Implantable Prosthesis Patents (Class 623/11.11)
  • Patent number: 9659152
    Abstract: A technique for generating a data set that geometrically defines a bone cut configuration for transverse maxillary distraction is using a computer-implemented method. An aspect of the technique comprises creating a numeric model of a maxilla based on patient-specific data of the maxilla. The numeric model is representative of mechanical properties of the maxilla. Based on the numeric model thus generated, one or more cut configurations for one or more bone cuts on at least one of a left hand side and a right hand side of the maxilla are determined. Each cut configuration has been determined to compensate for asymmetric mechanical properties of the maxilla. In a further step, a data set indicative of the one or more cut configurations thus determined is generated. The data set may be used to create a surgical template or jig, for computer-assisted surgery or a surgical navigation system.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 23, 2017
    Inventor: Christoph Mueller
  • Patent number: 9636438
    Abstract: The present invention relates to a temporary composite scaffold comprising discrete ECM particles formed as a fistula plug. We demonstrate that when using scaffolds containing ECM material, higher concentrations of ECM surprisingly do not give better cell morphology. Concentrations lower than 60% (w/w) are sufficient to obtain the best cell morphology and distribution.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: May 2, 2017
    Assignee: Coloplast A/S
    Inventors: Lene Feldskov Nielsen, Jens Hoeg Truelsen, Hanne Everland
  • Patent number: 9629946
    Abstract: A polymeric product including at least two layers, wherein a functional layer includes a polymeric material and at least one anti-microbial substance, and a protective layer, including a polymeric material arranged outside the functional layer and completely covering the functional layer, wherein the protective layer does not include any anti-microbial substances. A method of producing the product, the use of the same and a kit for producing the product.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 25, 2017
    Assignee: NANEXA AB
    Inventors: Anders Johansson, Marten Rooth
  • Patent number: 9605349
    Abstract: Methods of manufacturing produce metal implants having nano-modified surfaces that contain antimicrobial properties. The methods may include immersing the implant in an acid, rinsing the acid-treated implant in an aqueous cleaner, and thereafter heating the rinsed implant. The nano-modified implants described herein may contain an increased surface roughness; surface features with increased width or height; and/or decreased surface energy. The implants that result from these methods contain a nano-modified surface that is resistant to microbial cell adhesion and ultimately reduce biomaterials-related infections at the implant site.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: March 28, 2017
    Assignee: Howmedica Osteonics Corp.
    Inventors: Thomas J. Webster, Godofredo R. Dimaano, Kevor Shane Tenhuisen, Gene Kulesha, John Muth
  • Patent number: 9566168
    Abstract: The present invention provides an expandable fusion device capable of being installed inside an intervertebral disc space to maintain normal disc spacing and restore spinal stability, thereby facilitating an intervertebral fusion. In an exemplary embodiment, the present invention provides an intervertebral implant. The intervertebral implant may be configured to transition from a collapsed configuration having a first height and a first width to an expanded configuration having a second height and a second width.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: February 14, 2017
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Chad Glerum, Andrew Iott, Mark Adams
  • Patent number: 9566169
    Abstract: Structural allograft fusion devices containing a single integral piece of cortical bone in combination with one or more pieces of cancellous bone, wherein the cortical and cancellous pieces are pinned together.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 14, 2017
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Michael Mazzuca, Thomas Gamache
  • Patent number: 9554725
    Abstract: Embodiments relate to a method of monitoring physiological parameters of a patient with renal dysfunction. The method includes electrically connecting one or more medical device electrodes with a measurement site of a patient, generating one or more first stimulation signals sufficient to provide input physiological parameters specific to the patient, measuring one or more first bioimpedance values from the generated signals, analyzing at least one of the input physiological parameters within the one or more first bioimpedance values and generating a personalized dialysis program. The systems and methods can further provide essentially real-time data of patient undergoing treatment and control of treatment to a patient.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: January 31, 2017
    Assignee: Medtronic Monitoring, Inc.
    Inventors: Rodolphe Katra, Niranjan Chakravarthy, Imad Libbus
  • Patent number: 9545321
    Abstract: This specification describes technologies relating to an intervertebral disc prosthesis used to strengthen and stabilize the spine. Implementations of the technology described herein comprise a surgical device that is implanted through a small surgical incision into a portion of a human intervertebral disc, various support tools used to insert such a surgical device, and a method by which the device is used to strengthen and stabilize the spine.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: January 17, 2017
    Assignee: SPINAL STABILIZATION TECHNOLOGIES LLC
    Inventors: Nadi Salah Hibri, James Douglas Lutz
  • Patent number: 9498626
    Abstract: A system and method of generating electrode stimulation signals for electrode contacts in an electrode array associated with a hearing implant is presented. An input audio signal is processed to generate a plurality of band pass channel signals each representing an associated band of audio frequencies. A stationary noise reduction is applied so as to provide a stationary noise reduced channel envelope from each channel signal. A transient in one or more of the channel envelopes is detected. The channel envelopes are modified as a function of whether the transient is transient noise or transient speech, so as to form transient modified envelope. The transient modified envelopes are used to generate electrode stimulation signals to the electrode contacts.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: November 22, 2016
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Florian Frühauf, Ernst Aschbacher
  • Patent number: 9492588
    Abstract: A calcium phosphate/copper coating for an implant is provided which includes highly porous calcium phosphate and predominantly discontinuously distributed copper. The highly porous calcium phosphate first forms a highly porous calcium phosphate layer in which the copper has been incorporated so as to be discontinuously distributed, to form the calcium phosphate/copper coating. Further provided are a method of producing such a calcium phosphate/copper coating and an implant coated therewith.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: November 15, 2016
    Assignee: DOT GMBH
    Inventors: Hans-Georg Neumann, Cornelia Prinz
  • Patent number: 9474559
    Abstract: A bone anchor compatible for use with a neural integrity monitoring systems includes a bone-engaging portion extending between a first end portion and a second end portion. The first end portion includes a resorbable non-electrically conductive polymer defining an insulated region. The second end portion includes a conductive region having reduced electrical resistance relative to the insulated region. The insulated region is contiguous with the conductive region. Methods of use are disclosed.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: October 25, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Hai H Trieu, Matthew Morrison
  • Patent number: 9457133
    Abstract: An implant comprises a structure that may be implanted into tissue and that has a first material property at normal body temperature. The first material property is variable at elevated temperatures above normal body temperature. The implant also has a plurality of particles dispersed in the structure that are adapted to convert incident radiation into heat energy when irradiated with electromagnetic radiation. The particles are in thermal contact with the structure such that exposure of the particles to incident radiation raises the temperature of the structure thereby changing the first material property relative to the first material property at normal body temperature.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: October 4, 2016
    Assignee: J.W. Medical Systems Ltd.
    Inventors: Patrick H. Ruane, Cameron L. Wilson
  • Patent number: 9452064
    Abstract: The invention relates to a spinal implant composed of a plurality of parallel plates. The deliberate introduction of contours in the plates allows for the creation of biomechanically advantageous functions and adjustment options. The elasticity of the anchoring elements enables the disclosed implant to be adjusted to the osseous endplates, resulting in uniform force distribution and thus prevention of the risk of compaction or endplate compression fracture. The plate structure allows for the use of production methods in which hook-like undercut contours can be created, thus enabling the implant to be superbly anchored in the bone without causing damage thereto. Furthermore, the plates can be interconnected by an actuator in such a way that the height and/or the angular position can be adjusted. The vertical adjustment can vary along the length of the implant such that the segment can also be angularly adjusted.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: September 27, 2016
    Assignee: ACES INGENIEURGESELLSCHAFT MBH
    Inventors: Frank Trautwein, Frank Heuer, Jorg Franke, Ralph Kothe, Ulf Liljenqvist, Guy Matge, Michael Putzier
  • Patent number: 9447304
    Abstract: Coatings for a surface, especially a priming coating, of the present invention have been found to be durable, resistant to oxidative degradation, erosion and depolymerization, stable to sterilization and low particulating, and are easily applied to the required surface of a substrate in a surface-independent manner. Such coatings, when used as priming coatings to be coated with a subsequent coating, in at least some embodiments, form exterior coatings which are also highly durable and are stable to sterilization and aging.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 20, 2016
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Paul D. Drumheller, Charles D. Claude
  • Patent number: 9439790
    Abstract: An intraluminal prosthesis includes an outer three-dimensional (3D) anti-migration structure that is attached to the outer wall of a fully covered or partially covered stent to prevent migration and still allow stent removal at a later period of time. A method of manufacturing the intraluminal prosthesis includes attaching the anti-migration structure by usage of a polymer such as polyurethane.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: September 13, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Claude Clerc, Sri Tupil
  • Patent number: 9414867
    Abstract: The present application is directed to devices and methods for treating vertebral fractures with one or more bone pins. In one embodiment of a method, a fractured vertebral body may he accessed through a pedicle portion and an opening may be created therethrough. One or more bone pins may be inserted through the opening. In one embodiment, at least one of the inserted bone pins is inserted to extend across a fracture zone with a proximal portion of the pin engaging a first bone segment and a distal portion engaging a second bone segment. The pin or pins may be manipulated to immobilize the first and second portions of the fractured vertebra.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: August 16, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: David C. Paul, Sean Suh
  • Patent number: 9414905
    Abstract: A muscle prosthesis with a suspension fixing apparatus for implantation into a human body and production method thereof; the muscle prosthesis comprises a muscle prosthesis main body and the suspension fixing apparatus; the suspension fixing apparatus consists of at least one stretchable part and at least two fasteners; the suspension fixing apparatus can fix the muscle prosthesis to a human bone or human muscle tendon and fascia. The suspension fixing system can change the thickness and outer shape of the prosthesis according to the direction and intensity of a tensile force, thus satisfying the requirements of different body parts and different muscle thicknesses. Use of the suspension fixing apparatus allows the prosthesis to be fixed firmly and be structurally stable, thus solving the technical problem of drooping and shifting prostheses.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: August 16, 2016
    Inventor: Jiangning Wang
  • Patent number: 9399091
    Abstract: A medical device system including a physiological sensor and ultrafiltration unit senses a physiological signal in a patient and computes a fluid status measurement of the patient using the physiological signal. Ultrafiltration therapy is delivered to the patient according to a therapy delivery control parameter established in response to the fluid status measurement.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: July 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Daniel C. Sigg, Sarah Anne Audet, Tommy D. Bennett, Dwight H. Warkentin
  • Patent number: 9393195
    Abstract: Neo-cartilage constructs suitable for implantation into a joint cartilage lesion in situ and a method for repair and restoration of function of injured, traumatized, aged or diseased cartilage. The construct comprises at least chondrocytes incorporated into a support matrix processed according to the algorithm comprising variable hydrostatic or atmospheric pressure or non-pressure conditions, variable rate of perfusion, variable medium composition, variable temperature, variable cell density and variable time to which the chondrocytes are subjected.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: July 19, 2016
    Assignee: Histogenics Corporation
    Inventors: Shuichi Mizuno, Akihiko Kusanagi, Laurence J. B. Tarrant, Toshimasa Tokuno, Robert Lane Smith
  • Patent number: 9364309
    Abstract: According to an aspect of the present invention, surgical films for soft tissue repair are provided. The surgical films comprise at least one sheet of a non-filamentous material within which pores are formed. Further aspects of the invention, among others, pertain to methods of using such surgical films and to kits containing such surgical films.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: June 14, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jianmin Li, James Goddard, Timothy P. Harrah, Doreen Rao, Alfred Intoccia, Leo James Lichte
  • Patent number: 9352146
    Abstract: The present disclosure provides nerve interface devices, such as passive or active nerve caps or regenerative peripheral nerve interface devices (RPNI), for a subject in need thereof. The nerve interface devices include nerve interface cap devices capable of treating, minimizing, or preventing formation of neuromas in severed or damaged nerve endings. Such a nerve interface device includes a housing that may be formed of a scaffold, such as a biotic material or hydrogel, an autograft, and optionally an electrode and/or conducting polymer. The autograft may be free muscle or free skin tissue, which is attached to the nerve ending to permit reinnervation. The present disclosure also provides methods for treating, minimizing, or preventing neuroma formation in a subject having a severed or damaged nerve, especially a peripheral nerve.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: May 31, 2016
    Assignee: The Regents Of The University Of Michigan
    Inventors: Nicholas B. Langhals, Paul S. Cederna, Melanie G. Urbanchek
  • Patent number: 9333062
    Abstract: A bodily implant is provided that includes a support member and an arm member. The support member is configured to be placed within a body of a patient such that the support member surrounds a rectum of the patient. The arm member extends from the support member and is configured to be coupled to a portion of the body of the patient to help retain the support member in place within the body of the patient.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: May 10, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jianmin Li
  • Patent number: 9326858
    Abstract: An annuloplasty repair segment for heart valve annulus repair. In one embodiment a multi-stranded cable replaces solid core wire for both the tricuspid and mitral valves. Cable allows for greater deployment flexibility for minimally-invasive surgical (MIS) implant, while still maintaining the required strength and similar tensile properties of solid-core wire. In addition, selective placement of point-welds or other such control points locally control other parameters such as the amount and direction of displacement as the ring undergoes external loading. Cable with well-placed control points result in a MIS annuloplasty ring with sufficient flexibility in the x-y plane to allow a surgeon to squeeze the ring into a small incision, such as for example 1 cm×1 cm, while maintaining structural rigidity under forces exerted on the implanted ring by the cardiac cycle and allowing for asymmetrical deflection to be designed into the product.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 3, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: John F. Migliazza, Bob Crockett, Tim Abram
  • Patent number: 9314944
    Abstract: A tissue displacement/separation device is provided. The device includes a bladder which is expandable between a first tissue and a second tissue of a body. The bladder has an expanded shape which is selected capable of displacing or separating the first tissue from the second tissue in a manner suitable for protecting the first tissue from an effect of a treatment applied to the second tissue.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 19, 2016
    Assignee: BIOPROTECT LTD.
    Inventors: Shaul Shohat, Abraham Jackob Domb, Adrian Paz
  • Patent number: 9308090
    Abstract: The present disclosure relates, at least in part, to a surgical implant and a method for manufacturing the surgical implant. In one embodiment, the surgical implant comprises a metallic substrate; a tantalum interlayer disposed adjacent to the metallic substrate and comprising ?-tantalum and amorphous tantalum; at least one DLC layer disposed adjacent the tantalum interlayer; wherein the amorphous tantalum has a phase gradient increasing from the metallic substrate side to the DLC side; wherein the DLC layer has a hardness value and an elastic modulus value; and wherein the hardness value has a gradient increasing away from the tantalum side; and wherein the elastic modulus value has a gradient from the tantalum side.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 12, 2016
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Kerstin Thorwarth, Roland Hauert, Gotz Thorwarth
  • Patent number: 9302103
    Abstract: A method improving or restoring neural function in a mammalian subject in need thereof, the method including: using an input receiver to record an input signal generated by a first set of nerve cells; using an a encoder unit including a set of encoders to generate a set of coded outputs in response to the input signal; using the encoded outputs to drive an output generator; and using an output generator to activate a second set of nerve cells wherein the second set of nerve cells is separated from the first set of nerve cells by impaired set of signaling cells. In some embodiments, the second set of nerve cells produces a response that is substantially the same as the response in an unimpaired subject.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: April 5, 2016
    Assignee: Cornell University
    Inventor: Sheila Nirenberg
  • Patent number: 9283309
    Abstract: A device for supplying energy to hydraulically or pneumatically actuated active implants. The device can take the form of pumping systems, metering systems, and/or occlusion systems. The device comprises a receiving coil for generating an electric voltage due to a changing magnetic flux that is generated by an extracorporeal transmitting coil. The receiving coil is designed such that said coil can be implanted into subcutaneous tissue. Furthermore, an electric line is provided for transmitting the electric current that is generated by the receiving coil from the receiving coil to the active implant. The device further comprises a compensation container for temporarily receiving a transmitter fluid, by means of which the active implant is activated. The compensating container is mounted on the receiving coil and/or on the electric line such that the compensating container together with the receiving coil and/or the electric line can be implanted into a common tissue or muscle pocket in the body of a patient.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: March 15, 2016
    Assignee: Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V.
    Inventors: Thomas Schmid, Bernhard Vodermayer, Cornelia Riecke, Annika Rybak, Matthias Grzeski
  • Patent number: 9259435
    Abstract: Materials capable of delivering stabilized free radicals to targeted treatment sites. The materials comprise semi-crystalline, hydrolytically degradable polymers that are subjected to ionizing radiation to create stabilized free radicals therein. Upon exposure to oxygen containing aqueous media, the materials generate reactive oxidative species which are useful in biological processes.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 16, 2016
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Tiffany J. Brown, Adam S. Lafleur, Kenneth Mazich, Jeffrey C. Towler, Ji Zhang
  • Patent number: 9248011
    Abstract: A method of treating a vaginal prolapse is provided. The method includes accessing a vaginal prolapse, inserting an implant comprising a knitted mesh into a patient, and securing the knitted mesh in place such that the implant supports the pelvic floor of the patient. The knitted mesh has a mass density of less than 20 g/m2.
    Type: Grant
    Filed: December 11, 2011
    Date of Patent: February 2, 2016
    Assignee: Coloplast A/S
    Inventor: James Browning
  • Patent number: 9247910
    Abstract: An implant system and a method for controlling the natural and artificial microenvironments surrounding an implanted device using an artificial tissue system (ATS) and includes methods of diagnostic and testing related thereto. The ATS, among other things, induce better integration, function, and extended lifespan of the devices at the site of implantation. The ATS includes cells, such as naturally occurring, engineered, and/or artificial cells; matrices such as natural, engineered, artificial and/or hybrid matrices; tissue response modifiers (TRM); and/or cell response modifiers (CRM). The specific composition of the ATS is based on the nature of the tissue in which ATS-device combination is implanted and the nature of the implant device, as well as the required function and lifespan of the implanted device. Additionally, the ATS, as well as ATS-device combinations can be utilized in vitro to aid in the design of improved ATS, devices and ATS-device combinations for in vivo uses.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: February 2, 2016
    Assignee: University of Connecticut
    Inventors: Ulrike W Klueh, David I Dorsky, Donald L Kreutzer
  • Patent number: 9220585
    Abstract: A hernia patch supporting tissue in-growth conforms to a tissue wall upon surgical installation and fixation within a patient. The hernia patch can include a base and positioning straps. The base is formed of two layers that are affixed to each other around the perimeter of the patch, for example by stitching. A stabilizing washer is provided between the two layers, and the stitch is provided peripherally around the stabilizing washer, keeping the washer free-floating between the layers. The base, positioning straps, and stabilizing washer are formed of a structure that does not separate the layers of the implant or form a space in the form of a pocket, and promotes more uniform and confluent tissue incorporation or in-growth after implantation. The hernia patch may further include a hydrolysable bioabsorbable cross-linked coating of a fatty acid based material, such as an omega-3 fatty acid based material.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: December 29, 2015
    Inventors: Anthony R. Horton, Paul Martakos, Steve A. Herweck, Theodore Karwoski, Joseph F. Ferraro
  • Patent number: 9186252
    Abstract: A tibia implant for tightening the patella tendons, has a vertical cross section which in mounted position tapers downward, an essentially vertically arranged base plate which carries a sponge structure, wherein the sponge structure on both sides rests against a respective vertical cut surface of a vertical knee proximal incision of the tibia.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: November 17, 2015
    Assignee: RITA LEIBINGER GMBH & CO. KG
    Inventor: Rita Leibinger
  • Patent number: 9173731
    Abstract: A hernia repair prosthesis comprises a segmented frame forming a closed loop where a first segment comprises a helical hollow tube and a second segment comprises a solid strand. Both segments are preferably a metal exhibiting shape memory properties and the two segments are assembled with end portions of the second segment inserted into the lumen at opposed end portions of the first segment with a clearance fit. A prosthetic fabric is attached to the segmented frame.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: November 3, 2015
    Inventor: Roderick B. Brown
  • Patent number: 9144629
    Abstract: Compositions including crosslinked collagen and bioactive glass having an average pore size of at least 100 microns and methods of preparation thereof.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 29, 2015
    Assignee: NOVABONE PRODUCTS, LLC
    Inventors: Gregory J. Pomrink, Cecilia A. Cao, Joshua Clark, Zehra Tosun, David C. Greenspan, Srinivas Katta
  • Patent number: 9138521
    Abstract: An ultrafiltration device and method for the removal of excess fluid in hypervolemic patients and/or removal of toxins in the blood including for patients suffering from either renal or cardiovascular disease is disclosed. An embodiment of the device includes a housing containing multiple large bore hollow fiber membranes which are connected to the patient's vascular system via a connecting element comprising bifurcated fluid pathway elements to physiologically channel the blood flow either to or from each hollow fiber membrane of the device, a channel to direct the fluid removed by the device to a suitable collection container or the patient's bladder, and controls that control excessive removal of the water from the patient. Devices can be either worn extracorporeally or surgically implanted in order to allow for continuous fluid removal with ambulatory freedom.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: September 22, 2015
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Barry A. Solomon, Gregory S. Erman, Frank A. Fazio
  • Patent number: 9126041
    Abstract: A method is described for generating electrode stimulation signals for electrode contacts in a cochlear implant electrode array. An input audio signal is processed to generate band pass channel signals that each represent an associated band of audio frequencies. A channel envelope is extracted from each channel signal. The input audio signal and the channel envelopes are processed to produce transient reduced envelopes based on: i. determining for each channel envelope a normalized channel-specific transient indicator characterizing transient noise present in the channel signal, ii. determining a combined transient indicator as a function of the channel-specific transient indicators, and iii. applying a channel-specific gain to the channel envelopes as a function of the combined transient indicator to produce the transient reduced envelopes. The transient reduced envelopes are then used to generate electrode stimulation signals to the electrode contacts.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: September 8, 2015
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Florian Frühauf, Ernst Aschbacher
  • Patent number: 9089429
    Abstract: A socket or socket insert for a hip joint prosthesis, the shaft of which can be coupled with a ball head which in turn can be inserted in a rotatable manner in the hemispherical recess of the socket insert wherein the shaft can be implanted in the femur and the socket insert can be implanted directly or via a hip socket in the pelvic bone. To avoid squeaking, the socket and/or the socket insert are asymmetrically in their inner or outer geometries.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: July 28, 2015
    Assignee: CeramTec GmbH
    Inventors: Roman Preuss, Thomas Pandorf, Patricie Merkert, Heike Idink, Martin Dietrich
  • Publication number: 20150148903
    Abstract: A medical device includes a textured surface having a predetermined nanostructure, wherein the nanostructure is less than about 500 nanometers in a broadest dimension. The textures nanostructure surface reduces friction between the medical device and biological tissue.
    Type: Application
    Filed: December 17, 2014
    Publication date: May 28, 2015
    Applicant: LIQUIDIA TECHNOLOGIES, INC.
    Inventors: Lloyd Mahlon Robeson, Ginger Denison Rothrock
  • Publication number: 20150140058
    Abstract: A holey substrate now is used for constructing a graft product, such as building an auto-graft by 3D printing of living cells. When the autograft built atop the holey substrate is implanted, blood vessels and other patient tissues can grow through the holes.
    Type: Application
    Filed: July 15, 2014
    Publication date: May 21, 2015
    Inventors: David Tumey, Sandra Berriman
  • Publication number: 20150136701
    Abstract: The invention discloses devices and methods for allowing selective removal of a protein solution from a human biological fluid. In some embodiments, a column with specificity of binding for a predetermined protein is employed to remove said protein to prevent onset of a disease or for prevention for the continued progress of the same disease. The invention has particular application in neurodegenerative disorders.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Inventor: ARNON CHAIT
  • Patent number: 9028748
    Abstract: Methods and systems are provided for treatment of medical devices using surface acoustic waves (SAW) of Rayleigh, “pseudo” Rayleigh and Lamb type. In some embodiments, use of such SAW is controlled such that relative velocity of bacteria is achieved wherein the vibration amplitude of the bacteria is smaller than a Z-potential repulsive zone of the bacteria, thus preventing biofilm formation on the medical devices. In some embodiments, systems of the present invention are powered by body movements, and may also provide a feedback loop for control of parameters. In some embodiments, the medical devices of the present invention are comprised of piezoelectric material, and act as self-actuators for the system.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: May 12, 2015
    Assignee: NanoVibronix Inc
    Inventors: Jona Zumeris, Harold Jacob, Hanan Raskin, Gera Kratysh, Yanina Zumeris
  • Patent number: 9022024
    Abstract: Methods and devices are disclosed for manipulating the airway, such as to treat obstructive sleep apnea. An implant is positioned within the body with respect to the airway. The spatial orientation of the airway is manipulated, directly or indirectly, to affect the configuration of the airway. In general, the implant is manipulated to displace the trachea in an inferior direction, resist superior displacement of the trachea and/or to alter the tracheal wall tension. The implant restrains the trachea in the manipulated configuration.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: May 5, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Andrew Frazier, Chad C. Roue, Michael T. Dineen, Erik J. Van Der Burg
  • Patent number: 9017590
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Biomet Manufacturing, LLC
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20150109573
    Abstract: A functionalized polymer system is described herein for preparing and/or modifying biological implants and prostheses. In one aspect, the polymer system once applied to the surface of a biological implant or prosthesis, or once used in preparing a biological implant or prosthesis comprises a surface that is more hydrophilic, more wettable, more comfortable, resists cell adhesion, resists protein deposition, or a combination thereof. In one embodiment, a coated biological implant or prosthetic is described herein. The coated biological implant or prosthetic comprises a substrate forming the basic structure of the implant or prosthetic, and a coating comprising a polymer, where the coating is capable of resisting cell adhesion, protein deposition, or a combination thereof.
    Type: Application
    Filed: May 3, 2013
    Publication date: April 23, 2015
    Inventor: Dong Xie
  • Publication number: 20150112436
    Abstract: An inter-level locking mechanism of a multi- level medical device is disclosed. The locking mechanism includes (a) an elongated element (100) having a plurality of flexing regions, wherein the elongated element assumes a straightened configuration for introduction into the body, and wherein the elongated element assumes a closed helix configuration with a first portion of the elongated element coming in overlapping contact with a second portion of the elongated element in the closed helix configuration, and (b) at least one locking element deployable so as to interconnect the first and second portions of the elongated element so as to tighten together the overlapping portions of the elongated element, thereby stabilizing the closed helix configuration.
    Type: Application
    Filed: February 16, 2011
    Publication date: April 23, 2015
    Applicant: NLT-SPINE LTD.
    Inventors: Tzony Siegal, Dvir Keren
  • Publication number: 20150105858
    Abstract: A prosthetic implant includes an anterior surface, configured for at least partial contact with an underside of a patient's facial soft tissue. A posterior surface is oppositely placed to the anterior surface. The posterior surface is configured for at least partial contact with a patient's facial bony tissue when the anterior surface is in at least partial contact with the patient's facial soft tissue. An implant body is defined by the anterior and posterior surfaces and extends transversely therebetween. A selected portion of the posterior surface has a texture that mechanically differs from a texture of a majority of the anterior surface.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 16, 2015
    Inventors: Francis A. Papay, Jessie San, Nicholas T. Wilkins, Cameron J. Fordyce
  • Patent number: 9005605
    Abstract: The specification discloses compositions and methods for treating a soft tissue defect of an individual.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 14, 2015
    Assignee: Allergan, Inc.
    Inventors: Dennis E. Van Epps, Guang-Liang Jiang, Wha Bin Im
  • Patent number: 9005647
    Abstract: The present invention relates to a biocompatible ceramic material comprising Baghdadite (Ca3ZrSi2O9), and a method for its preparation. Preferably the Baghdadite is synthetically prepared. The present invention also relates to an implantable medical device comprising biocompatible Baghdadite, and a method for its production. The present invention further relates to a method for improving the long term stability of an implantable medical device and an implantable drug delivery device comprising Baghdadite. Further, the present invention relates to the use of comprising biocompatible Baghdadite in the regeneration or resurfacing of tissue.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 14, 2015
    Assignee: The University of Sydney
    Inventors: Hala Zreiqat, Chengtie Wu, Yogambha Ramaswamy
  • Publication number: 20150100120
    Abstract: A bioremodelable encasement structure comprising a pouch formed from at least one sheet of bioremodelable material, the pouch including an internal region that is configured to receive a device therein, the bioremodelable material comprising mesothelial tissue.
    Type: Application
    Filed: December 16, 2014
    Publication date: April 9, 2015
    Inventor: Robert G. Matheny
  • Patent number: 8998987
    Abstract: The present disclosure relates to orthopedic implants including a porous, non-metallic, bone interface or outer bone contacting surface adapted for promoting bone ingrowth into the pores of such surface. The present disclosure also relates to orthopedic implants having a porous, non-metallic and/or polymeric bone interface or outer bone contacting surface wherein the implant has a stiffness that approaches or substantially matches the stiffness of the surrounding bone and thereby reduces the effects of stress shielding. The present disclosure also relates to methods of making such implants.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: April 7, 2015
    Assignee: Zimmer, Inc.
    Inventor: Michael Wallick