Output Controlled By Sensor Responsive To Body Or Interface Condition Patents (Class 607/62)
  • Publication number: 20140194951
    Abstract: An electrical stimulation apparatus and an electrical stimulation method are provided. The electrical stimulation apparatus may include an electrode unit, a measurement unit and a stimulation unit. The electrode unit is used for contacting a tissue of interest (target tissue). The measurement unit is coupled to the electrode unit. The measurement unit measure a tissue characteristic of the target tissue. The stimulation unit is coupled to the measurement unit and the electrode unit. The stimulation unit stimulates the target tissue through the electrode unit by using an electrical stimulation signal, and the stimulation unit determines an amount of charge of the electrical stimulation signal according to the tissue characteristic measured by the measurement unit.
    Type: Application
    Filed: March 27, 2013
    Publication date: July 10, 2014
    Applicant: Industrial Technology Research Institute
    Inventors: Cihun-Siyong Gong, Muh-Tian Shiue
  • Patent number: 8774923
    Abstract: A closed loop Deep Brain Stimulation (DBS) system constituted of: a physiological sensor; a multi-electrode DBS lead; an adaptive control system in communication with the physiological sensor; and an implantable pulse generator (IPG) responsive to the adaptive control system, the adaptive control system comprising a learning module operable to learn to find the optimal stimulation parameters, classify and associate patient conditions responsive to the physiological sensor with optimal stimulation parameters in a plurality of patient conditions. The adaptive DBS device control system learns to deliver the optimal stimulation parameters based on Watkins and Dayan Q learning recursive formula, the closed loop adaptive DBS control system thus finds the optimal stimulation parameters online.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 8, 2014
    Assignee: Sorin CRM SAS
    Inventor: Rami Rom
  • Patent number: 8774934
    Abstract: A temperature sensor for detecting heating of at least one electrode pole of a temporarily or permanently implantable electrode line or a similar implant having at least one elongated electrical conductor which is connected to at least one electrode pole. The temperature sensor has an impedance detecting unit or is connected to one and is configured for evaluating an electrode pole impedance detected by the impedance detecting unit in such a manner that the evaluation takes place with respect to a temperature-dependent feature of the electrode impedance. The impedance detecting unit is electrically connected to the at least one electrode pole or is configured and arranged to be electrically connected to the at least one electrode pole.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 8, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Patent number: 8774925
    Abstract: Systems and methods of conducing a conditioning modulation of pain perception are disclosed. The system includes a power source, an impulse generator, a controller and at least one electrode for the delivery of a therapeutic stimulation.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 8, 2014
    Inventor: David Yarnitsky
  • Publication number: 20140188194
    Abstract: The article is a support to which an electrode pair, a positive and corresponding negative electrode, is attached. Leads are electrically attached to each of the positive and negative electrodes, wherein each lead has an insulated coating. A controller is electrically attached to the leads for delivering monophasic or biphasic electrical stimulation at a single frequency. A power supply is electrically connected to the controller, and may be attached to the support. The article may be a sock, a glove, a harness or an insole.
    Type: Application
    Filed: December 16, 2013
    Publication date: July 3, 2014
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Eric Anthony Schepis, Matthew John Valaskey, Shawn Jeffery Sullivan, Martha Lillian Tate, Kaiyuan Yang, Martin S. Shamis, WonYeong Sohn
  • Patent number: 8768469
    Abstract: A method and apparatus for treating a condition associated with impaired blood pressure and/or heart rate in a subject comprising applying an electrical treatment signal, wherein the electrical treatment signal is selected to at least partially block nerve impulses, or in some embodiments, to augment nerve impulses.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: July 1, 2014
    Assignee: EnteroMedics Inc.
    Inventors: Katherine S. Tweden, Richard R. Wilson, Mark B. Knudson, Dennis Dong-Won Kim, Deepak Bhole
  • Patent number: 8768484
    Abstract: A multichannel vestibular prosthesis includes a sensor system and a microcontroller configured to communicate with the sensor system to receive sensor signals from the sensor system while in operation. The microcontroller is configured to provide control signals in response to the sensor signals. The multichannel vestibular prosthesis also includes a neuroelectronic interface integrated circuit configured to communicate with the microcontroller to receive the control signals, and a plurality of electrodes electrically connected to the neuroelectronic interface integrated circuit. The neuroelectronic interface integrated circuit includes a digital controller configured to communicate with the microcontroller, a plurality of digital-to-analog converters configured to communicate with the digital controller, and a plurality of analog current control circuits, each constructed to communicate with a respective one of the plurality of digital-to-analog converters.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 1, 2014
    Assignee: The Johns Hopkins University
    Inventors: Charles Coleman Della Santina, Andreas Andreou, Zaven Kalayjian, Gene Fridman, Bryce Chiang, Julius Georgiou
  • Publication number: 20140180361
    Abstract: A neurostimulator device for use with groups (e.g., more than four groups) of electrodes. The neurostimulator may include a stimulation assembly configured to deliver different stimulation to each of the groups. The neurostimulator may also include at least one processor configured to direct the stimulation assembly to deliver stimulation to the groups. The stimulation delivered to at least one of the groups may include one or more waveform shapes other than a square or rectangular wave shape. The processor may receive data from one or more sensors and use that data to modify the stimulation delivered. The neurostimulator may be configured to communicate with an external computing device. The neurostimulator may send data to and/or receive data and/or instructions from the computing device. The computing device may use information collected by one or more sensors to at least partially determine stimulation parameters to communicate to the neurostimulator.
    Type: Application
    Filed: March 26, 2012
    Publication date: June 26, 2014
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Johnathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchruch, Douglas J. Jackson, Nicholas A. Terrafranca, JR.
  • Publication number: 20140180364
    Abstract: A method, system, and apparatus for providing a stimulation signal comprising a variable ramping portion using an implantable medical device (IMD). The first electrical comprises a first ramping portion. The first ramping portion comprises a first parameter and having a first value. The first electrical signal is applied to a target location of the patient's body. A second electrical signal comprising a second ramping portion is generated. The second ramping portion comprises the first parameter having a second value that is different from the first value. The second electrical signal is applied to a target location of the patient's body.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: CYBERONICS, INC.
    Inventor: Randolph K. ARMSTRONG
  • Publication number: 20140180367
    Abstract: A method and system of providing therapy to a patient using electrodes implanted adjacent tissue. The method comprises regulating a first voltage at an anode of the electrodes relative to the tissue, regulating a second voltage at a cathode of the electrodes relative to the tissue, and conveying electrical stimulation energy between the anode at the first voltage and the cathode at the second voltage, thereby stimulating the neural tissue. The system comprises a grounding electrode configured for being placed in contact with the tissue, electrical terminals configured for being respectively coupled to the electrodes, a first regulator configured for being electrically coupled between an anode of the electrodes and the grounding electrode, a second regulator configured for being electrically coupled between an anode of the electrodes and the grounding electrode, and control circuitry configured for controlling the regulators to convey electrical stimulation energy between the anode and cathode.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: David K.L. Peterson
  • Patent number: 8761905
    Abstract: Methods, apparatus, and systems are provided to stimulate multiple sites in a heart. A controller senses electrical activity associated with sinus rhythm of the heart. A signal generator is configured to generate an electrical signal for stimulating the heart. Based on the electrical signal, a distributor circuit then distributes the stimulating signals, such as pacing pulses, to a heart. The distributor circuit may vary the delay time between stimulating signals, inhibit a stimulating signal, trigger application of a stimulating signal, or vary the characteristics, such as the pulse width and amplitude, of a stimulating signal.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: June 24, 2014
    Assignee: Mirowski Family Ventures, L.L.C.
    Inventor: Morton M. Mower
  • Publication number: 20140171822
    Abstract: A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Medtronic, Inc.
    Inventors: Richard J. O'Brien, John K. Day, Paul F. Gerrish, Michael F. Mattes, David A. Ruben, Malcolm K. Grief
  • Patent number: 8755901
    Abstract: The disclosure is directed towards posture-responsive therapy. To avoid interruptions in effective therapy, an implantable medical device may include a posture state module that detects the posture state of the patient and automatically adjusts therapy parameter values according to the detected posture state. A system may include an implantable medical device that delivers therapy to a patient according to a set of therapy parameter values while the patient occupies a first posture state, a user interface that receives patient input associating one or more of the therapy parameter values with a second posture state different from the first posture state, and a processor that automatically defines therapy for delivery to the patient when the patient occupies the second posture state based on the associated therapy parameter values.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: June 17, 2014
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Shyam Gokaldas, Rajeev Sahasrabudhe
  • Publication number: 20140163649
    Abstract: Devices and methods of use are described for identification, treatment, and/or management of heart failure and/or associated conditions. An exemplary device may include a first fluid status monitoring circuit configured to monitor a first fluid status indicator of a pulmonary fluid status associated with pulmonary edema, a second fluid status monitoring circuit configured to monitor a separate and different second fluid status indicator of a non-pulmonary fluid status, and a controller coupled to the first and second fluid status monitoring circuits, and a therapy circuit coupled to the controller. The controller is configured to use information about the first and second fluid status indicators to determine a therapy control signal to control a therapy, and the therapy circuit is configured to provide therapy in response to the therapy control signal to adjust at least one of the pulmonary fluid status or the non-pulmonary fluid status.
    Type: Application
    Filed: December 27, 2013
    Publication date: June 12, 2014
    Applicant: CVRx, Inc.
    Inventors: Dimitrios Georgakopoulos, Eric Grant Lovett
  • Publication number: 20140163647
    Abstract: Methods and related systems for modulating neural activity by cyclical blocking of conduction in peripheral neural structures with electrical blocking stimuli are disclosed. In an aspect, neural activity is blocked cyclically with an electrical blocking stimulus source implanted adjacent a nerve. In an aspect, a conduction block is produced in a sensory nerve. Neural modulation may be used, for example, to modulate an immune or inflammatory response or process.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 12, 2014
    Inventors: Ralph G. Dacey, JR., Gregory J. Della Rocca, Colin P. Derdeyn, Joshua L. Dowling, Eleanor V. Goodall, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Michael A. Smith, Lowell L. Wood, JR., Victoria Y. H. Wood, Gregory J. Zipfel
  • Publication number: 20140163398
    Abstract: A system comprising implantable device, the implantable medical device including an intrinsic cardiac signal sensor, an impedance measurement circuit configured to apply a specified current to a transthoracic region of a subject and to sample a transthoracic voltage resulting from the specified current, and a processor coupled to the intrinsic cardiac signal sensor and the impedance measurement circuit. The processor is configured to initiate sampling of a transthoracic voltage signal in a specified time relation to a fiducial marker in a sensed intrinsic cardiac signal, wherein the sampling attenuates or removes variation with cardiac stroke volume from the transthoracic voltage signal, and determine lung respiration using the sampled transthoracic voltage signal.
    Type: Application
    Filed: February 13, 2014
    Publication date: June 12, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Jaeho Kim, Quan Ni
  • Patent number: 8751011
    Abstract: The disclosure is directed towards posture-responsive therapy. To avoid interruptions in effective therapy, an implantable medical device may include a posture state module that detects the posture state of the patient and automatically adjusts therapy parameter values according to the detected posture state. A system may include an external programmer comprising a user interface that receives user input defining therapy parameter values for delivery of therapy to a patient, and user input associating one or more of the therapy parameter values with a plurality of posture states based on user input, a processor that automatically defines therapy parameter values for delivery of therapy to a patient when the patient occupies the posture states based on the association, and an implantable medical device that delivers the therapy to the patient in response to detection of the posture states.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: June 10, 2014
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Joseph J. Nolan, Rajeev Sahasrabudhe, Shyam Gokaldas
  • Patent number: 8751012
    Abstract: A novel vestibular implant system is described. An implantable vestibular stimulator provides vestibular stimulation signals to stimulate target neural tissue for vestibular sensation by a patient. One or more motion sensors are controllably powered by the vestibular implant system and develop a motion signal reflecting head motion of an implant patient. The vestibular stimulator includes at least two different operating modes: i. a sensor controlled mode wherein the motion sensor is powered and the vestibular stimulation signal is developed as a dependent function of the motion signal, and ii. a sensor independent mode wherein the motion sensor is unpowered and the vestibular stimulation signals, if any, are developed independently of the motion signal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: June 10, 2014
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Andreas Jäger, Carolyn Garnham, Roland Hessler, Martin Zimmerling, Charles Coleman Della Santina, Gene Fridman
  • Publication number: 20140155948
    Abstract: Various aspects of the present disclosure are directed toward an implantable electrostimulation device, a plurality of sensing and pacing elements, and a fine wire lead extending in a sealed relationship from the electrostimulation device and to the plurality of sensing and pacing elements. The fine wire lead includes multiple discrete conductors and a drawn silica or glass fiber core, a polymer cladding on the drawn silica or glass fiber core, and a conductive metal cladding over the polymer cladding. Additionally, the fine wire lead simultaneously delivers different electrical signals or optical signals between the sensing and pacing elements and the electrostimulation device.
    Type: Application
    Filed: March 14, 2013
    Publication date: June 5, 2014
    Applicant: Cardia Access, Inc.
    Inventor: Cardia Access, Inc.
  • Publication number: 20140148870
    Abstract: In certain variations, systems and/or methods for electromagnetic induction therapy are provided. One or more ergonomic or body contoured applicators may be included. The applicators include one or more conductive coils configured to generate an electromagnetic or magnetic field focused on a target nerve, muscle or other body tissues positioned in proximity to the coil. One or more sensors may be utilized to detect stimulation and to provide feedback about the efficacy of the applied electromagnetic induction therapy. A controller may be adjustable to vary a current through a coil to adjust the magnetic field focused upon the target nerve, muscle or other body tissues based on the feedback provide by a sensor or by a patient. In certain systems or methods, pulsed magnetic fields may be intermittently applied to a target nerve, muscle or tissue without causing habituation.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 29, 2014
    Applicant: EMKINETICS, INC.
    Inventor: Daniel R. BURNETT
  • Publication number: 20140142650
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
  • Publication number: 20140142662
    Abstract: A tibial nerve stimulation therapy device configured to provide an electrical stimulation therapy to branches of the tibial nerve includes a plurality of stimulation electrodes, a stimulation circuit configured to generate electrical stimulation pulses, a sensing circuit configured to generate an output signal indicative of an electromyogram (EMG) signal generated by the patient, and a controller. The controller is configured to execute a plurality of unique stimulation therapies, in accordance with unique stimulation therapy settings, analyze the output signals generated by the sensing circuit after each of the stimulation therapies, and designate final stimulation therapy settings based on the analyzed output signals. The stimulation therapy settings include an identification of a pair of the electrodes through which the electrical stimulation pulses are delivered during a stimulation therapy, and/or at least one parameter defining the electrical stimulation pulses generated by the stimulation circuit.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 22, 2014
    Applicant: AMS Research Corporation
    Inventor: David J. Yonce
  • Patent number: 8731662
    Abstract: Embodiments of the invention provide methods for the detection and treatment of atrial fibrillation (AF) and related conditions. One embodiment provides a method comprising measuring electrical activity of the heart using electrodes arranged on the heart surface to define an area for detecting aberrant electrical activity (AEA) and then using the measured electrical activity (MEA) to detect foci of AEA causing AF. A pacing signal may then be sent to the foci to prevent AF onset. Atrial wall motion characteristics (WMC) may be sensed using an accelerometer placed on the heart and used with MEA to detect AF. The WMC may be used to monitor effectiveness of the pacing signal in preventing AF and/or returning the heart to normal sinus rhythm (NSR). Also, upon AF detection, a cardioversion signal may be sent to the atria using the electrodes to depolorize an atrial area causing AF and return the heart to NSR.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Incube Labs, LLC
    Inventor: Mir Imran
  • Patent number: 8731683
    Abstract: A stimulation system and method for providing training therapy to a human subject having a weakened voice includes an activating switch configured to generate a first signal, and a processor configured to receive the first signal from the sensing electrode and to generate at least one stimulation parameter based on the first signal. The system further includes a stimulating electrode configured to receive the stimulation parameter from the processor and to activate a recurrent laryngeal nerve or vagus nerve of the subject in response to the stimulation parameter.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 20, 2014
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventor: Werner Lindenthaler
  • Patent number: 8731657
    Abstract: A microcurrent stimulation device with a power supply, two or more electrodes electronically coupled to the power supply, a microcontroller configured to generate an electromagnetic waveform, an impedance measurement module configured to measure electrical impedance of one or more biological tissues between the two or more electrodes. A first safety circuit monitors electric current flow through one or more components of the microcurrent stimulation device and interrupts electric current flow if the electric current flow through the one or more components is above a predetermined level. A second safety circuit interrupts electric current flow through the one or more components if a firmware failure occurs.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: May 20, 2014
    Assignee: TAMA Research Corp.
    Inventors: Ali Shambayati, Fatemeh Abnoosi
  • Publication number: 20140135859
    Abstract: A system and method for automated diagnosis of myocardial ischemia through remote monitoring is described. Physiological measures comprising data either recorded on a regular basis by a medical device or derived therefrom is stored. Qualitative measures associated with the physiological measures are matched. Indications of myocardial ischemia are remotely identified. The qualitative measures for both of a reduction in exercise capacity and respiratory distress occurring contemporaneously are examined. The qualitative measures for angina that accompanies the reduction in exercise capacity and the respiratory distress are evaluated. A time course for each of the indications is determined. A patient status is formed comprising an onset of myocardial ischemia conditioned on the time course comprising a short duration.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 15, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventor: Gust Bardy
  • Publication number: 20140135642
    Abstract: The present invention establishes the foundational principles and practice for a unified theory of arbitrary information management by disclosing systems, devices and methods for the management of substrates or biological substrates. In this context, a substrate or biological substrate is any aspect of any entity that is capable of responding to or emitting or transmitting stimuli irrespective of whether the stimuli actually emanate or originate from any aspect of the entity or not. Management of substrates or biological substrates could be achieved through the management of stimuli that characterize, modulate or moderate or influence any aspect of the substrate or biological substrate as well as through the management of any stimuli emanating from the substrate or biological substrate.
    Type: Application
    Filed: November 11, 2012
    Publication date: May 15, 2014
    Inventor: FRANK EDUGHOM EKPAR
  • Publication number: 20140135873
    Abstract: Provided are a rehabilitation training system and method that provide active rehabilitation training to a patient requiring rehabilitation treatment. The rehabilitation training system and method provide rehabilitation-related information to the patient to provoke a rehabilitation intent of the patient, and continuously measure a biological signal of the patient to monitor a state of the patient, thereby providing active rehabilitation training suitable for the state of the patient.
    Type: Application
    Filed: June 11, 2013
    Publication date: May 15, 2014
    Inventors: Jinung An, Sang Hyeon Jin, Seung Hyun Lee, Jeon Il Moon, Berdakh Abibullaev, Jae Hyun Ahn, Gwang Hee Jang
  • Patent number: 8725270
    Abstract: Methods and systems for neurostimulation and/or neurotelemetry of electrically-excitable biological tissue. In one embodiment, a method includes providing a radio frequency output to a diode implanted in biological tissue. The radio frequency output cause current to flow in the diode that is sufficient to provide neurostimulation. Additionally, a radio frequency receiver is configured to receive a second harmonic signal from the diode, which can be used to control the radio frequency output.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: May 13, 2014
    Assignee: Arizona Board of Regents
    Inventor: Bruce C. Towe
  • Patent number: 8725247
    Abstract: An embodiment relates to a method for delivering a unidirectional afferent nerve stimulation treatment. A test neural stimulation is delivered, and a physiologic response to the test neural stimulation is monitored. At least one neural stimulation parameter for the test neural stimulation is adjusted if the test neural stimulation does not elicit a desired physiologic response. If the test neural stimulation does elicit the desired physiologic response, at least one treatment parameter for a unidirectional afferent nerve stimulation is determined using the at least one neural stimulation parameter for the test neural stimulation that provided the desired physiologic response. The unidirectional afferent nerve stimulation is delivered using the at least one treatment parameter.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 13, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Avram Scheiner
  • Publication number: 20140128750
    Abstract: A neuromodulation system includes a first therapy element adapted for positioning within a superior vena cava, and a second therapy element adapted for positioning within a pulmonary artery. The first therapy element is carried on a first elongate flexible shaft, and the second therapy element is carried on a second elongate flexible shaft. One of the first and second shafts is slidably received within a lumen of the other of the first and second shafts—so that the second therapy element may be advanced within the body relative to the first therapy element. A stimulator is configured to energize the first therapy element within the first blood vessel to deliver therapy to a first nerve fiber disposed external to the superior vena cava and to energize the second therapy element within the pulmonary artery to deliver sympathetic therapy to a second nerve fiber disposed external to the pulmonary artery.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: Interventional Autonomics Corporation
    Inventors: Terrance J Ransbury, Richard S Stack, William E Sanders, Stephen C Masson
  • Publication number: 20140128777
    Abstract: A pelvic floor treatment apparatus (100) includes a head portion (A) and a body portion (B) connected to the head portion (A) at a first end. The body portion (B) comprises: one or more pressure transducers (D1) located along a length of the body portion (B) and configured to determine pressure at one or more locations within an organ, wherein at least one of the one or more pressure transducers (D1) is selectively movable along the length of the body portion (B); and one or more electrodes (D2) configured to selectively electrically stimulate a location within the organ.
    Type: Application
    Filed: October 14, 2011
    Publication date: May 8, 2014
    Inventors: Guihai AI, Meng Meng
  • Publication number: 20140121728
    Abstract: An electroporation device produces electric signals that may be adjusted in response to a cover area of electrodes, so that the electric signals are tolerable when delivered to cells within the cover area. The electroporation device can include an applicator, a plurality of electrodes extending from the applicator, a power supply in electrical communication with the electrodes, and a guide member coupled to the electrodes. The electrodes are associated with a cover area. The power supply is configured to generate one or more electroporating signals to cells within the cover area. The guide member can be configured to adjust the cover area of the electrodes. In some embodiments, the electrical signals may include opposing waveforms that produce a resultant interference waveform to effectively target the cover area, and each waveform may be a unipolar waveform or a bipolar waveform.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 1, 2014
    Inventors: Punit Dhillon, Brian McCluskey
  • Publication number: 20140121729
    Abstract: An aspect of the present subject matter relates to a baroreflex stimulator. An embodiment of the stimulator includes a pulse generator to provide a baroreflex stimulation signal through an electrode, and a modulator. The modulator modulates the baroreflex stimulation signal to increase the baroreflex stimulation therapy by a predetermined rate of change to lower systemic blood pressure to a target pressure. Other aspects are provided herein.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Julio C. Spinelli
  • Patent number: 8712509
    Abstract: A system and method for virtually detecting a medical condition, such as acute myocardial infarction (AMI), in a patient using holistic diagnostic procedures implemented in medical devices. Physiological parameters in a patient are monitored in an implantable medical device (IMD) to detect deviations from desired characteristics. When severe physiological parameter deviations exist indicating with a desired certainty that the patient is experiencing a medical condition (e.g., AMI), an alert is generated. If only minor deviations from the desired characteristics exist, additional holistic diagnostic procedures are performed virtually for diagnosing whether the patient is likely to be experiencing the medical condition, such as querying the patient through an external device regarding symptoms the patient is experiencing and analyzing the patient's responses to the questions to determine whether the patient is experiencing the medical condition.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 29, 2014
    Assignee: Medtronic, Inc.
    Inventors: Brian Bruce Lee, Eric John Wengreen, Zhendong Song
  • Patent number: 8712518
    Abstract: The invention relates to methods and systems for determining phase-specific parameters of a physiological variable, and a related computer program and a related machine-readable storage medium, which are usable in particular to determine parameters of physiological variables that are subject to circadian variation. To this end, phase-specific parameters of a physiological variable X(t) are determined by calculating, at least for a portion of values x lying in a specifiable time period, a mean g(x|?) in each case of values X(t+?) for which X(t)=x applies for their predecessors, ? describing a time interval, and determining the phase-specific parameters by evaluating the mean g(x|?).
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 29, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Jens Kirchner, Christian Rockstroh, Thomas Kraemer
  • Publication number: 20140114377
    Abstract: Apparatus and methods are described including identifying a subject as suffering from a condition selected from the group consisting of congestive heart failure, diastolic heart failure, acute myocardial infarction, and hypertension. In response to the identifying, an electrode is placed on a vagus nerve of the subject at a vagal site that is between the upper junction of the left thoracic vagal trunk with the left subclavian artery of the subject, and the thoracic vagal branching into an esophageal plexus of the subject. The subject is treated by electrically stimulating the vagal site by driving a current into the vagal site, via the electrode. Other applications are also described.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Applicant: ENOPACE BIOMEDICAL LTD.
    Inventors: Amir Dagan, Yotam Reisner, Offer Glasberg, Nitai Hanani, Gal Ariav
  • Publication number: 20140114163
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
  • Patent number: 8706253
    Abstract: An integrated activation system for an implantable medical device (IMD) sharing a power source, the activation system comprising a switching circuit having first and second inputs and having an output coupled to the acute use device, a gating element coupled to the first input and configured to gate power from the power source to the switching circuit, and a sensing element coupled to the second input of the switching circuit. The sensing element is configured to sense an activation condition, enable an operation interval of the switching circuit, and transmit a signal to the switching circuit during the activation condition. The switching circuit is configured to transmit power to the acute use device upon receipt of a pre-determined number of signals from the sensing element.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: April 22, 2014
    Assignee: Medtronic, Inc.
    Inventors: Daniel R. Greeninger, David A. Dinsmoor, Vincent Larik, Rogier Receveur, David L. Thompson
  • Patent number: 8706235
    Abstract: A system and method for delivering a nerve stimulation therapy determines whether a cardiac EGM signal can be sensed by a bipolar pair of electrodes selected from a number of electrodes positioned for stimulating a nerve. In response to not being able to sense a cardiac signal using the bipolar pair, stimulation of the nerve using a selected pair of the electrodes is enabled.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 22, 2014
    Assignee: Medtronic, Inc.
    Inventors: Mustafa Karamanoglu, Vincent E. Splett, Nancy J. Rakow, Linnea R. Lentz
  • Patent number: 8706241
    Abstract: Systems and methods for patient interactive neural stimulation and/or chemical substance delivery are disclosed. A method in accordance with one embodiment of the invention includes affecting a target neural population of the patient by providing to the patient at least one of an electromagnetic signal and a chemical substance. The method can further include detecting at least one characteristic of the patient, with the characteristic at least correlated with the patient's performance of an adjunctive therapy task that is performed in association with affecting the target neural population. The method can still further include controlling at least one parameter in accordance with which the target neural population is affected, based at least in part on the detected characteristic.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 22, 2014
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Andrew D Firlik, Bradford Evan Gliner, W Douglas Sheffirld, Leif R Sloan
  • Publication number: 20140107455
    Abstract: Leads for use with implantable medical devices are provided. One microlead is intended to be implanted in the venous, arterial, or lymphatic networks. Its diameter may be at most equal to 1.5 French (0.5 mm), and it may include a plurality of micro-cables each including: an electrically conductive core cable for connection to one pole of a multipolar generator of an active implantable medical device, and a polymer insulation layer surrounding the core cable. At least one exposed area may be formed in the insulation layer to form a detection/stimulation electrode.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Inventors: Willy Régnier, Jean-Fraçois Ollivier, Philippe D'Hiver, Nicolas Shan
  • Publication number: 20140107506
    Abstract: Various approaches to detecting arousals from sleep involve generating signals modulated by muscle tone, brainwave activity, and/or other nervous system activity associated with a patient's autonomic arousal response. Generating the signals and/or detecting autonomic arousals from sleep may be performed using an implantable device. Arousal information may be useful to identify sleep disorder events associated with arousals from sleep, for diagnostic purposes, and/or for therapy adjustment.
    Type: Application
    Filed: November 12, 2013
    Publication date: April 17, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: KENT LEE, QUAN NI, JESSE W. HARTLEY, JEFFREY E. STAHMANN
  • Publication number: 20140100633
    Abstract: An implantable stimulator includes a tube assembly that is configured to house a number of components that are configured to apply at least one stimulus to at least one stimulation site within a patient. The tube assembly has a shape that allows the stimulator to be implanted within said patient in a pre-determined orientation. Exemplary methods of stimulating a stimulation site within a patient include applying an electrical stimulation current to a stimulation site via one or more electrodes extending along one or more sides of a stimulator. The stimulator has a shape allowing the stimulator to be implanted within the patient in a pre-determined orientation.
    Type: Application
    Filed: December 10, 2013
    Publication date: April 10, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Alfred E. Mann, Tom Xiaohai He
  • Publication number: 20140100637
    Abstract: Active rejection techniques are used to cancel MRI gradient signals in an implantable medical device. An active component placed in an input channel of the implantable medical device actively rejects MRI gradient signals received on the input channel. A sensing circuit that senses an external MRI gradient signal generates a control signal that controls the active component. For example, the control signal may be the inverse of the external MRI gradient signal. An active component that receives an input signal including a desired signal component (e.g., a cardiac signal) and an undesired MRI gradient signal component may thus use this control signal to reject the undesired MRI gradient signal component.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 10, 2014
    Applicant: PACESETTER, INC.
    Inventors: Jin Zhang, Erno Klaassen
  • Publication number: 20140100628
    Abstract: A system embodiment comprises at least one respiration sensor, a neural stimulation therapy delivery module, and a controller. The respiration sensor is adapted for use in monitoring respiration of the patient. The neural stimulation therapy delivery module is adapted to generate a neural stimulation signal for use in stimulating the autonomic neural target of the patient for the chronic neural stimulation therapy. The controller is adapted to receive a respiration signal from the at least one respiration sensor indicative of the patient's respiration, and adapted to control the neural stimulation therapy delivery module using a respiratory variability measurement derived using the respiration signal.
    Type: Application
    Filed: December 10, 2013
    Publication date: April 10, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Yachuan Pu, Anthony V. Caparso, Gerrard M. Carlson, Joseph M. Pastore
  • Patent number: 8694120
    Abstract: An implantable control module for an electrical stimulation system includes an electronic subassembly disposed in a sealed conductive housing. A plurality of feedthrough pins extend through the sealed housing and couple connector contact of an external connector to the electronic subassembly. Each of the plurality of conductive pathways electrically couples a different one of the plurality of feedthrough pins to the electronic subassembly. A ground line electrically couples the electronic subassembly to the housing. A capacitive flex circuit is disposed in the housing and couples to each of the feed through pins. For each of the plurality of feedthrough pins the capacitive flex circuit includes a first conductive path electrically coupling the feedthrough pin to a corresponding conductive pathway of the plurality of conductive pathways, and a second conductive path electrically coupling the feedthrough pin to the ground pin.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: April 8, 2014
    Inventor: Salomo Murtonen
  • Patent number: 8694119
    Abstract: An interventional system that utilizes a carotid chemoreceptor(s) and optionally baroreceptor(s) for inducing vasodilatation in blood vessels of the brain is provided for treating ischemic conditions of the CNS, such as ischemic stroke and cerebral vasospasm. The system includes an electrical signal generator and an endovascular module with electrode units for transiently being disposed in the internal and external carotid arteries, adjacent a carotid body.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: April 8, 2014
    Assignee: Samson NeuroSciences Ltd.
    Inventor: Alon Shalev
  • Patent number: 8694118
    Abstract: A method, system, and apparatus for providing a stimulation signal comprising a variable ramping portion using an implantable medical device (IMD). The first electrical comprises a first ramping portion. The first ramping portion comprises a first parameter selected from the group consisting of an amplitude, a rate of change of the amplitude, a time period of a rate of change of the amplitude, a pulse width, a rate of change of the pulse width, a time period of a rate of change of the pulse width, a frequency, a rate of change of the frequency, a time period of a rate of change of the frequency, and a duration of a time period of the ramping portion, the first parameter having a first value. The first electrical signal is applied to a target location of the patient's body. A second electrical signal comprising a second ramping portion is generated. The second ramping portion comprises the first parameter having a second value that is different from the first value.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: April 8, 2014
    Assignee: Cyberonics, Inc.
    Inventor: Randolph K. Armstrong
  • Patent number: 8694106
    Abstract: This is a neurostimulator that is configured to treat epilepsy and other neurological disorders using certain stimulation strategies, particularly changing various pulse parameters, during the imposition of a burst of those pulses. The invention includes the processes embodying those stimulation strategies.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 8, 2014
    Assignee: NeuroPace, Inc.
    Inventor: Benjamin D. Pless