia generated from urea aqueous solution and an injection nozzle injection-supplying the urea aqueous solution on exhaust gas upstream side of the SCR converter. At least a part of an exhaust pipe located between the injection nozzle and the SCR converter has a double-pipe structure including inner and outer pipes, each having a welded portion, and the welded portion of the outer pipe was welded from an inside of the outer pipe. Thus, the outer pipe has fine welded portion on an inner peripheral surface where a welding temperature is high and the coarse welded portion on an outer peripheral surface where the welding temperature is low, resulting in an ordered atomic arrangement and thus improved corrosion resistance of the inner peripheral surface, which may be exposed to ammonia.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: UD TRUCKS CORPORATION
    Inventor: Satoshi SUGIYAMA
  • Publication number: 20140271422
    Abstract: Described are SCR catalyst systems comprising a first SCR catalyst composition and a second SCR catalyst composition arranged in the system, the first SCR catalyst composition promoting higher N2 formation and lower N2O formation than the second SCR catalyst composition, and the second SCR catalyst composition having a different composition than the first SCR catalyst composition, the second SCR catalyst composition promoting lower N2 formation and higher N2O formation than the first SCR catalyst composition. The SCR catalyst systems are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventor: Weiyong Tang
  • Publication number: 20140260215
    Abstract: A single substrate oxidation catalyst system including: a turbocharger adapter exhaust collector segment having a first end and a second end; a debris screen housing in fluid communication with the second end of the turbocharger adapter exhaust collector segment; and an oxidation catalyst substrate located in the in the second end of the turbocharger adapter exhaust collector segment, wherein the oxidation catalyst substrate slides into and out of position in the second end of the turbocharger adapter exhaust collector segment.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Inventor: David Cook
  • Publication number: 20140260213
    Abstract: A catalyst system may include a three-way catalyst that may receive exhaust gases from an engine and convert the exhaust gases to first converted exhaust gases. An ammonia slip catalyst may receive the first converted exhaust gases and convert the first converted exhaust gases to second converted exhaust gases. A hydrocarbon oxidation catalyst may receive the second converted exhaust gases and convert the second converted exhaust gases to third converted exhaust gases.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: General Electric Company
    Inventor: Maruthi N. Devarakonda
  • Publication number: 20140262590
    Abstract: Exhaust systems and passenger service vehicles, for example, buses are used together. The exhaust system can be arranged, in use, to be above an engine compartment. The exhaust system includes a first filter and a second filter, each filter having an inlet and an outlet. The inlets are inline with the respective first and second filters, and the outlets are transversely arranged with reference to the respective filters. Vehicles may have an overall length of about 35 feet or less and have an unladen weight of around 25,000 lbs or less.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Applicant: ALEXANDER DENNIS LIMITED
    Inventors: Mark Daborn, Simon Bowers
  • Publication number: 20140260243
    Abstract: An exhaust system, comprising a LP-EGR system that couples an exhaust system to an intake system and an exhaust pipe within the exhaust system with a turn greater 90 degrees and less than 270 degrees between front and rear tires and upstream of a LP-EGR exhaust inlet; and a muffler positioned in the exhaust system downstream of the LP-EGR exhaust inlet and forward of the front tires. By shortening the LP-EGR path, back pressure to sustain EGR flow can be maintained without the use of a back pressure valve.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Xiaogang Zhang
  • Publication number: 20140260214
    Abstract: A lean NOx trap for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO), and the trapping and reduction of nitrogen oxides (NOx) is disclosed. Nitrogen oxide storage catalysts can comprise a layer on a substrate including ceria-alumina particles having a ceria phase present in a weight percent of the composite in the range of about 20% to about 80% on an oxide basis, an alkaline earth metal component supported on the ceria-alumina particles, wherein the CeO2 is present in the form of crystallites that are hydrothermally stable and have an average crystallite size less than 130 ? after aging at 950° C. for 5 hours in 2% O2 and 10% steam in N2.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventors: Wen-Mei Xue, Xinyi Wei, Marcus Hilgendorff, Patrick Burk
  • Publication number: 20140260203
    Abstract: A system and method for reforming a portion of an exhaust gas stream in an internal combustion engine system. An exhaust gas recirculation assembly divides the exhaust gas stream into a recycle stream and a vent stream. A mixer in fluid receiving communication with the recycle stream forms a combination stream by mixing a gaseous fuel stream with the recycle stream. A thermochemical recuperator component fluidly connects to the mixer and includes a first flow path and a second flow path. The first flow path has a catalyst through which the combination stream flows to create a reformate stream, and the second flow path has a heat transfer area for transferring heat from the vent stream to the combination stream.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Cummins IP, Inc.
    Inventors: Leon A. LaPointe, Edward J. Lyford-Pike, Daniel J. Mohr, Ashish Gupta
  • Patent number: 8833059
    Abstract: A motor vehicle combustion engine includes an air supply section and an exhaust gas recirculation section that includes a particle filter and an SCR exhaust gas purification component. A first exhaust gas turbocharger includes a turbine arranged upstream of the particle filter in the exhaust gas section. A first exhaust gas recirculation line, which diverges from the exhaust gas section upstream of the turbine of the first exhaust gas turbocharger, and a second exhaust gas recirculation line, which diverges from the exhaust gas section downstream of the particle filter are provided to recirculate the exhaust gas from the exhaust gas section into the air supply system. An SCR catalyst is arranged in the second exhaust gas recirculation line.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: September 16, 2014
    Assignee: Daimler AG
    Inventor: Berthold Keppeler
  • Patent number: 8833060
    Abstract: Embodiments for regenerating a particle filter are provided. In one example, a method includes operating a spark-ignition internal combustion engine having a particle filter for collecting and burning soot particles in exhaust gas comprises in order to initiate regeneration of the particle filter. The method may include, in response to a regeneration condition, increasing exhaust temperature by retarding spark timing and once regeneration is reached, operating the engine with lean combustion to regenerate the particle filter, where a degree of leanness is based on each of a state of the filter and an upstream three-way catalyst.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: September 16, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Helmut Hans Ruhland, Moritz Klaus Springer, Brendan Patrick Carberry
  • Patent number: 8833058
    Abstract: Embodiments for routing exhaust in an engine are provided. In one example, an engine method comprises, during a first condition, firing a subset of cylinders and routing all exhaust from the subset of cylinders through a first exhaust manifold coupled directly to a catalyst and not a turbocharger, and during a second condition, firing all cylinders, routing a first portion of exhaust through a second exhaust manifold coupled to the turbocharger, and routing a second portion of exhaust through the first exhaust manifold. In this way, exhaust can be directly routed to a catalyst under some conditions.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 16, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: James Douglas Ervin, Kim Hwe Ku, Gregory Patrick McConville, Brad Alan Boyer
  • Patent number: 8834821
    Abstract: A method includes providing: a selective catalytic reduction (SCR) catalyst disposed in an exhaust gas stream of an internal combustion engine, a reagent injector operationally coupled to the exhaust gas stream at a position upstream of the SCR catalyst, and a NOx sensor coupled to the exhaust gas stream at a position downstream of at least a first portion of the SCR catalyst. The method includes operating an extremum seeking controller to determine a first reagent injection amount corresponding to a predetermined slope of ?NOx/?ANR, the ?NOx/?ANR determined according to the NOx sensor, providing a reagent injection command in response to the first reagent injection amount, and injecting an amount of the reagent in response to the reagent injection command.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 16, 2014
    Assignee: Cummins Inc.
    Inventors: Mert Geveci, Andrew Osburn, Michael Haas
  • Patent number: 8833064
    Abstract: Catalyst articles comprising substantially only a palladium precious metal component in a first catalytic layer and a rhodium component in a second catalytic layer and related methods of preparation and use are disclosed. Also disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 2-5% by weight of the second layer, wherein the palladium component is substantially the only platinum group metal component, and a palladium-free third layer comprising a rhodium component supported on a thermostable oxygen storage component which is about 80-99% by weight of the second layer. One or more improved properties are exhibited by the catalyst article.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Michael P. Galligan, Pascaline H. Tran, Keshavaraja Alive, Ye Liu
  • Patent number: 8834820
    Abstract: An emissions control system includes a Selective Catalytic Reduction (SCR) device, one or more monitoring devices and one or more sensors. The system further includes a controller configured to determine an operating emissions gas conversion ratio of the SCR device. The controller is further configured to determine an injection amount of a reduction agent to maintain an operating emissions gas conversion ratio of the SCR device and to adjust the operating emissions gas conversion ratio to a target emissions gas conversion ratio by adjusting the injection amount of the reduction agent to the SCR device. The system utilizes a Time-Temperature model to determine the target emissions gas conversion ratio and/or reduction agent injection ratio. The system further includes a reduction agent injector configured to supply the adjusted injection amount of the reduction agent to the SCR device.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: September 16, 2014
    Assignee: Caterpillar Inc.
    Inventors: Matthew Mowers, Karthik Jayasankaran, Deepti Bhosekar, Jason Bloms, Joshua Ratts, Aaron Harmon
  • Patent number: 8833062
    Abstract: A system for NOx reduction in combustion gases, especially from diesel engines, incorporates an oxidation catalyst to convert at least a portion of NO to NO2, particulate filter, a source of reductant such as NH3 and an SCR catalyst. Considerable improvements in NOx conversion are observed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 16, 2014
    Assignees: Daimier AG, HJS Emission Technology GmbH & Co. KG, Johnson Matthey Public Ltd. Co.
    Inventors: Anders Andreasson, Guy Richard Chandler, Claus Friedrich Goersmann, James Patrick Warren, Georg Huethwohl
  • Publication number: 20140250872
    Abstract: An exhaust gas purifying catalyst comprises: a plurality of catalyst units which contain anchor particles that support noble metal particles; and an enclosure material that internally contains the plurality of catalyst units and separates the catalyst units from each other. Both the anchor particles and the enclosure material contain an alkali element and/or an alkaline earth element. Due to this configuration, this exhaust gas purifying catalyst is capable of maintaining the exhaust gas purification performance by suppressing agglomeration of the noble metal particles even in cases where the ambient temperature is high.
    Type: Application
    Filed: August 2, 2012
    Publication date: September 11, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuyuki Shiratori, Yoshiaki Hiramoto, Haruhiko Shibayama
  • Publication number: 20140250871
    Abstract: An exhaust gas purification device for a general-purpose engine includes a crankcase and a cylinder block provided continuously on an upper portion of the crankcase and inclined to one lateral side of the crankcase. A catalytic converter is provided in an exhaust muffler of the engine. A downstream end of a secondary air introduction pipe is connected to an exhaust pipe upstream of the muffler. A dedicated air filter is connected through a one-way valve to an upstream side of the secondary air introduction pipe. The filter is disposed between the crankcase and a lower surface of the cylinder block. The secondary air introduction pipe is arranged so as to meander on one side of the cylinder block. Accordingly, the device can be employed without increasing an outer size of the engine, and can also securely introduce secondary air into an exhaust system, thereby enhancing an exhaust gas purifying effect.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Sayaka Yasoshina, Ryo Saito, Kenichi Etsunagi
  • Patent number: 8826651
    Abstract: An exhaust system for an internal combustion engine having a first exhaust tract assigned to a first group of cylinders of the internal combustion engine, and a second exhaust tract assigned to a second group of cylinders of the internal combustion engine, the first exhaust tract and the second exhaust tract being coupled to one another by a connecting line. A common bypass line branches off from the connecting line coupling the exhaust tracts.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: September 9, 2014
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Thomas Laube, Erwin Rutschmann
  • Patent number: 8826642
    Abstract: An electronic control device calculates the maximum actual oxygen storage capacity of a catalyst. The gradient of a linear expression formed between the catalyst temperature and the maximum oxygen storage capacity of the catalyst is stored for each degradation level of the catalyst. The gradient can be learned in accordance with the same temperature of the catalyst and the maximum actual oxygen storage capacity. When the maximum actual oxygen storage capacity is calculated, it is revised in accordance with the temperature of the catalyst, a reference temperature, the linear expression, and the learned gradient. The revised maximum oxygen storage capacity which is the maximum oxygen storage capacity when the temperature of the catalyst during the same calculation period is equal to the reference temperature is then calculated. If a response delay is detected in the output of an oxygen sensor, the gradient of the learned linear expression is discarded.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeho Aisaka, Takashi Nakamura, Takuya Matsumoto, Makoto Sato, Hiroshi Sawada, Yasushi Iwazaki, Yusuke Kawamura
  • Patent number: 8828342
    Abstract: An exhaust gas treatment system for treating an exhaust gas. The exhaust gas treatment system includes a first section, a bypass section, and a common second section. The first section may include a first valve and at least one exhaust gas treatment component, such as, for example, a DOC and/or DPF. The bypass section may include a bypass valve and a heater that is configured to elevate the temperature of at least a portion of the exhaust gas. The second section is in fluid communication with the first section and the bypass section and includes a selective catalytic reduction system. Further, exhaust gas may be diverted into the bypass section when the exhaust gas fails to satisfy the threshold condition, so that the heater may elevate the temperature of the passing exhaust gas.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: September 9, 2014
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Matthew Albert Tyo, Bradley Jay Adelman
  • Patent number: 8828343
    Abstract: Catalyst articles comprising palladium and related methods of preparation and use are disclosed. Disclosed is a catalyst article comprising a first catalytic layer formed on a substrate, wherein the first catalytic layer comprises palladium impregnated on a ceria-free oxygen storage component and platinum impregnated on a refractory metal oxide, and a second catalytic layer formed on the first catalytic layer comprising platinum and rhodium impregnated on a ceria-containing oxygen storage component. The palladium component of the catalyst article is present in a higher proportion relative to the other platinum group metal components. The catalyst articles provide improved conversion of carbon monoxide in exhaust gases, particularly under rich engine operating conditions.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: September 9, 2014
    Assignee: BASF Corporation
    Inventors: Xinsheng Liu, Ye Liu, Pascaline Harrison Tran, Keshavaraja Alive, Michael P. Galligan
  • Publication number: 20140245724
    Abstract: Provided are an exhaust purification catalyst which purifies an exhaust gas discharged from an internal combustion engine and in which high catalytic activity at a low temperature and high durability at a high temperature are compatible with each other, and an exhaust emission control device for the internal combustion engine in which the exhaust purification catalyst is used. The exhaust purification catalyst is a catalyst in which a noble metal particle is carried on a surface of a silicon carbide particle. The catalyst is a noble-metal-carrying silicon carbide particle (1) in which a noble metal particle (3) is carried on a surface of a silicon carbide particle (2) in a state of being coated with an oxide layer (4).
    Type: Application
    Filed: August 24, 2012
    Publication date: September 4, 2014
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Masamichi Tanaka, Nobuhiro Hidaka, Katsunori Hanamura
  • Publication number: 20140245725
    Abstract: Fuel efficiency in a combustion engine is increased by treating the fuel in a reaction chamber prior to delivering the fuel into the combustion chamber of the engine. The method includes the step of entraining a stream of exhaust gas to travel upstream through the reactor chamber in a first flow pattern. The method also includes the step of entraining a stream of fuel to travel downstream through the reactor chamber in a second flow pattern, where at least one of the first and second flow patterns comprises a structured turbulent flow.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: Thrival Tech, LLC
    Inventors: Garrett Hill, Scott Lazar, Dustin Stonehouse, Justin Tombe
  • Patent number: 8821820
    Abstract: A process for improving catalytic activity of a copper-promoted zeolitic catalyst with a chabazite structure, the copper-promoted zeolitic catalyst having a temperature-programmed reduction (TPR) signal in a temperature range from 230° C. to 240° C. as examined in a TPR with a test gas having a hydrogen content of 5% by volume, a heating rate of 10 K/min, and a catalyst sample weight containing from 3 to 8 milligrams of copper calculated as metal.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 2, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Michael Seyler, Nicola Soeger, Katja Adelmann, Thomas R. Pauly, Gerald Jeske
  • Patent number: 8820049
    Abstract: A method to control valves in a cylinder operating in a multi-stroke cylinder mode. Valves are controlled to improve engine emissions as operating conditions vary.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: September 2, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Donald J. Lewis
  • Patent number: 8820468
    Abstract: A dump truck includes a cab being located behind an engine compartment in which an engine is enclosed, a body being located behind the cab, and an exhaust aftertreatment device being adapted to purify an exhaust gas from the engine. The exhaust aftertreatment device includes a DPF device being adapted to capture a particulate matter in the exhaust gas and being located on a top of a fender provided alongside the cab, an SCR device being adapted to purify a nitrogen oxide in the exhaust gas and being located between the cab and the body, and a communication pipe through which the DPF device and the SCR device are in communication with each other.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: September 2, 2014
    Assignee: Komatsu Ltd.
    Inventor: Shigeo Sekiya
  • Publication number: 20140237997
    Abstract: A V-type engine includes two exhaust manifolds connected to two cylinder banks. First and second exhaust ports, respectively provided in the two cylinder banks, are disposed at an inner side of V-shaped lines. Each exhaust manifold includes N branch pipes and a collecting pipe, where N is an integer not less than 2. The N branch pipes are respectively connected to N exhaust ports including at least one of the first exhaust ports and at least one of the second exhaust ports. The collecting pipe is disposed adjacent to N cylinders that are aligned in a direction parallel or substantially parallel to a crank axis direction and extends from one end to the other end of the N cylinders.
    Type: Application
    Filed: November 4, 2013
    Publication date: August 28, 2014
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventors: Katsumi OCHIAI, Kouhei NATSUME, Shinichi HOSHIYA
  • Publication number: 20140241964
    Abstract: An oxidation catalyst for treating an exhaust gas produced by a combustion engine, wherein the oxidation catalyst comprises a substrate and a catalyst layer, wherein the catalyst layer comprises: a first support material; a first noble metal; and a second noble metal; wherein the catalyst layer is disposed on a surface of the substrate, and the catalyst layer has a non-uniform distribution of the first noble metal in a direction perpendicular to the surface of the substrate. The oxidation catalyst can be used to oxidise carbon monoxide (CO), hydrocarbons (HCs) and also oxides of nitrogen (NOx) in such an exhaust gas.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 28, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: David BERGEAL, Paul Richard PHILLIPS, Andrew Francis CHIFFEY, John Benjamin GOODWIN
  • Patent number: 8813480
    Abstract: An exhaust purification system of an internal combustion engine is provided with a first NOX selective reduction catalyst which is arranged inside of an engine exhaust passage and which selectively reduces NOX by feed of a reducing agent, a second NOX selective reduction catalyst which is arranged inside of the engine exhaust passage at the downstream side of the first NOX selective reduction catalyst and which selectively reduces NOX by feed of a reducing agent, and a reducing agent feed device which feeds a reducing agent to the first NOX selective reduction catalyst. The system estimates the amount of adsorption of the reducing agent which is adsorbed at the second NOX selective reduction catalyst and prevents the estimated amount of adsorption of the reducing agent from exceeding the allowable value by adjusting the amount of feed of reducing agent from the reducing agent feed device.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinya Hirota
  • Patent number: 8815189
    Abstract: Exhaust systems and components are suitable for use with gasoline engines to capture particulates and to reduce gaseous emissions, where three-way conversion (TWC) catalysts located on a particulate filters are provided. Coated particle filters having washcoat loadings in the range of 1 to 4 g/ft3 result in minimal impact on back pressure while simultaneously providing TWC catalytic activity and particle trapping functionality to meet increasingly stringent regulations such as Euro 6. Sufficient to high levels of oxygen storage components (OSC) are also delivered on and/or within the filter. The filters can have a coated porosity that is substantially the same as its uncoated porosity. The TWC catalytic material can comprise a particle size distribution such that a first set of particles has a first d90 particle size of 7.5 ?m or less and a second set of particles has a second d90 particle size of more than 7.5 ?m.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: August 26, 2014
    Assignee: BASF Corporation
    Inventors: Mirko Arnold, Stephan Siemund, Attilio Siani, Knut Wassermann
  • Patent number: 8815190
    Abstract: A wall-flow filter comprises a catalyst for converting oxides of nitrogen in the presence of a reducing agent, which wall-flow filter comprising an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilized ceria, which catalyst comprising at least one metal, wherein: the at least one metal is present throughout the extruded solid body alone or in combination with: is also present in a higher concentration at a surface of the extruded solid body; is also carried in one or more coating layer(s) on a surface of the extruded solid body; or both.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: August 26, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Ralf Dotzel, Rainer Leppelt, Jörg Werner Münch, Hubert Schedel
  • Patent number: 8813478
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided, including an exhaust gas conduit, a flow-through container of absorbent particles, an electrically heated catalyst (“EHC”) device, a selective catalytic reduction (“SCR”) device, and a control module. The exhaust gas conduit is in fluid communication with, and is configured to receive an exhaust gas from the internal combustion engine. The exhaust gas contains oxides of nitrogen (“NOx”) and water. The flow-through container of absorbent particles is in fluid communication with the exhaust gas conduit and configured to receive the exhaust gas. The flow-through container substantially adsorbs the water from the exhaust gas below a threshold temperature. The EHC device is in fluid communication with the exhaust gas conduit and is configured to receive the exhaust gas. The EHC device is located downstream of the flow through container, and is selectively activated to produce heat.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 26, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Chang H. Kim, Steven J. Schmieg
  • Publication number: 20140230410
    Abstract: A system and method for controlling temperature of a urea reductant to form ammonia for NOx reduction in a selective catalytic reducer coupled to a turbocharged engine exhaust by portioning a flow across the reductant of one or more of the following: a combination of compressed air and ambient air; and/or a combination of the exhaust upstream and downstream the turbine.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 21, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Publication number: 20140230433
    Abstract: A system and method for controlling temperature of a urea reductant to form ammonia for NOx reduction in a selective catalytic reducer coupled to a turbocharged engine exhaust by portioning a flow across the reductant between compressed air and ambient air.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 21, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Patent number: 8806856
    Abstract: Provided is a control apparatus for an internal combustion engine that can favorably achieve compatibility between suppressing deterioration of a catalyst and suppressing progression of rich poisoning thereof when the internal combustion engine has a configuration that performs valve stopping control during a fuel-cut operation. Variable valve operating apparatuses are provided having valve stop mechanisms that can respectively change an operating state of an intake valve and an exhaust valve between a valve operating state and a closed-valve stopped state. When an integrated fuel injection amount is equal to or greater than a predetermined value ? when executing a fuel-cut operation, it is determined that rich poisoning of an upstream catalyst is in a progressed state. In that case, valve stopping control of the intake and exhaust valves is prohibited to thereby supply oxygen to the upstream catalyst.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 19, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norihisa Nakagawa, Takashi Nishikiori, Yasuyuki Shibata, Shinya Misaka
  • Patent number: 8806854
    Abstract: A method for monitoring the capability of a catalytic converter to convert nitrogen monoxide into nitrogen dioxide in the exhaust gas of an internal combustion engine, the catalytic converter being arranged in an exhaust gas duct of the internal combustion engine and the catalytic converter being followed downstream by a collecting particle sensor. It is in this case provided that, in a monitoring cycle, a decrease in the particle loading of the particle sensor during the operation of the internal combustion engine under predetermined operating conditions is taken to conclude an adequate capability of the catalytic converter to convert from nitrogen monoxide to nitrogen dioxide.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 19, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Genssle, Torsten Handler, Tobias Pfister
  • Patent number: 8800269
    Abstract: In a fuel injection system of an internal combustion engine in which a first fuel, which has a property to inhibit the adsorption of exhaust gas components by an exhaust gas purification catalyst, and the second fuel, which has a property not to inhibit the adsorption of the exhaust gas components by the exhaust gas purification catalyst, are able to be selectively used, the present invention has a task to decrease an amount of consumption of the second fuel in a suitable manner. In order to solve this task, the fuel injection system of an internal combustion engine according the present invention is constructed such that the second fuel is first supplied to the internal combustion engine when the exhaust gas purification catalyst is in a cold state, and a change from the second fuel to the first fuel is then made before the exhaust gas purification catalyst subsequently rises in temperature to an activation temperature thereof.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: August 12, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yusuke Nakayama, Toru Kidokoro, Hiroshi Sawada
  • Publication number: 20140216011
    Abstract: A system includes a turbine combustor, a turbine, an exhaust gas compressor, a flow path, and at least one catalytic converter. The turbine is driven by combustion products from the turbine combustor. The exhaust compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor. The flow path leads from the exhaust gas compressor, through turbine combustor, and into the turbine. The catalytic converter is disposed along the flow path.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 7, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Veerappan Muthaiah, Kamlesh Mundra
  • Publication number: 20140216423
    Abstract: Disclosed is an exhaust system part having a high corrosion resistance, an EGR cooler using the exhaust system part, and a method of nitriding the exhaust system part. The exhaust system part made of a stainless steel and having an exhaust gas of an internal combustion engine flow therein, includes an upstream side end portion through which the exhaust gas is introduced, a downstream side end portion through which the exhaust gas is discharged, and a wall portion formed in an annular shape extending in the direction of the exhaust gas flow and disposed between the upstream side end portion and the downstream side end portion, in which a chromium oxide nitride film consisting of CrOxNy is formed on the inner peripheral surface of the wall portion.
    Type: Application
    Filed: May 26, 2011
    Publication date: August 7, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masahiko Mitsubayashi, Keisuke Kadota