Having Imaging And Illumination Means Patents (Class 600/160)
  • Patent number: 8908756
    Abstract: An image transmission apparatus may include a transmission unit that transmits a moving image compressed by lossy compression as first image data to an external apparatus through wireless communication, the transmission unit transmitting image data corresponding to one image in the moving image as second image data, the second image data being image data compressed at a lower compression rate than the lossy compression or not compressed, an instructing unit that outputs a disconnection signal to disconnect the wireless communication in response to an external manipulation, and a control unit that receives the disconnection signal from the instructing unit, the control unit controlling to disconnect the wireless communication in the transmission unit after the transmission of the second image data in the transmission unit has been completed.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: December 9, 2014
    Assignees: Olympus Corporation, Olympus Medical Systems Corp.
    Inventors: Shinya Kawasaki, Takemitsu Honda
  • Publication number: 20140357956
    Abstract: Cardiac ablation catheters and methods of use. In some embodiments the catheter includes at least one camera inside an expandable membrane for visualizing an ablation procedure.
    Type: Application
    Filed: April 8, 2014
    Publication date: December 4, 2014
    Inventors: Amr SALAHIEH, Jonah LEPAK, Emma LEUNG, Brian D. BRANDT, John P. CLAUDE, Claudio ARGENTO, Thilaka SUMANAWEERA, Zak WEST
  • Patent number: 8900133
    Abstract: Novel capsule imaging devices, systems and methods are provided for in vivo imaging applications, such as for gastrointestinal applications. A swallowable video imaging device, such as a capsule, can be used with a light filter for in vivo illumination of a target tissue that has absorbed a previously administered biological probe. The target tissue can be distinguished in images transmitted from the video imaging device. Quantification of the signal intensity of fluorescence can be used to assess how progressed the target tissue may be. The target tissue can be therapeutically treated to shrink or kill the target tissue.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: December 2, 2014
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Douglas R. Morgan, P. Kay Lund, Howard H. Zhang
  • Patent number: 8900127
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900129
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the display screen coupled for data communications to the image sensor, the display screen displaying images of the scanned ear, the display screen positioned on the otoscanner body in relation to the ear probe so that when the ear probe is positioned for scanning, both the display screen and the ear probe are visible to a operator operating the otoscanner; and a data processor configured to construct a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900130
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the image sensor coupled for data communications to a data processor, with the data processor configured to function by inferring, from a tracked position of the ear probe, previously recorded statistics describing typical ear sizes according to human demographics, and currently recorded demographic information regarding a person whose ear is scanned, the actual present position of the ear probe in relation to at least one part of the scanned ear; and providing a warning when the probe moves within a predefined distance from the part of the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900125
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8900126
    Abstract: A device for scanning a body orifice or surface including a light source and a wide angle lens. The light from the light source is projected in a pattern distal or adjacent to the wide angle lens. Preferably, the pattern is within a focal surface of the wide angle lens. The pattern intersects a surface of the body orifice, such as an ear canal, and defines a partial lateral portion of the pattern extending along the surface. A processor is configured to receive an image of the lateral portion from the wide angle lens and determine a position of the lateral portion in a coordinate system using a known focal surface of the wide angle lens. Multiple lateral portions are reconstructed by the processor to build a three-dimensional shape. This three-dimensional shape may be used for purposes such as diagnostic, navigation, or custom-fitting of medical devices, such as hearing aids.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Harris Bergman, Scott Cahall, Giorgos Hatzilias, Karol Hatzilias, David G. Stites
  • Patent number: 8900128
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; wherein the image sensor operates at a video frame rate that is twice a standard video frame rate; a laser light source is strobed during capture by the image sensor of alternate video frames; video frames are captured by the image sensor when only the non-laser video illumination illuminates the scanned ear; and images for constructing 3D images are captured by the image sensor only when the strobed laser light illuminates the scanned ear.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 2, 2014
    Assignee: United Sciences, LLC
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8894280
    Abstract: Embodiments of radiographic imaging systems and/or methods can operate a digital radiography detector in a multiple modes, where characteristics such as an exposure integration time and dark images (e.g., number timing integration time, etc.) for first and second modes are different. The digital radiography detector can be coupled to a memory that can store a first set of one or more calibration maps for the first mode and a second set of one or more calibration maps for the second mode and a processor. In one embodiment, the processor can form a first calibration-corrected exposure image by modifying a first exposure image from the first mode using the first set of calibration maps and a second calibration-corrected exposure image by modifying a second exposure image from the second mode using the second set of calibration maps in combination with calibration maps for the first mode.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: November 25, 2014
    Assignee: Carestream Health, Inc.
    Inventors: Karin Topfer, John W. DeHority
  • Patent number: 8888685
    Abstract: A medical system includes: an endoscope including an insertion portion that can be inserted into a body cavity of a subject, and an image pickup section provided at a distal end portion of the insertion portion; an exclusion section capable of, when the insertion portion is inserted into the body cavity of the subject, excluding a tissue existing around the distal end portion; a computing section that obtains luminance information relating to a luminance of an image picked up by the image pickup section, and determines whether or not the obtained luminance information meets a predetermined condition; a drive section that if a determination result that the luminance information does not meet the predetermined condition is provided, continues an operation to drive the exclusion section, and if a determination result that the luminance information meets the predetermined condition is provided, stops the operation to drive the exclusion section.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 18, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Yoshitaka Umemoto, Yasuhiro Okamoto
  • Patent number: 8888682
    Abstract: A wireless image acquisition system includes an image acquisition apparatus configured to transmit acquired image information by radio waves, and an image receiving unit configured to receive and display the image information transmitted from the image acquisition apparatus. A display unit of the image receiving unit displays wireless communication setting information. An image acquisition unit of the image acquisition apparatus captures the wireless communication setting information, and a communication setting unit makes wireless communication setting of the image acquisition apparatus based on the captured wireless communication setting information.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: November 18, 2014
    Assignees: Olympus Corporation, Olympus Medical Systems Corp.
    Inventors: Shinya Kawasaki, Koichi Niida
  • Publication number: 20140336464
    Abstract: Devices, systems, and methods for facilitating access to and visualization of the pancreaticobiliary system are disclosed. In particular, the present disclosure relates to devices used to expand and/or maintain the papilla opening to facilitate access therethrough, e.g., to visualize, examine, diagnose, and/or treat the bile duct and pancreatic ducts. The devices may include an elongate body, an expansion element having a compressed configuration and an expanded configuration, and an outer sheath.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 13, 2014
    Applicant: Boston Scientific Scimed, Inc.
    Inventor: Laura E. FIRSTENBERG
  • Patent number: 8870750
    Abstract: In an imaging method for medical diagnostics and a device operating according to this method, during an endoscopic examination of a body region of a patient with an endoscope, an image is generated with a non-endoscopic imaging method and the image field of the endoscope is determined and rendered in the image (28) with accurate position and orientation.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 28, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Fehre, Rainer Kuth
  • Patent number: 8870757
    Abstract: In a method and a device to detect information about the three-dimensional structure of the inner surface of a body cavity of a patient with an endoscopy capsule introduced into said body cavity, a first partial region of the inner surface of the body cavity is illuminated with at least one light source arranged in the endoscopy capsule and an image of a second partial region that is illuminated by the first partial region and differs from the first partial region. The three-dimensional structure of the second partial region is known, and the second partial region is acquired with at least one camera arranged in the endoscopy capsule. Information about the three-dimensional structure of the first partial region is derived using the intensity values in this image.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 28, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Elli Angelopoulou, Aleksandar Juloski, Rainer Kuth, Philip Mewes
  • Publication number: 20140303441
    Abstract: A scanning endoscope system includes: a fiber that guides illuminating light from a light source; a first actuator provided on a side of the fiber and expands/contracts according to an applied voltage, thereby swinging the fiber; a second actuator disposed at a position facing the first actuator across the fiber and expands/contracts according to an applied voltage, thereby swinging the fiber; a drive signal output section applying a first voltage for setting a reference position of the fiber where the first actuator is in a contracted state, to the first actuator, and applying a second voltage for setting the reference position of the fiber where the second actuator is in a contracted state, to the second actuator; and a controller that in order to change the reference position of the fiber, controls the drive signal output section to change at least one of the first voltage and the second voltage.
    Type: Application
    Filed: May 5, 2014
    Publication date: October 9, 2014
    Applicant: OLYMPUS MEDICAL SYSTEMS CORP.
    Inventors: Yuji SAKAI, Yoshinari OKITA
  • Publication number: 20140302453
    Abstract: A method for producing an endoscope with an optical sensor arrangement with a distal side and a proximal side and with an electrical connection between the distal side and the proximal side. The optical sensor arrangement is mounted directly on the electrical conductor, The main feature of the invention relates to the fact that the electrical contacts, on the optical sensor, are designed so that they are arranged in a single row and that the contacts (11, 21), in this single row, are arranged with a period that corresponds to the period of the single wires found in a contact area of the electrical connection.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventor: Martin WANY
  • Patent number: 8854445
    Abstract: An endoscope apparatus includes an image pickup section equipped with a color separation section that picks up an image of returning light from a subject illuminated by an illumination section, an emphasis processing section that performs emphasis processing on sharpness of an image signal generated from the output signal of the image pickup section and a storage section that stores information for modifying processing contents of the emphasis processing, wherein the storage section stores information for setting image signals to be subjected to emphasis processing in first and second observation modes in which images are picked up under illumination of white light and narrow band light respectively to a luminance signal and a color difference signal, and the emphasis processing section performs emphasis processing on the luminance signal with a greater emphasis characteristic than the color difference signal over an entire frequency domain.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: October 7, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventor: Kenji Yamazaki
  • Publication number: 20140296643
    Abstract: An image capturing assembly for use in an endoscope includes a manifold with a base and a casing extending outward from the base, a partially enclosed housing adapted to physically attach to the manifold, a foldable LED carrier substrate capable of carrying a plurality of LEDs, a flexible optical carrier substrate capable of carrying a plurality of camera sensors, and a tip cover adapted to cover the manifold, housing, LED carrier substrate, and optical carrier substrate. The manifold includes at least one continuous channel extending throughout its length. The foldable LED carrier substrate includes a central, forward facing portion, adapted to carry at least one illuminator for a front viewing element, and a pair of arms extending proximally from the central portion. Each arm includes at least one foldable protrusion adapted to carry an illuminator for a side viewing element.
    Type: Application
    Filed: May 6, 2014
    Publication date: October 2, 2014
    Applicant: EndoChoice, Inc.
    Inventors: Avi Levy, Moshiko Levi, Golan Salman, Amram Aizenfeld, Stephan Wieth, Jeruham Avron, Robby Dascalo, Mark Gilreath, Leonid Krivopisk, Yaniv Kirma, Victor Levin
  • Patent number: 8834488
    Abstract: The present invention relates to magnetically coupleable robotic surgical devices. More specifically, the present invention relates to robotic surgical devices that can be inserted into a patient's body and can be positioned within the patient's body using an external magnet.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 16, 2014
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Mark Rentschler, Jason Dumpert, Stephen Platt, Dmitry Oleynikov
  • Patent number: 8834359
    Abstract: An endoscope 100 includes a first light source 45 that emits white illumination light, a second light source 47 that emits narrow-band light and an imaging section that has an imaging device 21 having plural detection pixels and images a region to be observed. The imaging section is caused to output a captured image signal including both a return light component of the white illumination light from the region to be observed by and a return light component of the narrow-band light the white illumination light. From the captured image signal, the return light component of the narrow-band light is selectively extracted, and a brightness level of the extracted return light component of the narrow-band light is changed by changing a light amount of light emitted from the second light source 47.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 16, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Satoshi Ozawa, Azuchi Endo, Akihiko Erikawa, Takayuki Iida
  • Patent number: 8827922
    Abstract: An endoscope apparatus according to the present invention includes an insertion portion having a distal end portion and at least two channels; an optical observation system provided on one surface of the distal end portion so as to face an axial direction different from a direction of an insertion axis X of the insertion portion; a first channel opening provided on one surface of the distal end portion near the optical observation system; an ultrasound transducer array provided on the one surface of the distal end portion and having a scanning surface Z parallel to the insertion axis; and a second channel opening provided on a proximal end side of the ultrasound transducer array.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: September 9, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Hidemichi Aoki, Sunao Sato
  • Publication number: 20140249373
    Abstract: An ingestible image scanning pill captures high resolution images of the GI tract as it passes through. Images communicated externally have exact location determination. Image processing software discards duplicate information and stitches images together, line scan by line scan, to replicate a complete GI tract as if it were stretched out in a straight line. A fully linear image is displayed to a medical professional as if the GI tract had been stretched in a straight line, cut open, laid flat out on a bench for viewing—all without making any incisions in a live patient.
    Type: Application
    Filed: November 6, 2013
    Publication date: September 4, 2014
    Applicant: Innurvation, Inc.
    Inventors: Michael ARNESON, William R. Brandy, Kevin J. Powell, Kenneth E. Salsman, Devon Tirpack
  • Patent number: 8821382
    Abstract: An image pickup unit includes a board to which an image pickup device is electrically connected, the board is provided with a first terminal portion which includes a plurality of terminals and is used when a first endoscope is configured, and a second terminal portion which includes a plurality of terminals and is used when a second endoscope is configured, a folding portion is provided between the first terminal portion and the second terminal portion of the board, when the board is used as an image pickup unit of the second endoscope, the board is folded at the folding portion, and a signal transmission member is connected to the second terminal portion, and at least one of a terminal size and a space between terminals in the second terminal portion is set to be larger than at least one of a terminal size and a terminal space in the first terminal portion.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: September 2, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventor: Hiroaki Kagawa
  • Patent number: 8821398
    Abstract: A system includes a capsule body having a casing introduced into a subject to perform, in liquid, examination of or treatment on the interior of the subject, the casing containing a permanent magnet, a mass of the casing excluding the magnet being set to be less than a product of a volume of the casing and a density of the liquid; a magnetic field generator that generates a magnetic attraction for the magnet to guide the capsule body; and a magnetic field generation device that controls the magnetic field generator to generate the magnetic attraction by setting a maximum value of the generated magnetic attraction vertically upward to the capsule body, to be equal to a maximum value of the generated magnetic attraction vertically downward to the capsule body, and by setting the maximum values to be less than a value obtained by multiplying a mass of the magnet by a gravitational acceleration.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 2, 2014
    Assignees: Olympus Medical Systems Corp., Siemens Aktiengesellschaft
    Inventors: Hironao Kawano, Johannes Reinschke, Wolfgang Schmidt
  • Patent number: 8825143
    Abstract: A medical apparatus includes a storing section in which information concerning a drug movement in a living body is stored for each of types of a plurality of fluorescent drugs, an arithmetic processing section that acquires, based on the information stored in the storing section, information concerning a target region to which a fluorescent drug is administered, information concerning a method of administering the fluorescent drug to the target region, and information indicating start of administration of the fluorescent drug, information concerning diagnosis start timing, an image pickup section, a position information acquiring section that acquires position information of the image pickup section, and a light source control section that stops, at least from the administration start timing to the diagnosis start timing, irradiation of excitation light and irradiates the excitation light based on the diagnosis start timing and the position information.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 2, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Kei Kubo, Hideyuki Kugimiya
  • Patent number: 8814783
    Abstract: An illumination lens to be disposed in a front end of a light guide of an endoscope includes an entrance face and an exit face. The entrance face has positive power. The exit face has positive power. The following Expression (1) is satisfied while the following Expression (2) is satisfied. 1.2<1/r1×?<1.8,??(1) 0.24<1/r2×?<0.96,??(2) where ? [mm] is a diameter of the lens, r1 [mm] is a curvature radius of the entrance face, and r2 [mm] is a curvature radius of the exit face.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: August 26, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Ryo Kitano
  • Publication number: 20140235948
    Abstract: A method for imaging an object with resolution that exceeds the number of spatial modes per polarization in a multimode fiber is disclosed. In some embodiments, the object is interrogated with a plurality of non-spot-sized intensity patterns and the optical power reflected by the object is detected for each intensity pattern. The plurality of optical power values is then used in a non-local reconstruction based on an optimization approach to reconstruct an image of the object, where the image has resolution up to four times greater than provided by prior-art multimode fiber-based imaging methods.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Reza Nasiri Mahalati, Ruo Yu Gu, Joseph M. Kahn
  • Patent number: 8807801
    Abstract: An endoscopic imaging device is described that achieves longitudinal axis (z-axis) scanning into a tissue or sample, using a piezoelectric microactuator. In some configurations, additional lateral (xy-plane) scanning is also achieved, to allow for the creation of full three-dimensional imaging, ex vivo or in vivo. The techniques may be used to image and diagnosis allergic rhinitis and eosinophilic esophagitis in tissue.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Kenn Oldham, Thomas D. Wang, Zhongyao Liu, Jing Yong Ye
  • Patent number: 8808171
    Abstract: An endoscopy device includes several light guides (1, 2, 3), each light guide having one or more optical fibers. The light guides are coupled with a sweeping system (4) arranged to direct an excitation light beam in alternation in one of the fibers of the guides from the proximal end of the guide including the one of the fibers. In this way, the proximal ends of the guides may make use of the same sweeping system, whereas the distal ends of the guides may be installed simultaneously in different zones of interest of an object or animal (10) under study for an almost simultaneous observation of the zones of interest. The invention also relates to an endoscopy method used in a device according to the invention. A device and a method according to the invention may be applied to quasi-simultaneous reflectance, fluorescence, multi-photon imaging of several areas of interest.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: August 19, 2014
    Assignee: Mauna Kea Technologies
    Inventors: Francois Lacombe, Bertrand Viellerobe, Nicolas Boularot, Francois Doussoux, Aymeric Perchant
  • Patent number: 8812086
    Abstract: A surgical imaging device and method configured to be inserted into a surgical site. The surgical imaging device includes a plurality of prongs. Each one of the prongs has an image sensor mounted thereon. The image sensors provide different image data corresponding to the surgical site, thus enabling a surgeon to view a surgical site from several different angles. The prongs may be moveable between a first position, suitable for insertion though a small surgical incision, and a second position, in which the prongs are separated from each other. In addition, the prongs may be bendable.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: August 19, 2014
    Assignee: Covidien LP
    Inventor: Michael P. Whitman
  • Publication number: 20140228643
    Abstract: A method for implanting an electrode to an endopelvic portion of a pelvic nerve includes the steps of: laparoscopically forming a first entry through the abdomen; introducing an applicator assembly through a second entry, the applicator assembly comprising a flexible introducer sleeve and a curved applicator tool disposed in the sleeve; manipulating a proximal end of the curved applicator tool to position a distal end of the curved applicator tool at an identified exposed nerve; and placing an electrode lead through the applicator assembly to the nerve.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 14, 2014
    Inventor: Marc Possover
  • Patent number: 8801606
    Abstract: A method of monitoring a condition within a patient's body includes locating a scanned beam imaging unit at an imaging location for a period of time to observe and characterize a portion of the patient's anatomy over at least a portion of the period of time. The scanned beam imaging unit is located at the imaging location using a locating instrument. The locating instrument is removed from the patient's body with the scanned beam imaging unit remaining at the imaging location. With the scanned beam imaging unit at the imaging location, a beam of light is scanned across the portion of the anatomy and light is received from the portion of the anatomy. A video image of the portion of the anatomy is produced from imaging data generated using detected light received from the portion of the anatomy.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: August 12, 2014
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Jane A. Sheetz, Jere J. Brophy, David C. Youmans, Paul G. Ritchie
  • Patent number: 8801255
    Abstract: An endoscope includes: a distal end rigid portion that configures a distal end portion of an insertion portion of an endoscope and has a through hole; an LED ceramic substrate including an LED light source mounted on a distal end side thereof, and arranged in the through hole so as to emit light from the through hole; an LED cable configured to be inserted in the insertion portion of the endoscope and to supply electric power to the LED light source; a ceramic cutout portion that configures a proximal end side of the LED ceramic substrate, and allows a conductive pattern for electrically connecting the LED light source and the LED cable to be exposed from inside the LED ceramic substrate and connected to the LED cable; and a reinforcement member having rigidity and fixed to the LED ceramic substrate and configured to cover the ceramic cutout portion.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: August 12, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventor: Akira Kudo
  • Publication number: 20140221741
    Abstract: An in-vivo self-assembly capsule system is disclosed, where the in-vivo capsule system comprises a first primary capsule, at least one second capsule, and a self-connection means for connecting the first primary capsule and said at least one second capsule by providing holding force when the first primary capsule and said at least one second capsule are in contact in human GI tract. The self-connection means comprises an interlocking means disposed on the first primary capsule and said at least one second capsule. The interlocking means may correspond to hooks disposed on one connecting side and loops disposed on another connecting side, or hooks disposed on both connecting sides. The interlocking means may also correspond to a first magnet and an interaction piece affixed to two corresponding capsules respectively, and the interaction piece corresponds to a second magnet or a ferromagnetic component.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Applicant: CAPSO VISION, INC.
    Inventors: Kang-Huai Wang, Gordon C. Wilson
  • Patent number: 8790251
    Abstract: In a special light mode, first to fourth special images are captured under first to fourth special light being narrow band light. A brightness ratio calculator extracts a blood vessel area containing a blood vessel from each special image. The brightness ratio calculator calculates first to fourth brightness ratios from the special images on every pixel within the blood vessel area. A depth and hemoglobin index calculator calculates the depth of the blood vessel and a hemoglobin index corresponding to the first and second brightness ratios, based on a correlation between the depth of the blood vessel and the hemoglobin index stored in advance. A depth and oxygen saturation calculator calculates an oxygen saturation level corresponding to the third and fourth brightness ratios, based on a correlation between the depth of the blood vessel and the oxygen saturation level stored in advance.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: July 29, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Hiroshi Yamaguchi
  • Patent number: 8790253
    Abstract: A light source device includes a first light source, a second light source having an emission wavelength that is different from the first light source, and a phosphor that is disposed to be distant from the first light source and the second light source and absorbs light in a predetermined excitation wavelength band to emit fluorescence. The phosphor is disposed on an emission light optical path that is shared by the first light source and the second light source. The emission wavelength of the first light source is in the predetermined excitation wavelength band. The emission wavelength of the second light source is outside of the predetermined excitation wavelength band.
    Type: Grant
    Filed: June 13, 2009
    Date of Patent: July 29, 2014
    Assignee: Fujifilm Corporation
    Inventors: Hiroshi Sunagawa, Akira Mizuyoshi
  • Patent number: 8785833
    Abstract: An image pickup system that performs image pickup control of a rolling shutter type such that an all line exposure period and a non-all line exposure period are generated and controls a light source of illumination light to increase or decrease, in a first light adjustment mode, while maintaining a light amount of the illumination light in a first period during the all line exposure period at a predetermined level, a light amount of the illumination light during a second period including the all line exposure period other than the first period and the non-all line exposure period compared with an immediately preceding second period.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: July 22, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Yusuke Yabe, Tomoya Takahashi
  • Patent number: 8777846
    Abstract: An endoscopic imaging device for endoscopy in a body vessel is disclosed. The device comprises an annular illumination tube comprising an annular illumination fiber for illuminating a body vessel during endoscopy. The device further includes a first imaging tube comprising a first imaging fiber for gross examination and navigation through the body vessel. The first imaging fiber is disposed within the annular illumination tube. The device further comprises a second imaging tube comprising a second imaging fiber for cellular imaging. The second illumination fiber is disposed adjacent the first imaging tube and within the annular illumination tube.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: July 15, 2014
    Assignee: Purdue Research Foundation
    Inventors: Joseph P. Robinson, Silas J. Leavesley, Peng Xi
  • Patent number: 8780445
    Abstract: By suitably correcting a secondary spectrum, a clear, bright optical image is obtained. Provided is a rigid-scope optical system including: an objective optical system; and at least one relay optical systems that are formed of positive front groups, middle groups, and back groups in this order from an entrance side and that reimage an optical image imaged at imaging planes at the entrance side onto imaging planes at an exit side, wherein axial chromatic aberration between two wavelengths is corrected by an optical system other than the diffractive optical element, and axial chromatic aberration between the two wavelengths and another wavelength is corrected by the diffractive optical element.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 15, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventor: Takahiro Inoue
  • Patent number: 8773521
    Abstract: The distal end of an inserted portion, having a simple structure, is reduced in diameter, loss of light incident from a body cavity is reduced, and light from two different directions is observed simultaneously and in a separated fashion.
    Type: Grant
    Filed: November 22, 2007
    Date of Patent: July 8, 2014
    Assignee: Olympus Corporation
    Inventors: Toshiaki Watanabe, Ryo Karasawa
  • Patent number: 8771178
    Abstract: An endoscope 100 includes a first light source 45 that emits white illumination light, a second light source 47 that emits narrow-band light and an imaging section that has an imaging device 21 having plural detection pixels and images a region to be observed. The imaging section is caused to output a captured image signal including both a return light component of the white illumination light from the region to be observed by and a return light component of the narrow-band light the white illumination light. From the captured image signal, the return light component of the narrow-band light is selectively extracted, and a brightness level of the extracted return light component of the narrow-band light is changed by changing a light amount of light emitted from the second light source 47.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: July 8, 2014
    Assignee: Fujifilm Corporation
    Inventors: Satoshi Ozawa, Azuchi Endo, Akihiko Erikawa, Takayuki Iida
  • Patent number: 8764643
    Abstract: A system and method for imaging tissue autofluorescence through a video endoscope is described, comprising a light source capable of providing both ultraviolet light capable of inducing tissue autofluorescence and visible light which induces little or no autofluorescence, an optical system to deliver both wavelength bands to the tissue with the same apparent spatial and angular intensity distribution, a means for digitally acquiring the resulting, visible fluorescence and visible reflectance images using a single imaging detector at the distal tip of the endoscope and a means for digitally processing said images to generate a final, false-color image for display which indicates regions of tissue dysplasia. This system can either be added on to an existing video endoscope or integrated into its structure. The combined system can be electronically switched between normal white light imaging and fluorescence imaging.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: July 1, 2014
    Assignee: Hoya Corporation
    Inventor: Stephen F. Fulghum
  • Publication number: 20140171742
    Abstract: A surgical instrument including a handle assembly, an elongated body portion, a head portion and an elongated channel. The elongated body portion extends distally from the handle assembly. The head portion is disposed adjacent a distal end of the elongated body portion and includes an anvil assembly and a shell assembly. The elongated channel includes a proximal opening and a distal opening. The proximal opening is disposed distally of a proximalmost end of the handle assembly and proximally of the shell assembly. The distal opening is disposed on the shell assembly.
    Type: Application
    Filed: February 19, 2014
    Publication date: June 19, 2014
    Applicant: Covidien LP
    Inventors: Danyel Racenet, Thomas Wenchell, Keith L. Milliman
  • Patent number: 8753265
    Abstract: An encapsulated endoscope system in accordance with the present invention comprises: an encapsulated endoscope that rotates to develop a thrust; a controller that moves the encapsulated endoscope in an intended direction of advancement; an imaging unit incorporated in the encapsulated endoscope; and an image processing unit that receives image data sent from the imaging unit, and produces an image, which results from rotation of the received image data, according to the rotational phase of the encapsulated endoscope.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: June 17, 2014
    Assignee: Olympus Corporation
    Inventors: Akio Uchiyama, Hironobu Takizawa, Takeshi Yokoi, Hitoshi Mizuno
  • Patent number: 8747299
    Abstract: A method and device are proposed for carrying out ophthalmologic analysis especially for the pathological evaluation of the Schlemm's canal that has been exposed through a scleral flap and into which an micro catheter is inserted that also includes a medium line by which medium is brought into the lumen of the Schlemm's canal for dilating the lumen and a light guide for illumination such that analog images of the dilated lumen, the inner wall of the trabecular tissue and the veins of the aqueous humor can be taken by a camera and transmitted to an outside monitor for visual evaluation.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: June 10, 2014
    Assignee: Grieshaber Ophtalmic Research Foundation
    Inventor: Hans R. Grieshaber
  • Patent number: 8743118
    Abstract: A medical image display device provided with storage means for storing a sliced image of an object to be examined obtained by a medical image diagnostic apparatus, extraction means for extracting a center line passing through the region of a hollow organ of the object and the center thereof from the sliced image stored by the storage means, and 3-dimensional image generation means for generating a virtual 3-dimensional image of the inner wall of the hollow organ seen from a viewpoint while sequentially moving the viewpoint from one end to the other end of the center line is provided, with means for changing the direction in which the virtual 3-dimensional image seen from the viewpoint is generated to the direction of bending curvature of the hollow organ according to the bending curvature thereof.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: June 3, 2014
    Assignee: Hitachi Medical Corporation
    Inventor: Takashi Shirahata
  • Patent number: 8740777
    Abstract: A body-insertable apparatus includes a light-receiving unit that includes light-receiving elements each having a receiving wavelength spectrum; light-emitting units including a near ultraviolet light source and including a yellow light source; a selection unit that can select, from among the light-emitting units, light-emitting units corresponding respectively to the near ultraviolet and the yellow light sources; an image creating unit creating a normal-light image or creating a special-light image; a transmitting unit transmitting the normal-light image or the created special-light image; and a control unit controlling driving of the light-receiving elements in accordance with selection performed by the selection unit.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: June 3, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Tetsuo Minai, Shinsuke Tanaka, Akio Uchiyama
  • Patent number: 8740778
    Abstract: In an electronic endoscope, an insert section has a beam splitter, a CCD, and an EMCCD at its distal end portion. When white light being normal light is applied to an internal body portion, the reflected white light is incident on the CCD through the beam splitter, and a normal image is produced. When the internal body portion is irradiated with special light being excitation light, weak autofluorescence is emitted from specific tissue of the internal body portion. The weak autofluorescence is incident on the EMCCD through the beam splitter. The EMCCD uses an avalanche multiplication effect in its electron multiplier. The EMCCD multiplies signal charge produced from the weak autofluorescence by the electron multiplier, and outputs a high level signal.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: June 3, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Jin Murayama
  • Patent number: 8734333
    Abstract: A light source device emits normal illumination light and special illumination light interchangeably at a charge-storage time of an imaging device. A DRP is reconfigurable between a normal image producing circuit and a special image producing circuit. A CPU instructs the reconfiguration of the DRP when detecting that a vertical synchronization signal from a drive circuit falls to zero level. The DRP gains an access to a configuration memory to load circuit information of the normal or special image producing circuit. According to the circuit information loaded, the DRP changes functions and interconnection of processor elements.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: May 27, 2014
    Assignee: Fujifilm Corporation
    Inventor: Hiroshi Murakami