Output Controlled By Sensor Responsive To Body Or Interface Condition Patents (Class 607/62)
  • Publication number: 20130331911
    Abstract: A neural stimulation system automatically corrects or adjusts the stimulus magnitude (stimulation energy) in order to maintain a comfortable and effective stimulation therapy. Because the changes in impedance associated with the electrode-tissue interface can indicate obstruction of current flow and positional lead displacement, lead impedance can indicate the quantity of electrical stimulation energy that should be delivered to the target neural tissue to provide corrective adjustment. Hence, a change in impedance or morphology of an impedance curve may be used in a feedback loop to indicate that the stimulation energy needs to be adjusted and the system can effectively auto correct the magnitude of stimulation energy to maintain a desired therapeutic effect.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: John D.H. King, James R. Thacker
  • Publication number: 20130325082
    Abstract: Apparatus for collecting and broadcasting coded human or animal body waveforms. A contact can be placed on a portion of a body, which is designed to receive electrical signals. The electrical signal is converted into a readable format and is processed and stored in a computer. The electrical signal can be adjusted and rebroadcast into the body to modulate body organ functioning including, for example, cardiovascular, respiratory, digestive, and other organ functioning.
    Type: Application
    Filed: July 1, 2013
    Publication date: December 5, 2013
    Inventor: Eleanor Schuler
  • Publication number: 20130325086
    Abstract: Hermetically sealed assemblies, for example, that include IC chips, are configured for incorporation within a connector terminal of an implantable medical electrical lead, preferably within a contact member of the terminal. An assembly may include two feedthrough subassemblies, welded to either end of the contact member, to form an hermetic capsule, in which an IC chip is enclosed, and a tubular member, which allows a lumen to extend therethrough, along a length of the terminal. A multi-electrode lead may include multiplexer circuitry, preferably a switch matrix element and a communications, control and power supply element that are electrically coupled to the contact member and to another contact member of the terminal. Each pair of switch matrix switches allows for any two of the electrodes to be selected, in order to deliver a stimulation vector, via stimulation pulses from a device/pulse generator, to which the connector terminal is connected.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 5, 2013
    Applicant: Medtronic, Inc.
    Inventors: John Louis Sommer, Joseph Michael D'Sa, Joyce K. Yamamoto, Brad C. Tischendorf, James D. Reinke, Andrew J. Thom, Thomas P. Miltich, William John Taylor, Kenneth C. Gardeski, Larry Earl Tyler, Jeffrey O. York, Gordon O. Munns
  • Publication number: 20130325085
    Abstract: A neurostimulation device capable of being placed between a stimulation state and an EMI protection state. The neurostimulation device comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of stimulation electrodes, stimulation output circuitry configured for being selectively activated during the stimulation state to output a plurality of stimulation pulses to the plurality of electrical terminals, electromagnetic protection circuitry configured for being selectively activated during the EMI protection state to prevent at least a portion of the electrical current induced on at least one of the electrical terminals by an electromagnetic field entering the stimulation output circuitry, and a controller configured for automatically defaulting the neurostimulation device to the EMI protection state.
    Type: Application
    Filed: June 3, 2013
    Publication date: December 5, 2013
    Inventors: Rafael Carbunaru, Salomo Murtonen, Jordi Parramon, Ross Venook
  • Publication number: 20130317561
    Abstract: Various aspects relate to a method. In various embodiments, a therapy of a first therapy type is delivered, and it is identified whether a therapy of a second therapy type is present to affect the therapy of the first therapy type. Delivery of the therapy is controlled based on the presence of the therapy of the second therapy type. Some embodiments deliver the therapy of the first type using one set of parameters in the presence of a therapy of a second type, and deliver the therapy of the first type using another set of parameters when the therapy of the second type is not present. In various embodiments, one of the therapy types includes a cardiac rhythm management therapy, and the other includes a neural stimulation therapy. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 28, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Publication number: 20130317563
    Abstract: An electrical stimulation system including: a mechanism generating at least one electrical signal to be applied to a biological tissue that is to stimulated and measuring a response of the biological tissue to each electrical signal; a calculation mechanism estimating, based on each electrical signal and on a corresponding response of the biological tissue, at least one parameter of an electrical model of the biological tissue and its interface with the electrical stimulation system and determining, using the model, at least one parameter of a stimulation pulse to be applied to the biological tissue by the electrical stimulation system; and a mechanism generating a stimulation pulse to be applied to the biological tissue.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 28, 2013
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventor: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
  • Publication number: 20130317564
    Abstract: An implantable electrical stimulation system for treating a nerve symptom, the system comprising an implantable device. The implantable devices includes a wave generator that is operable to generate a signal wave and a white noise, mix the signal wave and the white noise, and produce an electrical stimulating signal. The system further comprises an electrode unit located in close proximity to a target nerve and is operable to provide the electrical stimulating signal to the nerve. The system further comprises an external controlling device.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 28, 2013
    Applicant: National Taiwan University
    Inventors: Chii-Wann Lin, Yeong-Ray Wen, Shey-Shi Lu, Hung-Wei Chiu, Yao Joe Yang, Win-Pin Shih, Chi-Heng Chang, Wei-Tso Lin
  • Patent number: 8594805
    Abstract: Some embodiments provide a system for delivering neurostimulation. Some system embodiments comprise a lead configured to be implanted in the body, a stimulation output circuit configured to deliver neurostimulation pulses to the vagus nerve through the lead, an EMG sensing circuit configured to use the lead to sense EMG signals from laryngeal muscle activity, and an evoked muscular response detection circuit configured to use the EMG signals sensed by the EMG sensing circuit to detect evoked laryngeal muscle activity evoked by the neurostimulation pulse.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: November 26, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Juan Gabriel Hincapie Ordonez, Stephen J. Hahn, David J. Ternes, Shantha Arcot-Krishnamurthy, Jason J. Hamann
  • Publication number: 20130310898
    Abstract: A method of manufacturing a detection/stimulation lead for implantation into a venous, arterial, or lymphatic network is shown and described. The method includes providing a microcable comprising a sheath of insulating material covering an electrically conductive core. The method further includes surrounding a portion of the microcable with an electrically conductive metal ring. The method also includes crimping the ring such that the thickness of the sheath is penetrated by a portion of the metal ring and such that an electrical connection is formed between the metal ring and the electrically conductive core.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 21, 2013
    Inventors: Jean-François Ollivier, Nicolas Shan, Philippe D'Hiver
  • Publication number: 20130310897
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device in disclosed. The circuitry assesses whether V+ is optimal for a given pulse, and if not, adjusts V+ for the next pulse. The circuitry uses amplifiers to measure the voltage drop across active PDACs (current sources) and NDAC (current sinks) at an appropriate time during the pulse. The measured voltages are assessed to determine whether they are high or low relative to optimal values. If low, a V+ regulator is controlled to increase V+ for the next pulse; if not, the V+ regulator is controlled to decrease V+ for the next pulse. Through this approach, gradual changes that may be occurring in the implant environment can be accounted for, with V+ adjusted on a pulse-by-pulse basis to keep the voltage drops at or near optimal levels for efficient DAC operation.
    Type: Application
    Filed: April 11, 2013
    Publication date: November 21, 2013
    Applicant: Boston Scientific Neuromodulation Corportion
    Inventor: Boston Scientific Neuromodulation Corporation
  • Publication number: 20130310899
    Abstract: A method of neural stimulation is described for maintaining the responsiveness of electrically excitable cells to repeated electrical stimulation. A stimulating signal (23) is applied to the electrically excitable cells. The stimulating signal is repeatedly applied (26, 29, 32, 35) with a progressively increasing signal strength. A quiescent period (44) may be interleaved between bursts (43, 45) of stimulation. The electrically excitable cells may be retinal cells.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 21, 2013
    Applicant: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: David Tsai, John William Morley, Gregg Jorgen Suaning, Nigel Hamilton Lovell
  • Patent number: 8588927
    Abstract: An implantable pulse generator for providing at least one of a voltage and a current stimulation to a tissue of a subject through trough at least two electrodes adapted to be in electrical contact with the tissue of the subject, the implantable pulse generator comprising a stimulation circuit coupled to the at least two electrodes, the stimulation circuit including at least one dual-mode voltage and current source, wherein the stimulation circuit can operate alternatively in a voltage stimulation mode and in a current stimulation mode. The implantable pulse generator also comprises a processing unit coupled to the stimulation circuit, the processing unit being so configured as to control the mode of operation of the stimulation circuit.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: November 19, 2013
    Assignee: Neurostream Technologies General Partnership
    Inventors: Yves Roy, Eric Bharucha
  • Patent number: 8588906
    Abstract: An embodiment of an implantable system configured to be implanted in a patient includes an accelerometer, a neural stimulator, and a controller. The neural stimulator is configured to deliver neural stimulation to a neural target. The controller is configured to use the accelerometer to detect laryngeal vibration or coughing, and is configured to deliver a programmed neural stimulation therapy using the neural stimulator and using detected laryngeal vibration or detected coughing as an input to the programmed neural stimulation therapy.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: November 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Krzysztof Z. Siejko, Stephen Ruble, Jason J. Hamann
  • Patent number: 8588929
    Abstract: The disclosure is directed towards posture-responsive therapy. To avoid interruptions in effective therapy, an implantable medical device may include a posture state module that detects the posture state of the patient and automatically adjusts therapy parameter values according to the detected posture state. A system may include a posture state module that records a current posture of a patient, a user interface that receives a therapy adjustment, a processor that associates a posture that the posture state module recorded when the user interface received the therapy adjustment with the therapy adjustment, determines whether the posture falls within a defined posture state, compares the therapy adjustment to therapy information associated with the defined posture state, and updates the set of posture state definitions based on the determination and comparison.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: November 19, 2013
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis
  • Patent number: 8588928
    Abstract: A body stimulating device operatively adapted to provide electrical stimuli within a body, the device including stimulating electrodes, stimulus generator, and electrode voltage sensors, said electrode voltage sensors operatively measuring the DC/LF voltage of the electrodes, wherein if the sensors determine that the electrode voltage for an electrode is outside a predetermined range, then a compensating current is applied to that electrode, so as to reduce the voltage.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 19, 2013
    Assignee: Cochlear Limited
    Inventors: Torsten Lehmann, Paul Carter, Christopher van den Honert, Ibrahim Ibrahim, Tony M. Nygard
  • Patent number: 8588919
    Abstract: Methods and devices are provided such that electrical stimulation can be delivered to a patient's skeletal muscles in response to certain respiratory signals, such as when voluntary breathing is detected.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: November 19, 2013
    Inventor: Sheng Li
  • Publication number: 20130303828
    Abstract: A tissue stimulation system that generates an electrical tissue stimulation signal configured to reduce tissue impedance and increase depth of signal penetration. The use of leads is dynamically controlled and altered between conducting biopotential voltages, conducting electrical tissue stimulation signals, and grounding, in response to a computational analysis of biopotential data acquired from a region of tissue to be stimulated.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 14, 2013
    Applicant: Cerephex Corporation
    Inventor: Jeffrey B. Hargrove
  • Patent number: 8583254
    Abstract: This disclosure describes techniques for delivering electrical stimulation at one or more phases relative to an ongoing oscillating signal in a patient, and then mapping the response to the oscillating signal. The techniques may reduce or eliminate the oscillating signal. In one example, the disclosure is directed to a method that includes delivering a set of first electrical stimulation at a plurality of phases relative to an oscillating signal, measuring a response in the oscillating signal to the set of first electrical stimulation after delivering electrical stimulation at each respective phase of the plurality of phases, determining a phase at which to deliver second electrical stimulation based on the measured responses, and delivering the second electrical stimulation to the patient at the determined phase to produce a therapeutic effect.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Steven L. Jensen, Dwight E. Nelson
  • Patent number: 8583253
    Abstract: In one embodiment, a method, for estimating electrode resistance values, comprises: calculating an aggregate resistance value for each electrode in a group of electrodes of an implantable stimulation lead of the electrical stimulation system, wherein the calculating, for each electrode, comprises: (i) setting a respective electrode in the group of electrodes as an anode; (ii) setting electrodes in the group of electrodes other than the respective electrodes as cathodes; (iii) applying a predetermined electrical signal through the group of the electrodes using a pulse generator of the electrical stimulation system; (iv) measuring current flow or voltage resulting from application of the predetermined electrical signal through the group of the electrodes; (v) calculating the aggregate resistance value for the respective electrode in response to the measuring; calculating an individual resistance value for each electrode of the group of electrodes using the set of aggregate resistance values for the group of ele
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 12, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Yanwei Shi, Robert P. Egemo
  • Patent number: 8583252
    Abstract: In general, the disclosure relates to the delivery of therapy according to a detected posture state of a patient. The disclosure contemplates a variety of techniques for managing therapy delivered to a patent, including patient and clinician interaction with a medical device configured to deliver therapy according to posture state. In one example, the disclosure relates to a technique including receiving an indication from an external device to resume delivery of therapy to a patient that was previously turned off, wherein the therapy that was previously turned off comprises therapy delivered to the patient according to a detected posture state of the patient; obtaining therapy information defining the therapy; and resuming the delivery of therapy to the patient in response to the receipt of the indication, wherein the delivery of therapy is resumed according to the obtained therapy information.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Rajeev Sahasrabudhe, Shyam Gokaldas, Joseph J. Nolan
  • Publication number: 20130296974
    Abstract: A physiological sense amplifier achieves fast recovery times following receipt of a large voltage, such as when a defibrillation pulse is delivered, without blanking. The recovery time may be less than one millisecond when polarization of surrounding tissue or the housing of the device is not present. The sense amplifier uses a feedback network to clamp the input voltage to a gain amplifier at a predetermined value when a predetermined threshold value is exceeded.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventor: Kevin A. Wanasek
  • Publication number: 20130296973
    Abstract: A device and method is provided for electrically stimulating the diaphragm to control breathing while inhibiting respiratory drive. A stimulation phase is identified. The stimulation phase is it period of time within the breathing cycle in which stimulation will inhibit respiratory drive. The respiratory drive inhibition may be used in a number of applications including but not limited to: improving or remodeling the heart in heart failure patients, treating apnea, chronic obstructive pulmonary disorder (COPD), and hypertension.
    Type: Application
    Filed: March 26, 2013
    Publication date: November 7, 2013
    Inventors: Amir J. TEHRANI, David LIGON
  • Patent number: 8577466
    Abstract: An implant unit configured for implantation into a body of a subject may include an antenna configured to receive a signal. The implant unit may also include at least one pair of modulation electrodes configured to be implanted into the body of the subject in the vicinity of at least one nerve to be modulated, the at least one pair of modulation electrodes being configured to receive an applied electric signal in response to the signal received by the antenna and generate an electrical field to modulate the at least one nerve from a position where the at least one pair of modulation electrodes does not contact the at least one nerve.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 5, 2013
    Assignee: Nyxoah SA
    Inventor: Adi Mashiach
  • Patent number: 8573228
    Abstract: A system includes (i) a needle for insertion into a port of an implantable infusion device, and (ii) a receiver apparatus having a port location signal receiver module capable of receiving a signal from the implantable infusion device regarding spatial orientation of the port. The system further includes a processor operably coupled to the receiver apparatus and capable of determining the orientation of the needle relative to the port based on the received signal. The system also includes a display operably coupled to the processor. The processor is configured to cause the display to graphically render trajectory of the needle relative to the port. The port is graphically rendered as a target structure having a reference area. The needle is graphically rendered as an object moveable relative to the target structure. Occupation of the reference area by the object indicates trajectory alignment of the port and the needle.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: November 5, 2013
    Assignee: Medtronic, Inc.
    Inventor: Scott L. Kalpin
  • Publication number: 20130289664
    Abstract: Devices, systems, and techniques for delivering electrical stimulation according to a spatial electrode movement pattern are disclosed. Moving electrical stimulation between electrodes in a repeatable movement pattern may provide a therapeutic sensation to a patient. In one example, a system may include a plurality of electrodes configured to be implanted within a patient, at least one processor, and a therapy module. The at least one processor may be configured to receive a spatial electrode movement pattern that defines a sequence with which electrical stimulation is moved between the plurality of electrodes. The therapy module may be configured to deliver electrical stimulation to the patient based on the spatial electrode movement pattern.
    Type: Application
    Filed: January 25, 2013
    Publication date: October 31, 2013
    Applicant: Medtronic, Inc.
    Inventor: Lisa M. Johanek
  • Publication number: 20130289476
    Abstract: The health state of a subject is automatically evaluated or predicted using at least one implantable device. In varying examples, the health state is determined by sensing or receiving information about at least one physiological process having a circadian rhythm whose presence, absence, or baseline change is associated with impending disease, and comparing such rhythm to baseline circadian rhythm prediction criteria. Other chronobiological rhythms beside circadian may also be used. The baseline prediction criteria may be derived using one or more past physiological process observation of the subject or population of subjects in a non-disease health state. The prediction processing may be performed by the at least one implantable device or by an external device in communication with the implantable device. Systems and methods for invoking a therapy in response to the health state, such as to prevent or minimize the consequences of predicted impending heart failure, are also discussed.
    Type: Application
    Filed: March 19, 2013
    Publication date: October 31, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, John D. Hatlestad, Gerrard M. Carlson, Yousufali Dalal, Marina V. Brockway, Kent Lee, Richard O. Kuenzler, Carlos Haro, Krzysztof Z. Siejko, Abhilash Patangay
  • Publication number: 20130289663
    Abstract: A torque sensor is described that detects the presence of an external magnetic field based on a torque imposed on a conductive coil of the sensor. The torque sensor includes a conductive coil forming a loop having one or more turns and a plurality of sensing elements adjacent to portions of the conductive coil. The sensing elements are configured to generate an output that changes as a function of a force imposed on the first sensing element by the respective portions of the conductive coil.
    Type: Application
    Filed: August 16, 2012
    Publication date: October 31, 2013
    Inventor: Michael W. Newman
  • Publication number: 20130289665
    Abstract: Circuitry for generating a compliance voltage (V+) for the current sources and/or sinks in an implantable stimulator device is disclosed. The improved compliance voltage generation circuitry adjusts V+ to an optimal value in real time, even during the provision of a stimulation current. The circuitry uses amplifiers to measure the voltage drop across an active PDACs (current sources) and/or NDAC (current sinks) The measured voltages are input to a V+ regulator, which compares the measured voltage drops across the DACs to optimal values, and which feeds an optimized value for V+ back to the DACs in real time to keep the voltage drop(s) at those optimal levels during the stimulation current for efficient DAC operation.
    Type: Application
    Filed: March 21, 2013
    Publication date: October 31, 2013
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, David K. Peterson, Jordi Parramon
  • Patent number: 8571663
    Abstract: Featured is an apparatus an apparatus including a monitoring and sensing means, an electrode patch and a control device operably coupled to each of the sensing means and the electrodes and outputs signals to the electrodes for purposes of stimulating the phrenic nerve to thereby cause breathing by natural contraction of the diaphragm. The control device is configured and arranged to initially localize the phrenic nerve with respect to a given set of electrodes that is effective, when appropriately energized, for stimulating the phrenic nerve to establish negative pressure induced respiration in the body, based on the output signal(s) from the monitoring and sensing means. After such initially localizing; the control device thereafter repetitively outputs stimulation signals via the given set of electrodes so as to thereby continuously stimulate negative pressure induced respiration. Also featured are methods related thereto.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: October 29, 2013
    Assignee: The Johns Hopkins University
    Inventors: Myron Weisfeldt, Soumyadipta Acharya, Courtney C. Haswell, Hargun S. Khanna, Yun Long, Vanessa C. Pau, Girish K. Singhal, Nimra Taqi, Lu Zhao
  • Publication number: 20130282079
    Abstract: In some examples, a device for delivering electrical stimulation to a medical patient includes an electrical stimulation generator, a coupling circuit, and a processing module. The electrical stimulation generator is configured to generate electrical stimulation. The coupling circuit includes a first node connected to the electrical stimulation generator, a second node configured to deliver the electrical stimulation to the patient, and a capacitor. The coupling circuit is configured to operate in a first state to couple the capacitor between the first and second nodes in a first orientation and operate in a second state to couple the capacitor between the first and second nodes in a second orientation that is opposite to the first orientation. The processing module is configured to set the state of the coupling circuit to one of the first and second states.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 24, 2013
    Applicant: MEDTRONIC, INC.
    Inventor: Todd A. Kallmyer
  • Publication number: 20130274830
    Abstract: The disclosure describes techniques for modifying an electrical stimulation or another type of therapy provided to a patient by a medical device. The therapy modification may be based on a posture and/or activity state of a patient that is detected by an IMD, such as a change in a detected posture state occupied by the patient. Different therapy modifications may be applied for different changes in detected posture state. An IMD may modify therapy based on a transition from one posture state to another posture state. The IMD may determine a posture state of the patient for use in controlling therapy adjustments and/or other aspects of the system. In some examples, when the patient's movement and/or activity velocity exceeds a velocity threshold, a previously-determined stable posture state of the patient may be used to control therapy rather than a current posture state of the patient, which may be transient.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: MEDTRONIC, INC.
    Inventor: Dennis M. Skelton
  • Publication number: 20130274831
    Abstract: One aspect of the present disclosure includes a method for treating chronic or refractory rhinitis in a subject. One step of the method includes implanting a therapy delivery system in the subject so that at least one therapy delivery component of the system is positioned substantially adjacent a target location where modulation of the autonomic nervous system (ANS) is effective to treat chronic or refractory rhinitis. The therapy delivery component includes at least one electrode configured to deliver electric current to the target location. Next, electric current is delivered to the at least one electrode to effect a change in the ANS.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 17, 2013
    Inventors: Bradley A. Otto, Ali R. Rezai
  • Patent number: 8560076
    Abstract: Systems and methods provide baroreflex activation to treat or reduce pain and/or to cause or enhance sedation or sleep. Methods involve activating the baroreflex system to provide pain reduction, sedation, improved sleep or some combination thereof. Systems include at least one baroreflex activation device, at least one sensor for sensing physiological activity of the patient, and a processor coupled with the baroreflex activation device(s) and the sensor(s) for processing sensed data received from the sensor and for activating the baroreflex activation device. In some embodiments, the system is fully implantable within a patient, such as in an intravascular, extravascular or intramural location.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: October 15, 2013
    Assignee: CVRx, Inc.
    Inventors: Robert S. Kieval, Martin Rossing
  • Publication number: 20130267893
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Publication number: 20130268022
    Abstract: The disclosure describes a system that measures the distance between one or more electrodes and tissue of a patient, and controls one or more parameters of the stimulation delivered to the tissue by the electrodes based on the measured distance. The system controls the measurement of the distance between the electrodes and the tissue as a function of activity of the patient. The system uses, for example, a piezoelectric transducer to sense activity of the patient, and may determine whether or how frequently to measure the distance between electrodes and tissue based on the sensed physical activity. A piezoelectric transducer may be used both to sense activity and to measure the distance between the electrodes and the tissue.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 10, 2013
    Inventor: Wilbert A. Wesselink
  • Publication number: 20130268012
    Abstract: Embodiments of the present invention generally pertain to implantable medical devices, and methods for use therewith, that detect exposure to magnetic fields produced by magnetic resonance imaging (MRI) systems. In accordance with specific embodiments, a sensor output is produced using an implantable sensor that is configured to detect acceleration, sound and/or vibration, but is not configured to detect a magnetic field. Such a sensor can be an accelerometer sensor, a strain gauge sensor or a microphone sensor, but is not limited thereto. In dependence on the produced sensor output, there is a determination whether of whether the IMD is being exposed to a time-varying gradient magnetic field from an MRI system. In accordance with certain embodiments, when there is a determination that the IMD is being exposed to a time-varying gradient magnetic field from an MRI system, then a mode switch to an MRI safe mode is performed.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Inventor: Shiloh Sison
  • Publication number: 20130268030
    Abstract: A neural stimulation system controls the delivery of neural stimulation using a respiratory signal as a therapy feedback input. The respiratory signal is used to increase the effectiveness of the neural stimulation, such as vagal nerve stimulation, while decreasing potentially adverse side effects in respiratory functions. In one embodiment, the neural stimulation system detects apnea and, in response, adjusts the delivery of the neural stimulation pulses and/or delivers a respiratory therapy treating the detected apnea.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Kent Lee, Imad Libbus, Anthony V. Caparso, Jonathan Kwok, Yachuan Pu, Paul A. Haefner, Kristofer J. James
  • Publication number: 20130261705
    Abstract: A method and apparatus for using low levels of electrical stimulation to treat spasmodic dysphonia by stimulating the afferent nervous system and/or altering the function of gamma motor neurons innervating muscles which experience symptomatic spasms.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 3, 2013
    Inventor: Michael J. Pitman
  • Publication number: 20130261691
    Abstract: Various aspects provide an implantable device. In various embodiments, the device comprises at least one port, where each port is adapted to connect a lead with an electrode to the device. The device further includes a stimulation platform, including a sensing circuit connected to the at least one port to sense an intrinsic cardiac signal and a stimulation circuit connected to the at least one port via a stimulation channel to deliver a stimulation signal through the stimulation channel to the electrode. The stimulation circuit is adapted to deliver stimulation signals through the stimulation channel for both neural stimulation therapy and CRM therapy. The sensing and stimulation circuits are adapted to perform CRM functions. The device further includes a controller connected to the sensing circuit and the stimulation circuit to control the neural stimulation therapy and the CRM therapy. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 3, 2013
    Inventors: Imad Libbus, Andrew P. Kramer, Anthony V. Caparso, Kristofer J. James, Stephen Ruble, Weiying Zhao
  • Patent number: 8548562
    Abstract: An imaging and diagnostic system and method to differentiate between malignant and non-malignant tissue of a prostate and surrounding region. The system acquires imaging data from the prostate and surrounding proximal region, and processes the data to differentiate areas of tissue malignancy from non-malignant tissue. A sectioning device or ablative device is provided. The ablative device is operable by automation for receiving the imaging output coordinates and defining the trajectory and quantity of energy or power to be delivered into the malignant tissue. A control system determines calculated energy or power to be deposited into the malignant tissue during ablation, to minimize destruction of the non-malignant tissue within the prostate and surrounding tissue. The system operates on generated ablative device output data.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: October 1, 2013
    Inventors: John Trachtenberg, Masoom A. Haider, Brian Campbell Wilson
  • Patent number: 8548573
    Abstract: Methods and implantable devices that detect cardiac events using dynamic filtering. Illustratively, default filtering is performed except for a predefined period of time following detection of cardiac events, during which post-beat filtering is performed instead. The example post-beat filtering applies a narrower pass-band to the signal than the default filtering in order to attenuate T-waves more greatly than the default filtering during a time period after a detected event that is expected to correspond to occurrence of T-waves.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: October 1, 2013
    Assignee: Cameron Health, Inc.
    Inventor: James M. Keefe
  • Patent number: 8548598
    Abstract: Provided is a nerve stimulation apparatus that is capable of performing effective nerve stimulation depending on a therapeutic purpose without adversely affecting a heart. Further provided is a nerve stimulation apparatus including: a stimulation-pulse output unit that outputs a stimulation pulse; a cardiac-event detector that detects a cardiac event; and a controller that controls the stimulation-signal output unit so as to output, during a cardiac refractory period, the nerve stimulation signal having an intensity that corresponds to the heart rate obtained on the basis of the cardiac event detected by the cardiac-event detector.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: October 1, 2013
    Assignee: Olympus Corporation
    Inventors: Keiichiro Nakajima, Hiroki Hibino
  • Patent number: 8545414
    Abstract: Methods and devices for modulating heart valve function are provided. In the subject methods, a heart valve is first in structurally modified. Blood flow through the structurally modified heart valve is then monitored, and the heart is paced in response to the monitored blood flow. Also provided are devices, systems and kits that find use in practicing the subject methods. The subject methods find use in a variety of applications.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: October 1, 2013
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter J. Fitzgerald, Ali Hassan, Brian K. Courtney, Nicolas A. F. Chronos, Richard G. Cartledge, Leonard Y. Lee
  • Publication number: 20130253616
    Abstract: A neural stimulator senses a reference signal indicative of cardiac cycles each including a predetermined type timing reference event using a sensor external to the heart and blood vessels. The delivery of the neural stimulation pulses are synchronized to that timing reference event. Examples of the timing reference event include a predetermined cardiac event such as a P-wave or an R-wave detected from a subcutaneous ECG signal, a predetermined type heart sound detected from an acoustic signal, and a peak detected from a hemodynamic signal related to blood flow or pressure.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Paul A. Haefner, Aaron R. McCabe, Yi Zhang
  • Publication number: 20130253299
    Abstract: Methods and apparatuses for monitoring and regulating physiological states and functions are disclosed. Several embodiments include application of one or more microelectrode arrays to a dorsal root ganglion for measurement of sensory neuron activity, or stimulation of sensory reflex circuits. The methods and apparatuses can be used, for example, for monitoring or controlling bladder function in a patient.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventor: University of Pittsburgh - Of the Commonwealth System of Higher Education
  • Publication number: 20130253615
    Abstract: A neurostimulation system includes a neural stimulation lead having a proximal portion and a distal portion and including a plurality of electrodes along the distal portion. The plurality of electrodes are configured for positioning proximate a portion of the autonomic nervous system. A neural stimulation circuit, coupled to the plurality of electrodes, delivers neural stimulation pulses to the plurality of electrodes. A processor and controller is configured to control the neural stimulation circuit to deliver first neural stimulation pulses to each of a plurality of electrode configurations. Each electrode configuration includes one or more of the plurality of electrodes. The processor and controller is further configured to receive information related to motor fiber activity that is induced in response to delivery of the first neural stimulation pulses to each of the plurality of electrode configurations and to identify the electrode configurations that induce the motor fiber activity.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, David J. Ternes, Jason Hamann, Juan Gabriel Hincapie Ordonez, Stephen B. Ruble
  • Publication number: 20130253380
    Abstract: A medical device delivers a therapy to a patient. Posture events are identified, e.g., a posture of the patient is periodically determined and/or posture transitions by the patient are identified, and each determined posture event is associated with a current therapy parameter set. A value of at least one posture metric is determined for each of a plurality of therapy parameter sets based on the posture events associated with that therapy parameter set. A list of the therapy parameter sets is presented to a user, such as a clinician, for evaluation of the relative efficacy of the therapy parameter sets. The list may be ordered according to the one or more posture metric values to aid in evaluation of the therapy parameter sets. Where values are determined for a plurality of posture metrics, the list may be ordered according to the one of the posture metrics selected by the user.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: Medtronic, Inc.
    Inventors: Keith A. Miesel, Kenneth T. Heruth
  • Patent number: 8543217
    Abstract: The disclosure describes a method and system that generates stimulation parameters by selecting one or more stimulation parameters according to a stimulation field defined by a user. The system includes a memory that stores a plurality of stimulation templates for multiple electrode configurations of an electrical lead. A processor selects one or more volumetric stimulation templates that best match, e.g., fill, the three-dimensional stimulation field defined by the clinician. Each stimulation template is associated with a set of stimulation parameters that can be used to deliver stimulation therapy to a patient.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 24, 2013
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20130245723
    Abstract: A neurostimulation device capable of being placed between an active stimulation state and an inactive stimulation state and method of using same. The neurostimulation device comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of stimulation electrodes, a first solid-state switching device coupled to a first one of the electrical terminals, a variable power source coupled to the first switching device, and a controller configured for, when the neurostimulation device is in the inactive stimulation state, prompting the variable power source to selectively output a relatively low voltage to place the first switching device into a first open state and a relatively high voltage to place the first switching device into a second open state.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 19, 2013
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Kiran Gururaj, Pujitha Weerakoon, Goran N. Marnfeldt, Jordi Parramon, Salomo Murtonen, Emanuel Feldman
  • Publication number: 20130245722
    Abstract: Various device embodiments may comprise an implantable medical device for implantation in a body and for applying neural stimulation to a neural target in the body. The device may comprise a neural stimulation electrode configured for use in stimulating the neural target, a neural stimulator configured to deliver neural stimulation through the electrode to the neural target, a sensor configured to sense a physiological response to stimulation of motor fibers at the neural target, and a controller operatively connected to the neural stimulator to control the neural stimulation and operatively connected to the sensor to receive a signal indicative of the physiological response. The controller may be configured to detect a potential neural injury and perform an action in response to the detected potential neural injury.
    Type: Application
    Filed: February 20, 2013
    Publication date: September 19, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Jason J. Hamann, Stephen Ruble