Laser Application Patents (Class 607/89)
  • Patent number: 9011508
    Abstract: The present invention provides an apparatus that includes an infrared (IR) light source having two or more wavelengths (e.g., a relatively broad wavelength-profile light source and/or a light source with a plurality of relatively narrowband wavelengths), wherein the different wavelengths have different tissue-penetration depths. The IR light provides optical stimulation of nerves to generate nerve-action potentials (NAPs) in one or more individual nerve cells, and/or compound nerve-action potentials (CNAPs) in a nerve bundle. In some embodiments, the stimulation of NAPs and CNAPs is used to restore hearing. In some embodiments, the broad wavelength profile extends the physical volume of tissue that is stimulated, thus homogenizing the spatial light-absorption profile of the stimulation light used, e.g., for optical triggering of NAPs and CNAPs in the cochlea.
    Type: Grant
    Filed: July 21, 2012
    Date of Patent: April 21, 2015
    Assignee: Lockheed Martin Corporation
    Inventor: Ryan C. Stafford
  • Publication number: 20150105701
    Abstract: The invention provides a therapeutic system comprising: a console, wherein the console comprises a controller and an energy generator; a therapeutic device comprising: an operational head configured for transmitting the energy output from to a biological tissue; and a memory device comprising control instructions, wherein said control instructions comprise instructions for controlling the console; a reversible memory operable linkage linking the memory device to the controller; and a reversible connector configured for operably linking the energy generator to the operational head. Optionally, the energy generator is a generator of ablation energy or heat energy (e.g. RF generator) and the control instructions comprise instructions for controlling the output of the energy generator. Optionally, the control instructions comprise one or more parameters of energy output or an algorithm configured for controlling the energy output.
    Type: Application
    Filed: September 24, 2014
    Publication date: April 16, 2015
    Inventors: Carl Mayer, John Ellenz
  • Patent number: 9005261
    Abstract: A therapeutic laser with a source of pulsed electromagnetic radiation, a control device for controlling the intensity and/or the duration of the therapeutic laser applied to the tissue, and a detection device for detecting optoacoustic signals triggered by irradiating the living tissue with the pulsed electromagnetic radiation. The therapeutic laser is characterized by an evaluation device that acts on the control device and is used for calculating a degree of quality B(t) from the optoacoustic signals detected by the detection device for individual laser pulses applied to a predetermined laser spot and determining a fit function f(t) at a predetermined point in time ?t1, the fit function f(t) approximating the mean curve of B(t) for 0?t??t1. The intensity and/or the irradiation time of the therapeutic laser is defined by the parameters for the predetermined laser spot, the parameters being determined for the fit function f(t).
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 14, 2015
    Assignee: Medizinisches Laserzentrum Luebech GmbH
    Inventor: Ralf Brinkmann
  • Patent number: 9004131
    Abstract: A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 14, 2015
    Assignees: Duke University, Immunolight, LLC
    Inventors: Frederic Avery Bourke, Jr., Tuan Vo-Dinh
  • Patent number: 9005262
    Abstract: A device for providing radiation-based dermatological treatments includes a device body configured to be handheld by a user; a VCSEL laser supported in the device body, the VCSEL laser including multiple spaced-apart VCSEL beam sources configured to generate multiple discrete laser beams for generating multiple discrete treatment spots on the skin; an application end configured to be manually moved across the surface of the skin during a treatment session; and electronics configured to control the multiple VCSEL beam sources to emit the multiple discrete laser beams toward the skin to provide a dermatological treatment.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: April 14, 2015
    Assignee: Tria Beauty, Inc.
    Inventors: Harvey I-Heng Liu, Tobin C. Island, Patrick Reichert, Mark V. Weckwerth
  • Publication number: 20150100012
    Abstract: Devices and approaches for activating cross-linking within corneal tissue to stabilize and strengthen the corneal tissue following an eye therapy treatment. A feedback system is provided to acquire measurements and pass feedback information to a controller. The feedback system may include an interferometer system, a corneal polarimetry system, or other configurations for monitoring cross-linking activity within the cornea. The controller is adapted to analyze the feedback information and adjust treatment to the eye based on the information. Aspects of the feedback system may also be used to monitor and diagnose features of the eye 1. Methods of activating cross-linking according to information provided by a feedback system in order to improve accuracy and safety of a cross-linking therapy are also provided.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventor: David Muller
  • Patent number: 8998914
    Abstract: Method and apparatus for optically stimulating neurons of a plurality of auditory nerve pathways of a person to provide auditory sensations for the person including generating a plurality of pulsed light signals having one or more successive pulses; delivering the plurality of pulsed light signals to one or more auditory nerve pathways of the cochlea of the person; selectively controlling the plurality of light signals to optically stimulate and trigger nerve action potentials (NAPs) in the one or more auditory nerve pathways. In some embodiments, the stimulation rate (i.e., pulse-repetition rate) is optimized for the patient based on comfort levels, speech-recognition scores, and temperature feedback from monitors in the cochlea. In some embodiments, the methods of the present invention find practical lower and upper limits to the rate of stimulation to increase the speech-recognition scores while implementing safety limits to preventing overheating.
    Type: Grant
    Filed: July 21, 2012
    Date of Patent: April 7, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Ryan C. Stafford, Jonathon D. Wells, James W. Stafford, Bryan J. Norton
  • Patent number: 8997752
    Abstract: The present invention relates to a system for treatment of skin wounds, comprising an energy source for activation of a biochemical healing effect, and at least one dressing intended to be placed on the wound before the step of activation by said energy source, characterized in that said dressing comprises an identification means interacting in a contactless manner with a sensor that triggers the function of the energy source only when the distance between the sensor and said identification means is below a threshold value.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: April 7, 2015
    Assignee: Vivatech Company
    Inventor: Alain Cornil
  • Patent number: 8996131
    Abstract: Method and apparatus for infrared-light nerve stimulation-plus-therapeutic-heat (INS-plus-TH) that includes providing a plurality of light sources; providing a plurality of thermally conductive extensions configured to transfer heat generated by the plurality of light sources away from the plurality of light sources; emitting a plurality of infrared-light nerve-stimulation signals toward neural tissue of an animal from the plurality of light sources, wherein the emitted infrared-light nerve-stimulation signals are configured to generate action potentials in the neural tissue, and wherein the emitting of the plurality of infrared-light nerve-stimulation signals includes generating heat; controlling the emitting of the plurality of infrared-light nerve-stimulation signals to generate action potentials in the neural tissue; and transferring the heat generated by the plurality of light sources during the emitting of the plurality of infrared-light nerve-stimulation signals away from the plurality of light sources
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 31, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: James M. Owen, Matthew D. Keller, Shuming Yuan
  • Publication number: 20150088231
    Abstract: Systems and methods of ophthalmologic or ocular phototherapy treatment are provided herein. In some embodiments, the systems and methods of ophthalmic or ocular phototherapy treatment comprise applying a treatment light beam in a predetermined wavelength or wavelength range corresponding to gold (yellow to orange), red, or at least part of both the gold and red visible light wavelength ranges to at least a portion of an eye. The treatment light beam may be applied to an entire eye. In some embodiments, the selected treatment area is irradiated with light in the selected gold and/or red wavelength range at a predetermined dose for a selected time period as a primary treatment in order to treat various eye conditions and reduce eye pain or discomfort, or help to promote eye wound healing following injury or surgery, or as a secondary treatment to augment eye treatment using light in different phototherapy treatment ranges.
    Type: Application
    Filed: March 26, 2013
    Publication date: March 26, 2015
    Applicant: CXL Ophthalmics, LLC
    Inventors: Roy S. Rubinfeld, Raymond A. Hartman, Sandy T. Feldman
  • Patent number: 8985121
    Abstract: A method and a device for minimally invasive treatment of diseased deep and superficial venous valves are disclosed. Treatment seeks to repair/rejuvenate dysfunctional valve by reducing the circumference of dilated valve rings and by restoring their original shape and function using laser energy to make physical suture points and shrink collagen in selected points. Real time monitoring is by angioscopic view and endovenous echographic control. In a preferred embodiment, system comprises a specific catheter-like device for endovenous insertion that allows for real time view of energy emission and venous surface to be corrected. Catheter flexibility is such that viewing angle and direct energy emission can be oriented properly. Catheter can comprise channels for irrigation or for interchange of laser fibers according to desired irradiation pattern. A preferred embodiment of catheter device also comprises cuffs for temporary occlusion, by inflation and deflation.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: March 24, 2015
    Assignee: Biolitec Pharma Marketing Ltd.
    Inventors: Enrique Ferracani, Wolfgang Neuberger
  • Patent number: 8985119
    Abstract: A nerve-stimulation device and method using light to provide a source of precise stimulation on one or more nerve fibers. In some embodiments, this simulation is provided through a device and method wherein a laser- or LED-light-generating source is operatively coupled to an optical fiber, which in turn is coupled to a plug in the end of a holder in a sheath. Light is then passed from the light source through the optical fiber to the holder and out a selected optical tip on the sheath to provide an efficacious amount of light to simulate nerves. In some embodiments, the device is constructed from non-magnetic material such as glass, plastic or ceramics. In some embodiments, the light emanating from the optical tip can be controlled manually or automatically. Some embodiments omit the fiber and use light directly from the laser diode.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 24, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: James S. Webb, Charles E. Hamilton, Heather A. Ralph, Mark P. Bendett, Charles A. Lemaire
  • Patent number: 8979913
    Abstract: A computer implemented method and apparatus can create an exposure regimen for a user. The regimen can be used to instruct an exposure device to expose the user to light at a wavelength, duration, and intensity, and over one or more days, which is sufficient to alter the user's circadian rhythm. The user may provide one or more preferences which allow the technology to create the exposure regimen sufficient to alter the user's circadian rhythm.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: March 17, 2015
    Assignee: The Complete Sleep Company LLC
    Inventors: Carolyn Marie D'Ambrosio, Nargues Amir Weir, Blathnaid Kinch
  • Patent number: 8974442
    Abstract: Rejuvenation of the facial area, e.g., face, neck, jowls, and the like, that combines a plurality of different modalities is disclosed. A rejuvenation method can combine such modalities as skin tightening, in which electromagnetic energy, such as radio-frequency energy, visible light, and the like, or ultrasonic energy can be applied to the skin to tighten it; tissue tightening, in which sutures can be put in repositioned, tightened tissue underlying the skin to hold the tissue in place; tissue reinforcement, in which other sutures can be put around the tissue tightening sutures to reinforce their hold on the underlying tissue; and skin resection, in which excess skin can be excised and the remaining skin anchored over the tightened underlying tissue to produce a rejuvenating effect.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: March 10, 2015
    Inventor: William K. Boss, Jr.
  • Patent number: 8974444
    Abstract: A method for welding tissue wounds in an animal. The method comprises joining edges of a tissue wound and irradiating the tissue wound and tissue surrounding the tissue wound with a pulsed laser. The pulsed laser has a laser wavelength in a range of an absorption band of water, elastin and/or collagen in the tissue wound and tissue surrounding the tissue wound. The pulsed laser has a pulse width of not more than picoseconds in order of magnitude to heat tissue surrounding the tissue wound and facilitate bonding of native tissue protein present in the tissue surrounding the tissue wound to achieve tissue repair. The laser wavelength is in a range of between about 800 nm to about 2,700 nm.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: March 10, 2015
    Inventors: Robert R. Alfano, Vidyasagar Sriramoju
  • Patent number: 8968376
    Abstract: Apparatus and method for making and using devices that generate optical signals, and optionally also electrical signals in combination with one or more such optical signals, to stimulate (i.e., trigger) and/or simulate a sensory-nerve signal in nerve and/or brain tissue of a living animal (e.g., a human), for example to treat nerve damage in the peripheral nervous system (PNS) or the central nervous system (CNS) and provide sensations to stimulate and/or simulate “sensory” signals in nerves and/or brain tissue of a living animal (e.g., a human) to treat other sensory deficiencies (e.g., touch, feel, balance, visual, taste, or olfactory) and provide sensations related to those sensory deficiencies, and/or to stimulate (i.e., trigger) and/or simulate a motor-nerve signal in nerve and/or brain tissue of a living animal (e.g., a human), for example to control a muscle or a robotic prosthesis.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 3, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathon D. Wells, Andrew Xing, Mark P. Bendett, Matthew D. Keller, Charles A. Lemaire
  • Patent number: 8968375
    Abstract: A method of treating a lens of a patient's eye includes generating a light beam, deflecting the light beam using a scanner to form a treatment pattern of the light beam, delivering the treatment pattern to the lens of a patient's eye to create a plurality of cuts in the lens in the form of the treatment pattern to break the lens up into a plurality of pieces, and removing the lens pieces from the patient's eye. The lens pieces can then be mechanically removed. The light beam can be used to create larger segmenting cuts into the lens, as well as smaller softening cuts that soften the lens for easier removal.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: March 3, 2015
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Barry Seibel, Neil Friedman, Georg Schuele, Phillip Gooding
  • Patent number: 8961578
    Abstract: A device for providing laser-based dermatological treatments may include a device body having an application end, a VCSEL laser supported in the device body and including multiple emitter zones, each emitter zone comprising one or more micro-emitters, each micro-emitter configured to emit a micro-beam, wherein at least two of the multiple emitter zones are configured such that the micro-beam emitted by the micro-emitters of the at least two emitter zones form a combined beam through the application end of the device to provide a treatment spot on the skin, and electronics coupled to the at least two emitter zones and configured to control the at least two emitter zones independently.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: February 24, 2015
    Assignee: Tria Beauty, Inc.
    Inventors: Harvey I-Heng Liu, Tobin C. Island, Patrick Reichert
  • Patent number: 8956363
    Abstract: Stimulation of target cells using light, e.g., in vivo, is implemented using a variety of methods and devices. In one such device, target cells are stimulated using an implantable device. The device includes a light source for producing light from electrical power. An optical transmission element is made from a material that is substantially transparent to the light from the light source. This transmission element substantially encases the light source at a proximal end. The transmission element delivers light from the light source to a distal end. The shape and size of the transmission element facilitates implanting of the element within a patient. A fixation portion physically couples to the optical transmission element and secures the device to the patient. A heat dissipation portion removes heat from the near optical transmission element and the light source and dissipates the removed heat through the fixation portion.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: February 17, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: M. Bret Schneider, Karl Deisseroth
  • Patent number: 8956396
    Abstract: An improved prosthesis and method for stimulating vision nerves to obtain a vision sensation that is useful for the patient that has lost vision due to AMD, RP, and other diseases. The invention utilizes infrared light to cause action potentials in the retinal nerves similar to those which result from rods and cones stimulated by visible light in healthy retinas. In some embodiments, the invention provides a prosthesis that generates a stimulation pattern of infrared light from an external stimulator array through the eye and focusing the stimulation pattern of infrared light on the retina, especially the fovea. Some embodiments the invention provides improved resolution down to a group of nerves, or even the individual nerve level, with sufficient energy density so as to cause a desired action potential.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: February 17, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Michael E. Friend, Yongdan Hu, Charles A. Lemaire
  • Publication number: 20150045778
    Abstract: An object information acquiring apparatus is used which includes a laser medium that oscillates laser light, an excitation source that excites the laser medium, a voltage accumulator that applies a voltage to the excitation source, a voltage supplier that supplies a voltage to the voltage accumulator, a voltage controller that limits a maximum supplied voltage from the voltage supplier, a receiver that receives a photoacoustic wave generated by an object irradiated with the laser light, and a constructor that acquires characteristic information relating to the object in use of the photoacoustic wave, wherein the voltage controller compares a measured voltage value obtained by implementing division of a supplied voltage from the voltage supplier with a reference voltage value defining the maximum supplied voltage.
    Type: Application
    Filed: July 25, 2014
    Publication date: February 12, 2015
    Inventor: Shigeru Ichihara
  • Patent number: 8951296
    Abstract: Devices and methods for therapeutic photodynamic modulation of neural function in a human. One embodiment of a method in accordance with the technology includes administering a photosensitizer to a human, wherein the photosensitizer preferentially accumulates at nerves proximate a blood vessel compared to non-neural tissue of the blood vessel. The method can further include irradiating the photosensitizer using a radiation emitter positioned within the human, wherein the radiation has a wavelength that causes the photosensitizer to react and alter at least a portion of the nerves thereby providing a therapeutic reduction in sympathetic neural activity. Several embodiments of the technology are useful for disrupting renal nerves, such as renal denervation, for treating hypertension, diabetes, congestive heart failure, and other indications.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 10, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Robert J. Melder, Ayala Hezi-Yamit, Christopher W. Storment, Carol M. Sullivan
  • Patent number: 8945197
    Abstract: An improved prosthesis and method for stimulating vision nerves to obtain a vision sensation that is useful for the patient that has lost vision due to AMD, RP, and other diseases. The invention utilizes infrared light to cause action potentials in the retinal nerves similar to those which result from rods and cones stimulated by visible light in healthy retinas. In some embodiments, the invention provides a prosthesis that generates a stimulation pattern of infrared light from an external stimulator array through the eye and focusing the stimulation pattern of infrared light on the retina, especially the fovea. Some embodiments the invention provides improved resolution down to a group of nerves, or even the individual nerve level, with sufficient energy density so as to cause a desired action potential.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: February 3, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Michael E. Friend, Yongdan Hu, Charles A. Lemaire
  • Patent number: 8945196
    Abstract: An exemplary method includes selecting at least one light source configured to generate light at a particular wavelength and applying the light to tissue following an ischemic event. Applying the light to the tissue inhibits cytochrome c oxidase activity. Another exemplary method includes selecting at least one light source configured to generate light at a particular wavelength and applying the light to tissue following an ischemic event and prior to either reoxygenation of the tissue or clinical intervention to reduce cell damage. An exemplary light therapy device includes at least one light source configured to generate light having a wavelength of at least one of approximately 730-770 nm, 850-890 nm, 880-920 nm, and 930-970 nm.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: February 3, 2015
    Assignee: Wayne State University
    Inventors: Maik Huttemann, Icksoo Lee, John Kamholz, Lawrence Grossman, Karin Przyklenk, Thomas Sanderson
  • Patent number: 8945105
    Abstract: A handpiece can treat biological tissue using electromagnetic radiation, which can be substantially fluorescent light. The handpiece includes a source of electromagnetic radiation and a waveguide. The waveguide is adjacent the source, receives electromagnetic radiation from the source, and delivers the electromagnetic radiation to the biological tissue. The handpiece also includes a system for circulating a fluorescent substance through the waveguide. The fluorescent substance is capable of modulating at least one property of the electromagnetic radiation.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: February 3, 2015
    Inventor: Morgan Lars Ake Gustavsson
  • Patent number: 8945101
    Abstract: An apparatus and a method are provided for treating a targeted area of ocular tissue in a tissue-sparing manner comprising use of two or more therapeutic modalities, including thermal radiation source (such as an CW infrared fiber laser), operative in a wavelength range that has a high absorption in water, and photochemical collagen cross-linking (CXL), together with one or more specific system improvements, such as peri-operative feedback measurements for tailoring of the therapeutic modalities, an ocular tissue surface thermal control/cooling mechanism and a source of deuterated water/riboflavin solution in a delivery system targeting ocular tissue in the presence of the ultraviolet radiation. Additional methods of rapid cross-linking (RXL), are provided that further enables cross-linking (CXL) therapy to be combined with thermal therapy.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 3, 2015
    Assignee: Seros Medical, LLC
    Inventors: Satish V. Herekar, Edward E. Manche, Donald J. Eaton
  • Patent number: 8939966
    Abstract: Methods for imaging or optical sensing of a material are provided. A first fluorescent image or optical signal of a material can be recorded, the material can be perturbed, and then a second fluorescent image or optical signal of the material can be recorded. The two fluorescent images or signals can be subtracted to give a differential image or optical signal.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: January 27, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventor: David Worthington Hahn
  • Publication number: 20150025600
    Abstract: Malaria, caused by the parasite Plasmodium, is a devastating disease killing more than 800,000 people a year worldwide. Plasmodium replicates within erythrocytes by digesting hemoglobin, producing haemozoin as a byproduct which accumulates within the parasite. The development of vaccines is hampered by lack of memory immune response, while the long-term effectiveness of current anti-malaria drugs is limited due to the emergence of drug-resistant strains. Furthermore, people who are deficient of the enzyme glucose 6-phosphate dehydrogenase exhibit fatally-adverse drug effects. To overcome these hurdles, I propose a novel laserbased, non-pharmacological treatment for malaria. The treatment is based on the ability of haemozoin to convert light in the near infra-red into ultra-violet (UV) radiation via Third Harmonic Generation. The UV light produced by haemozoin can in turn kill the parasite.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 22, 2015
    Inventor: Eitan Zvi Gross
  • Patent number: 8936028
    Abstract: A method of immunotherapy of a mammal, or a laser device therefor, includes the step of treating one or more immune privileged cells, tissues or organs of said mammal with a laser to reduce or eliminate the immune privilege status of said one or more cells, tissues and/or organs to thereby elicit an immune response that is beneficial to the mammal. The method of immunotherapy avoids or minimizes lasting damage to the treated cells, tissues and/or organs. The laser treatment is typically, although not exclusively, to the pigmented epithelium of the eye or eyes. The method may be for treating a disease or condition selected from: a bacterial infection; a viral infection; early AMD; glaucoma; diabetic retinopathy; multiple sclerosis; Parkinson's disease; and Alzheimer's disease. Typically, the radiant exposure level of the laser treatment is no greater than 60-100% of a visible effect threshold.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 20, 2015
    Inventor: Malcolm Plunkett
  • Patent number: 8932278
    Abstract: A laser skin treatment process and system. The system includes features for producing a first laser beam of long pulse duration and a second laser beam of short pulse duration and a skin cooler for cooling the surface of a region of skin. The system is designed to utilize the first laser beam for heating a volume of skin tissue below the cooled surface region to a temperature to produce skin tissue modification but below skin tissue damage threshold. This volume of skin tissue is called a “thermal cavity”. The second laser beam is divided into a plurality of separate laser beams that are directed through separate optical fibers and via separate paths through skin tissue to a single tiny volume of skin tissue within the thermal cavity to produce in that tiny volume mechanical damage. This tiny volume is called an energy droplet. Thus tiny regions of tissue are damaged while minimizing or preventing any significant damage to adjacent tissue.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 13, 2015
    Inventors: Nikolai Tankovich, Alexei Lukashev
  • Patent number: 8932338
    Abstract: A noninvasive method of reducing fat from targeted regions of a patient's body by applying low-level laser energy externally through the skin of the patient to the targeted areas. Sufficient laser energy is applied to release at least a portion of intracellular fat into the interstitial space. The released intracellular fat is removed from the body through the body's natural functions. The preferred embodiment uses laser energy at about 635 nm.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: January 13, 2015
    Assignee: Erchonia Corporation
    Inventors: Susan M. L. Lim, Steven C. Shanks, Rodrigo Neira
  • Patent number: 8926678
    Abstract: Provided is a handpiece of a laser treatment device which can restrict a temperature rise of body tissues in a path from an irradiation portion to a target region more effectively than in the related art. The handpiece 10 includes an optical fiber 16 which guides laser light emitted from a pulse light source, and a revolving holder which holds a tip portion 64 of the optical fiber 16 such that the tip portion 64 is tilted with respect to a rotational axis C0 to direct an optical axis C1 of the laser light towards a target point P located on the rotational axis C0 and revolves the tip portion 64 of the optical fiber 16 about the rotational axis C0. Further, a pulse number of the pulse light source per unit time and a number of revolutions of the tip portion 64 of the optical fiber 16 per unit time are determined such that the pulse number of the pulse light source per unit time is not an integral multiple of the number of rotations of the tip portion 64 of the optical fiber 16 per unit time.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: January 6, 2015
    Assignee: Altech Corporation
    Inventor: Akira Konno
  • Patent number: 8926677
    Abstract: An interstitial laser energy treatment apparatus having co-acting movable probe holders which facilitate positioning of a laser probe and thermal probe in different positions relative to a tissue mass such as the tumor to be treated and relative to each other to facilitate treating tissue masses based on the exact position, size and shape of the tissue mass.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Novian Health, Inc.
    Inventors: Anthony J. Tomasello, William Graveman, Kambiz Dowlatshahi, Henry R. Appelbaum
  • Patent number: 8926601
    Abstract: An improved system for safe and efficient generation of plasmas and vapors bubbles with continuous wave radiations and low levels of power densities, sufficient to treat medical pathologies and to avoid the creation damage to healthy tissue is provided. Transmission means in different configurations are used to achieve a high absorption in water, which is able to initiate plasma with low levels of power density. Once plasma and vapor bubbles are formed, they absorb other wavelengths in addition to the one that initiated it. Other wavelengths, more efficiently generated by diodes or diode pumped lasers, are added into the beam to improve treatment efficiency. This modulated plasma produces fast tissue ablation and good hemostasis effect with minimal overheating of remaining tissue. After plasma and high-energy vapors are generated, only laser radiation that passes through the plasma bubble directly interacts with soft tissues.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Wolfgang Neuberger, Walter Cecchetti, Leonardo Cecchetti, Filiberto Zattoni
  • Patent number: 8920406
    Abstract: An eye contact device and assembly for stabilizing a human eye at a selected position in an external coordinate system is disclosed. The device includes an eye-contact member having an inner contact surface for contacting a front surface of an eye, and a vacuum port formed within the eye-contact member by which a negative pressure can be applied between the eye and the contact surface, to stabilize the position of the eye with respect to the device. The device, which is adapted to be biased against the patient's eye, to secure the device to the eye, may be pivotally coupled to a positioning arm, and may carry one or more beam-directing elements by which the position of the device in an external coordinate system can be determined.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: December 30, 2014
    Assignee: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Matt Herron
  • Publication number: 20140379053
    Abstract: Disclosed is a medical mask apparatus using optical fibers which can selectively project a laser beam to an entire treated portion or a local portion of skin. A medical mask apparatus using optical fibers for projecting a fine laser beam to the skin to activate skin cells and expedite circulation of blood in the skin includes: a laser light source generator for generating and supplying a laser beam having a predetermined wavelength band; a plurality of optical fibers branched from the laser light source generator; and a mask body having a cover portion having a predetermined area such that the cover portion covers a portion of a face and in which a portion of a distal end of the optical fiber is exposed along the entire cover.
    Type: Application
    Filed: November 16, 2012
    Publication date: December 25, 2014
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Seong Jae Boo, Hye Jeong Jeong, Sung Min Joo, Won Taek Han
  • Publication number: 20140379052
    Abstract: A lipolysis system comprises a laser applicator that contacts a subject's body surface and provides laser irradiation thereto in communication and cooperation with a laser control device. The laser applicator is controlled to provide low-power laser irradiation to a targeted portion of a subject's body surface for the purpose of liquefying fats in adipose cells in the subcutaneous region underlying the contacted portion of the body surface. A method for liquefying fats in a subject's adipose cells comprises contacting a portion of a subject's body surface with a laser applicator and controllably irradiating a target portion with laser wavelengths for a selected period of time. Laser applicators in one embodiment comprise low-power laser diodes having power outputs in the range of 10 mW to 100 mW with light waves in the range of 635 nm to 680 nm.
    Type: Application
    Filed: July 1, 2014
    Publication date: December 25, 2014
    Applicant: YOLO MEDICAL INC.
    Inventors: Hyeon Seong Myeong, Anna Brazier
  • Patent number: 8915907
    Abstract: A method for removing tattoos using two laser beams and a multi-photon process is disclosed. A 0.1 to 100 nsec pulse secondary laser beam focused to 108 W/cm2 creates a temporary channel from the skin surface to the tattoo pigment. A 100 fsec pulse main laser beam is then guided through the channel to the pigment and focused to sufficient intensity, i.e., 1012 W/cm2 or more, to initiate a multi-photon process that breaks up the pigment, disrupting its light reflecting properties. The channel allows the main laser beam unobstructed passage to the pigments, resulting in efficient use of the main laser. The pigment fragments escape through the temporary channel or diffuse into the blood stream. A suitably configured Ti/Sapphire laser beam is split into two components, with an uncompressed component used as the secondary laser beam, and a compressed component as the main laser beam.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 23, 2014
    Inventor: Szymon Suckewer
  • Patent number: 8915948
    Abstract: The present invention provides method and apparatus for treating tissue in a region at depth by applying optical radiation thereto of a wavelength able to reach the depth of the region and of a selected relatively low power for a duration sufficient for the radiation to effect the desired treatment while concurrently cooling tissue above the selected region to protect such tissue. Treatment may be enhanced by applying mechanical, acoustic or electrical stimulation to the region.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: December 23, 2014
    Assignees: Palomar Medical Technologies, LLC, The General Hospital Corporation
    Inventors: Gregory B. Altshuler, Andrei V. Erofeev, Henry Zenzie, Richard Rox Anderson, Dieter Manstein, James Burke, III, Andrew Radl, Michael Z. Smirnov
  • Publication number: 20140371827
    Abstract: An orthopedic infra-red laser medical device and methods of use for applying infra-red energy to an anatomic region of interest located within the body of a patient. The device includes a hollow needle and a housing on which the needle is releasably mounted. The housing includes an infra-red laser source for producing a laser beam and directing the beam through the needle to exit out of the open distal end of the needle. The distal end of the needle is sharp to pierce through the skin of the patient to a position closely adjacent the anatomic region of interest to deliver the infra-red laser beam thereto without any intervening skin and tissue attenuating the infra-red laser beam. The device can be used for various orthopedic purposes and can also be used on fat in a patient to release activated stem cells.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Hossam Abdel Salam El Sayed Mohamed, Houda Abdul Rahman M. AL Mansour
  • Publication number: 20140371730
    Abstract: Methods, systems and apparatus are disclosed for delivery of pulsed treatment radiation by employing a pump radiation source generating picosecond pulses at a first wavelength, and a frequency-shifting resonator having a lasing medium and resonant cavity configured to receive the picosecond pulses from the pump source at the first wavelength and to emit radiation at a second wavelength in response thereto, wherein the resonant cavity of the frequency-shifting resonator has a round trip time shorter than the duration of the picosecond pulses generated by the pump radiation source. Methods, systems and apparatus are also disclosed for providing beam uniformity and a sub-harmonic resonator.
    Type: Application
    Filed: July 25, 2014
    Publication date: December 18, 2014
    Applicant: CYNOSURE, INC.
    Inventors: Rafael Armando Sierra, Mirko Georgiev Mirkov
  • Publication number: 20140350643
    Abstract: A wearable hands-free apparatus for providing phototherapy treatment to a number of hair, scalp and skin related conditions includes a supporting member for pivotally supporting a light emitting plate in spaced, opposing relation to the user's head. The light emitting plate is fitted with an array of light generating sources, such as light emitting diodes (LEDs), laser diodes, or infrared lights, that emit light within a particular wavelength range correlating with the treatment of one or more specific hair, scalp and/or skin-related conditions. The light emitting plate is specifically designed to conform to the shape of the human face or scalp for providing complete, uniform and consistent light coverage to the respective areas.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 27, 2014
    Applicant: Apira Science, Inc.
    Inventors: Morgan Pepitone, Jeffrey Braile, Nicholas Brox, Gavin Tucker
  • Patent number: 8894697
    Abstract: Method and apparatus for optically stimulating neurons of a plurality of auditory nerve pathways of a person to provide auditory sensations for the person including generating a plurality of pulsed light signals having one or more successive pulses; delivering the plurality of pulsed light signals to one or more auditory nerve pathways of the cochlea of the person; selectively controlling the plurality of light signals to optically stimulate and trigger nerve action potentials (NAPs) in the one or more auditory nerve pathways. In some embodiments of the present invention, pulse-repetition rate and peak pulse power are held constant, while pulse width is modulated to evoke a sufficient dynamic range of NAPs (i.e., different NAP strengths), thus encoding sound-loudness information for the listener.
    Type: Grant
    Filed: July 21, 2012
    Date of Patent: November 25, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Ryan C. Stafford, James W. Stafford, Bryan J. Norton
  • Patent number: 8894560
    Abstract: The present invention relates to ophthalmology, and is designated to prevent onset and progression of myopia. The treatment course, including eye exposure with magnetic field, transscleral low-energy laser radiation with wavelength of 1.3 microns, and additional optical—reflectory eye trainings, is conducted. The entire treatment course is 5 procedures every other day. initial badminton trainings are performed for 2 months three times a week for 2 hours. During the treatment course trainings are performed 2 times a week on days free of the treatment. On completing the treatment course trainings are performed 2-3 times a week for 1 year. The method makes it possible to reduce the length of the treatment and decrease the number of procedures—sessions of functional treatment of myopia with increasing and prolonging efficiency of prevention and treatment of myopia with increasing positive psychological attitude to the treatment of child.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: November 25, 2014
    Assignees: The Helmholtz Moscow Research Institute of Eye Diseases
    Inventors: Vladimir V. Neroev, Elena P. Tarutta, Natalya A. Tarasova, Sergey M. Shakhray
  • Publication number: 20140343638
    Abstract: A noninvasive method of slimming a patient's body by applying laser energy having a wavelength shorter than 632 nm externally through the skin of the patient. One or more areas of a patient's body, preferably the more fatty regions, such as the abdominal, buttock, lower back, thigh, bust or arm regions, is measured. Objective measurements are made of body criteria, including external dimension, percentage body fat, fat mass, or body mass. Sufficient laser energy, preferably in a range of 0.03-0.1 J/cm2, is applied to one or more of those areas to cause a reduction in the measurement in the lasered areas, as well as overall body slimming. The preferred embodiments use laser light at about 532 nm, 440 nm, or 405 nm. Preferably 18 mW or 25 mW laser diodes are used to apply laser energy at 0.03-0.1 J/cm2 for 15 minutes, every other day for 1-4 weeks, depending on the amount of slimming desired.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 20, 2014
    Inventors: Steven C SHANKS, Kevin B TUCEK
  • Publication number: 20140336732
    Abstract: A laser therapy device, including: a laser diode that is adapted to produce a monochromatic laser beam; a lens that is adapted to receive the beam directly from the laser diode and exploit the natural divergence of the laser diode to form an essentially coherent monochromatic, collimated beam; wherein the formed beam is adapted to form on a plane perpendicular to the direction of propagation of the beam an elongated illuminated area in which the length of the illuminated area is at least twice the size of the width of the illuminated area; a controller that is adapted to control activation of the laser diode; an encasement enclosing the laser diode, the lens and the controller; wherein the encasement is adapted to be hand held by the user.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventor: Michael Schlosser
  • Patent number: 8882752
    Abstract: An aesthetic treatment device and method for treating the skin of a patient, the device comprising at least one of a plurality of arc lamps, each arc lamp provided with a reflector for obtaining a substantially collimated beam; a pulse generator for generating a train of pulses of electrical energy for energizing said at least one of a plurality of arc lamps; a control unit for controlling pulse shape, amplitude, width, frequency and timing, for obtaining controllable spectral output and energy of the collimated beam through an application end of the device to a designated area of skin of the patient. The device can further comprise secondary light sources with different spectrum characteristics than the arc lamp as well as various attachments including a position feedback, material dispenser, skin cooler, and docking station for optical fiber.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: November 11, 2014
    Assignee: Epilady 2000 LLC
    Inventor: Oren Aharon
  • Patent number: 8882743
    Abstract: A packaged kit for performing a photodynamic laser myringotomy includes a plurality of ear needles having different shaped absorbent applicators on distal ends of the needles, a vial of a single dose of an otologic formulation of mitomycin-C, a diluent carrier containing sterilized water, and a syringe. The component parts of the kit are used together to reconstitute the contents of the vial with the water in the diluent carrier, and then draw the reconstituted drug into the syringe. A selected one of the plurality of ear needles is then communicated with the syringe. The syringe and needle are then used to inject the reconstituted drug into the absorbent pad at the end of the needle, and the absorbent pad containing the drug is used to apply the drug to the tympanic membrane. The application of the drug to the tympanic membrane prepares the membrane for a myringotomy procedure, and in particular, a photodynamic laser myringotomy.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: November 11, 2014
    Assignee: Mobius Otologics, LLC
    Inventor: Edward J. Timm
  • Patent number: 8882819
    Abstract: A device for treating oral ulcers or sores comprises a light source for illuminating a sore or ulcer to be treated; a laser diode for directing laser energy at the sore or ulcer; a regulated power supply for powering the light source and the laser diode at selected power levels; a first switch operable to selectively deliver power from the regulated power supply to the light source; a second switch operable to selectively deliver power from the regulated power supply to the laser diode when the switch is operated by a user to treat the located ulcer or sore; a control device configured to operate the laser diode for a selected time period each time the switch is operated and to then subsequently turn the laser diode off until the switch is operated again; and a portable, handheld housing for housing the laser diode, regulated power supply, switch, and control device.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: November 11, 2014
    Inventors: Richard Crowder, Adam Crowder
  • Patent number: 8882753
    Abstract: The invention provides a system and method for percutaneous energy delivery in an effective, manner using one or more probes. Additional variations of the system include array of probes configured to minimize the energy required to produce the desired effect.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 11, 2014
    Assignee: Syneron Medical Ltd
    Inventors: Bankim H. Mehta, Scott A. McGill