Nitrogen Sorbed Patents (Class 95/130)
  • Publication number: 20090229461
    Abstract: A method and an apparatus for desorption and a dehumidifier are provided in the present invention, in which an electrical potential is applied to electrodes disposed on both ends of an absorbing material so as to desorb the substances absorbed within the absorbing material whereby the absorbing material is capable of being maintained for cycling the absorbing operation. By means of the method and the apparatus of the present invention, the desorbing efficiency can be enhanced and the energy consumption can be reduced during desorption.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 17, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: MING-SHAN JENG, MING-SHIANN SHIH, JAU-CHYN HUANG, YU-LI LIN, YA-WEN CHOU, TING-WEI HUANG, YU-MING CHANG
  • Patent number: 7582138
    Abstract: Apparatus and methods of supplying a highly enriched oxygen gas steam on board an aircraft. The gas stream is generated by an oxygen concentrator which concentrates atmospheric air by using at least one adsorber. The adsorber is made of a faujasite zeolite and has a Si/Al ratio between 1 and 1.5. The faujasite zeolite is also exchanged with silver by about 10%. Once generated, the gas stream is supplied to the airways of a person onboard an aircraft.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: September 1, 2009
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Stéphane Lessi, Nicolas Schmutz
  • Publication number: 20090211448
    Abstract: An apparatus for separating humidity from a pressurized feed gas is provided the apparatus having a housing; an intake path formed at a first end of the housing; a centrifugal device disposed within the housing; a sieve bed disposed within the housing; an outlet path formed at a second end of the housing; a purge path formed below the intake path; and a water sump zone located within the housing below the centrifugal device. The centrifugal device receives the feed gas from the intake path during a charge phase and directs the feed gas in a centrifugal pattern to cause water vapor in the feed gas to condense into water droplets on the inner wall. The water droplets are discharged from the housing through the purge path with an exhaust gas during a purge phase.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventor: MICHAEL S. MCCLAIN
  • Publication number: 20090211445
    Abstract: Infinite coordination polymeric (ICP) materials are disclosed. One ICP material has a formula wherein —O(CO)-L-C(O)O— is the ligand, M and M? are each a metal ion and are the same or different, Sol and Sol? are each a solvent molecule and are the same or different, x and y are each selected from the group consisting of 0, 0.5, 1, 1.5, 2, 2.5, 3, and 3.5, and n is at least 100. Also disclosed are methods of making the ICP materials and methods of adsorbing a substance by contacting the ICP material with the substance. The substance can be a gas.
    Type: Application
    Filed: December 17, 2008
    Publication date: August 27, 2009
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, You-Moon Jeon, Jungseok Heo
  • Publication number: 20090205493
    Abstract: A method of removing water from an inlet region of an oxygen generating system is disclosed herein. The method includes condensing, in an inlet region of the oxygen generating system, at least a portion of water vapor from a feed gas to water, and removing the water from the oxygen generating system prior to introducing the then-at least partially dehumidified feed gas to at least one sieve bed operatively disposed in the oxygen generating system.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Inventors: Loren M. Thompson, Robert R. Voltenburg, JR., Andrew M. Voto, James H. Youngblood, Michael S. McClain
  • Publication number: 20090205494
    Abstract: A device for generating an oxygen-enriched gas for a user includes a sieve module including a housing having at least one sieve bed operatively disposed therein. The sieve bed(s) include a nitrogen-adsorption material configured to adsorb at least a portion of nitrogen gas from a feed gas introduced thereto, wherein when the nitrogen gas is adsorbed, the oxygen-enriched gas is generated. The generated oxygen-enriched gas includes a substantially higher concentration of oxygen gas than that of the feed gas. The device further includes a single manifold assembly connected to an end of the sieve module. The single manifold assembly includes at least one supply valve and at least one user delivery valve connected thereto. The single manifold assembly further includes a flow path for each of the at least one supply valve and the at least one user delivery valve.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Inventor: Michael S. McClain
  • Patent number: 7550031
    Abstract: An energy efficient oxygen concentrator for filling high pressure portable cylinders with medical oxygen for use by ambulatory patients. Two compressors provide two pressurized air sources, one for operating an oxygen concentrator to provide a stream of oxygen enriched gas, and the other for driving a pressure intensifier for filling portable oxygen cylinders. Pressurized exhaust from the pressure intensifier is returned to the inlet side of at least one of the compressors for reducing the energy required to drive the compressor. Preferably, each compressor has a single reciprocating piston, a single motor drives both pistons and the pressurized exhaust from pressure intensifier is provided to the inlets for both compressors.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: June 23, 2009
    Assignee: Sunrise Medical HHG Inc.
    Inventors: Donald W. Hunter, Frank R. Frola, Karl Bowser
  • Patent number: 7547349
    Abstract: Methods of supplying an oxygen rich mixture to the occupants of an aircraft. The mixture is produced through a pressure swing adsorption system which has both an adsorption/production phase and a desorption/regeneration phase. The duration of one cycle of the adsorption system is less than ten seconds. The system makes use of a high-performance adsorbent which has a particle size of less than about 0.8 mm. The feed air which is introduced to the system has an inlet temperature between 50° C. and 90° C.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: June 16, 2009
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Stéphane Lessi
  • Publication number: 20090126733
    Abstract: Xe exhaled from a patient is recovered with a polymeric membrane.
    Type: Application
    Filed: May 23, 2008
    Publication date: May 21, 2009
    Applicants: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude, TAEMA
    Inventors: Sudhir S. Kulkarni, Christian Daviet
  • Patent number: 7507274
    Abstract: The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: March 24, 2009
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Steven T. Perry, Ravi Arora, Dongming Qiu, Michael Jay Lamont, Deanna Burwell, Terence Andrew Dritz, Jeffrey S. McDaniel, William A. Rogers, Jr., Laura J. Silva, Daniel J. Weidert, Wayne W. Simmons, G. Bradley Chadwell
  • Patent number: 7500490
    Abstract: Rotary valve comprising (a) a rotor having a rotor face rotatable about an axis perpendicular to the rotor face, a plurality of openings, and at least one passage connecting at least one pair of the plurality of openings; (b) a stator having a stator face in sealing contact with the rotor face to form a planar rotary valve seal with an outer periphery, a plurality of openings in the stator face that are connected to respective passages through the stator, and wherein at least one of the passages through the stator is a stator vacuum passage directly connected to a vacuum pump; (c) a sealed valve chamber having an interior volume contiguous with the outer periphery of the rotary valve seal, which chamber is sealed from the atmosphere surrounding the rotary valve; and (d) a vacuum vent passage connected to the sealed valve chamber.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: March 10, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Glenn Paul Wagner
  • Patent number: 7491261
    Abstract: An improved sieve bed design to manage breakthrough and the mass transfer zone by way of volumetric division. An empty space in the product end is separated from adsorbent-filled sieve space in the feed end by a mid-diffuser plate. The ratio of the empty product end void space to the adsorbent filled sieve space within a sieve bed may be determined by the relative percentages of the gasses to be separated and the bulk loading factor of the molecular sieve. A product end void space of the correct volume may ensure the maximum volume of nitrogen has been adsorbed before breakthrough occurs. In operation, pressure in the sieve bed empty space and sieve filled space may be equal at any instant. This contains breakthrough to the location of the mid-diffuser plate. The mass transfer zone may be static at the point of the mid-diffuser plate and as such, gas separation is a function of pressure within the bed.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: February 17, 2009
    Assignee: Wearair Oxygen, Inc.
    Inventors: John L. Warren, Anthony Hiscock
  • Publication number: 20080314246
    Abstract: The separation of a target gas selected from a high pressure gas mixture containing said target gas as well as a product gas using a swing adsorption process unit. A turboexpander is used upstream of the swing adsorber to reduce the pressure of the high pressure gas mixture. A compressor is optionally used downstream of the swing adsorber to increase the pressure of the target gas-containing stream for injecting into a subterranean formation.
    Type: Application
    Filed: May 16, 2008
    Publication date: December 25, 2008
    Inventors: Harry W. Deckman, Bruce T. Kelley, Eugene R. Thomas, Ronald R. Chance, Paul S. Northrop, Edward W. Corcoran, JR.
  • Patent number: 7468096
    Abstract: The present invention concerns the apparatus for producing oxygen, comprising: a first zeolite bed connected to an external air pressurizing device and a depressurizing device for increasing or decreasing an internal pressure thereof; a second zeolite bed connected to the first zeolite bed in parallel and connected to the external air pressurizing device and the depressurizing device for decreasing or increasing an internal pressure thereof, the first and second zeolite beds being arranged such that the internal pressure of the second zeolite bed is decreased when the internal pressure of the first zeolite bed is increased, and the internal pressure of the second zeolite bed is increased when the internal pressure of the first zeolite bed is decreased; and a carbon molecular sieve bed communicated in fluid with the first and second zeolite beds for receiving and adsorbing oxygen produced in the first and second zeolite beds and discharging the produced oxygen to the outside and discharging selectively some of
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: December 23, 2008
    Assignees: Yonsei University, Daesung Industrial Gases Co., Ltd.
    Inventor: Chang-Ha Lee
  • Patent number: 7459008
    Abstract: A method and system of operating a trans-fill device. At least some of the illustrative embodiments are methods comprising generating an enriched gas stream from atmospheric air, and operating an intensifier which, when provided the enriched gas stream, produces a cylinder fill gas stream. The operating continues in the absence of the enriched gas stream being provided to the intensifier.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: December 2, 2008
    Inventors: Alonzo C. Aylsworth, Charles R. Aylsworth, Kevin G. McCulloh
  • Publication number: 20080241052
    Abstract: Apparatus, method and system for delivering a sterile unit dose of ozone that may include concentrating oxygen from air, which can include pressurizing at least one zeolite chamber having at least one zeolite material where the at least one zeolite material selectively adsorbs a substantial amount of nitrogen and not a substantial amount of oxygen. An oxygen-ozone cell may be filled with substantially concentrated oxygen from the at least one zeolite chamber. The oxygen-ozone cell may then be sequestered. The oxygen-ozone cell may be removed and may be engaged with an ozone conversion unit. The ozone conversion unit may charge the substantially concentrated oxygen generating a predetermined concentration of ozone. The oxygen-ozone cell may be disengaged from the ozone conversion unit.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Inventors: David M. Hooper, Thomas Foster, Noel Henson
  • Publication number: 20080184883
    Abstract: A metal-organic framework-based mesh-adjustable molecular sieve (MAMS) exhibiting a temperature-dependent mesh size. The MAMS comprises a plurality of metal clusters bound with a plurality of amphiphilic ligands, each ligand comprising a hydrophobic moiety and a functionalized hydrophilic moiety, and wherein the metal clusters and amphiphilic ligand functionalized hydrophilic moieties form a metal cluster layer, the metal cluster layer forming at least one hydrophilic pore. On each side of the metal cluster layer, a plurality of associated amphiphilic ligand hydrophobic moieties cooperate with the metal cluster layer to form a tri-layer and a plurality of tri-layers are packed in a facing-spaced apart relationship to form at least one hydrophobic pore.
    Type: Application
    Filed: April 23, 2007
    Publication date: August 7, 2008
    Applicant: Miami University
    Inventors: Hong-Cai Zhou, Shengqian Ma
  • Patent number: 7404846
    Abstract: Method for the separation of a gas mixture comprising providing a PSA system with at least one adsorber vessel containing adsorbent material that is selective for the adsorption of carbon monoxide and nitrogen, passing a feed gas mixture containing at least hydrogen and carbon monoxide and optionally containing nitrogen through the adsorbent material in a feed step and withdrawing a purified hydrogen product from the adsorber vessel, wherein the feed step has a duration or feed time period of about 30 seconds or less. The adsorbent material is characterized by any of (1) a Henry's law constant for carbon monoxide between about 2.5 and about 5.5 (mmole/g)/atm; (2) a carbon monoxide heat of adsorption between about 6.0 and about 7.5 kcal/gmole; (3) a Henry's law constant for nitrogen greater than about 1.5 (mmole/g)/atm; and (4) a selectivity of carbon monoxide to nitrogen between about 5.0 and about 8.0.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 29, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr., Paul Anthony Novosat
  • Patent number: 7402193
    Abstract: A portable oxygen concentrator includes a pair of sieve beds having first and second ends, a compressor for delivering air to the first ends of the sieve beds, a reservoir communicating with the second ends of the sieve beds, and an air manifold attached to the first ends of the sieve beds. The air manifold includes passages therein communicating with the compressor and the first ends of the sieve beds. A set of valves is coupled to the air manifold, and a controller is coupled to the valves for selectively opening and closing the valves to alternately charge and purge the sieve beds to deliver concentrated oxygen into the reservoir. An oxygen delivery manifold communicates with the second ends of the sieve beds for delivering oxygen from the reservoir to a user. Pressure sensors may be provided in the reservoir and/or delivery line for controlling operation of the controller.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: July 22, 2008
    Assignee: Respironics Oxytec, Inc.
    Inventors: Peter L. Bliss, Charles R. Atlas, Jr., Scott Cameron Halperin
  • Patent number: 7396387
    Abstract: The present invention generally relates to large capacity (e.g., greater than 350 tons/day O2) vacuum pressure adsorption (VPSA) systems and processes that employ a single train including four beds, at least one feed compressor feeding two beds simultaneously at any given instant in time, and a single vacuum pump. The compressor(s) and the vacuum pump can be utilized 100% of the time. Use of product quality gas for purging is avoided, with about 10-20% improvement in O2 productivity and 5-10% reduction in capital cost expected.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 8, 2008
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Andrew Rosinski
  • Patent number: 7350521
    Abstract: Oxygen concentrator system having a portable oxygen generator unit adapted to generate a non-humidified oxygen-rich gas and a stationary base unit adapted to generate a humidified oxygen-rich gas, wherein the portable oxygen generator unit and the stationary base are adapted for operation in a coupled mode and an uncoupled mode. The portable oxygen generator unit includes a first flow coupling adapted to receive the humidified oxygen-rich gas when operating in the coupled mode, piping means adapted to combine the non-humidified oxygen-rich gas and the humidified oxygen-rich gas to form a humidified oxygen-rich gas product, and an oxygen-rich gas product delivery port. The stationary base unit is adapted to recharge a rechargeable power supply system in the portable oxygen generator unit when the units are coupled.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: April 1, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Roger Dean Whitley, Glenn Paul Wagner, Matthew James LaBuda
  • Patent number: 7329304
    Abstract: A portable oxygen concentrator includes a pair of sieve beds having first and second ends, a compressor for delivering air to the first ends of the sieve beds, a reservoir communicating with the second ends of the sieve beds, and an air manifold attached to the first ends of the sieve beds. The air manifold includes passages therein communicating with the compressor and the first ends of the sieve beds. A set of valves is coupled to the air manifold, and a controller is coupled to the valves for selectively opening and closing the valves to alternately charge and purge the sieve beds to deliver concentrated oxygen into the reservoir. An oxygen delivery manifold communicates with the second ends of the sieve beds for delivering oxygen from the reservoir to a user. Pressure sensors may be provided in the reservoir and/or delivery line for controlling operation of the controller.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: February 12, 2008
    Assignee: Respironics Oxytec, Inc.
    Inventors: Peter L. Bliss, Charles R. Atlas, Jr., Scott Cameron Halperin
  • Patent number: 7314503
    Abstract: A process for the removal of inert gases, such as nitrogen and carbon dioxide, from methane-containing gases, such as natural gas, including a first stage removal which lowers the total combined inert content to about less than 30% and a second stage removal utilizing a pressure swing adsorption process comprising one or more adsorbent beds comprising contracted titanosilicate-1 adsorbent, wherein the purified methane-containing gas contains less than about 6% total combined inerts.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: January 1, 2008
    Assignee: Syntroleum Corporation
    Inventors: J. Mark Landrum, Branch J. Russell, Kenneth Agee, Stephen LeViness
  • Patent number: 7306644
    Abstract: The present invention provides a system and method for generation of nitrogen enriched air for inerting aircraft fuels tanks. One embodiment of the present invention includes a duct assembly; a primary heat exchanger; a gas generating system heat exchanger; a first temperature sensor; a second temperature sensor; a controller monitor; a valve; an air separation module assembly having a primary module and a secondary module; at least one flow control orifice; and a pressure sensor. The present invention utilizes a minimal complement of components and streamlined processes, thus minimizing structural and operational costs while optimizing performance and safety features.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: December 11, 2007
    Assignee: Honeywell International, Inc.
    Inventors: James E. Leigh, Kader A. Fellague, Giorgio C. Isella, Paul J. Roach
  • Patent number: 7300497
    Abstract: A gas separation method is provided in which, when separating a first component and a second component from a mixed gas containing a plurality of components by using a pressure swing adsorption method, these components can be efficiently recovered and cost reduction can be achieved. Between an adsorption step and a regeneration process step, which use a first adsorption column containing a first adsorbent on which the first component is less readily adsorbable and the second component is absorbable, and a second adsorption column containing a second adsorbent on which the first component is readily adsorbable and the second component is less readily adsorbable, an equalization depressurization step and an equalization pressurization process step, in which the pressure of the first and second adsorption columns is equalized, is carried out.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: November 27, 2007
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Tatsushi Urakami, Tooru Nagasaka, Masato Kawai, Akihiro Nakamura
  • Patent number: 7300899
    Abstract: A lithium exchanged zeolite X adsorbent blend with improved performance characteristics produced by preparing a zeolite X, preparing a binder which includes highly dispersed attapulgite fibers wherein the tapped bulk density of the highly dispersed attapulgite fibers measured according to DIN/ISO 787 is more than about 550 g/ml, mixing the zeolite X with the binder to form a mixture, forming the mixture into a shaped material, ion exchanging the zeolite X at least 75% with lithium ions, and calcining the shaped material.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: November 27, 2007
    Assignee: Zeochem, LLC
    Inventors: Kerry Weston, Dave Jaussaud, Robert L. Chiang
  • Patent number: 7294172
    Abstract: A gas recovery system comprising a source of gas having a preselected concentration of a desired component (9), at least one application (1) that adds impurities to said gas, and at least one an adsorption system (6) that purifies said gas to produce a purified gas for re-use in application (1), wherein said at least one adsorption system includes at least one adsorbent bed (A) having at least three layers of adsorbents. A recovery process is also disclosed.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: November 13, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Scot Eric Jaynes, Bernard Thomas Neu, James Smolarek, Mark Thomas Emley
  • Patent number: 7273051
    Abstract: Oxygen generation system having a portable oxygen generator unit including a portable air separation device for the generation of an oxygen-rich gas, a primary gas pump including means to supply air to the portable air separation device, a primary motor to drive the gas pump, a rechargeable power supply to drive the motor, connector means adapted to deliver power to the rechargeable power supply, flow coupling means to transfer the oxygen-rich gas from the portable oxygen generator unit, and a first oxygen-rich gas product discharge port. The system also includes a stationary base unit adapted to couple with the portable oxygen generator unit, wherein the stationary base unit has a stationary power supply system including connector means adapted to recharge the rechargeable power supply in the portable oxygen generator unit, flow coupling means to receive the oxygen-rich gas from the portable oxygen generator unit, and an optional second oxygen-rich gas product discharge port.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: September 25, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Roger Dean Whitley, Glenn Paul Wagner, Matthew James LaBuda
  • Patent number: 7264647
    Abstract: A device for enriching air with oxygen in an aircraft, and a method for operating the device provides product gas enrichment with oxygen with minimum requirements. An oxygen measurement apparatus analyzing the product gas flow as well as a throughput sensor are provided in combination with a change-over device. A flow connection to an outlet channel is created in a first switch position, and a flow connection to a consumer conduit exists in a second switch position. A device for producing a change-over signal from the first switch position to the second switch position is provided if the determined oxygen output as a product of the product gas flow and the oxygen concentration has reached or exceeded a predefined threshold value.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: September 4, 2007
    Assignee: Dräger Aerospace GmbH
    Inventors: Rüdiger Meckes, Wolfgang Rittner, Herbert Meier
  • Patent number: 7250074
    Abstract: The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: July 31, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Terence Andrew Dritz, Paul Neagle, Robert Dwayne Litt, Ravi Arora, Michael Jay Lamont, Kristina M. Pagnotto
  • Patent number: 7250150
    Abstract: A chemical reaction is performed with separation of the product(s) and reactant(s) by pressure swing adsorption (PSA), using an apparatus having a plurality of adsorbers cooperating with first and second valve assemblies in a PSA module. The PSA cycle is characterized by multiple intermediate pressure levels between higher and lower pressure of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, entering from compressor stage(s) or exiting into exhauster or expander stages, under substantially steady conditions of flow and pressure. The PSA module comprises a rotor containing the adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor. The reaction may be performed within a portion of the rotor containing a catalyst.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: July 31, 2007
    Assignee: QuestAir Technology, Inc.
    Inventors: Bowie G. Keefer, Denis J. Connor
  • Patent number: 7189280
    Abstract: A method and system for adsorptive separation of a feed gas mixture provides for increased system efficiency and product recovery. The requirement for purge gas streams consuming desired product gas to regenerate adsorption beds is reduced through an inventive method for adsorbent selection and adsorption bed and process design.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: March 13, 2007
    Assignee: QuestAir Technologies Inc.
    Inventors: Soheil Alizadeh-Khiavi, Surajit Roy, James A. Sawada
  • Patent number: 7144446
    Abstract: An on-board adsorber and method for delivering oxygen on an aircraft that has a squat and compact configuration with a mass of adsorbent with a height to diameter ratio ranging from 0.8 and 2, and the ratio of the cross-sectional area S of the mass of adsorbent to the cross-sectional area S of the central duct ranges from 80 to 110.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: December 5, 2006
    Assignee: L'Air Liquide Socié´á´Anonyme à{grave over ( )}Directoire et Consell de Surveillance pour l'Étude et l'Exploitation des Procédés Georges Claude
    Inventor: Stéphane Lessi
  • Patent number: 7121276
    Abstract: An oxygen separator for separating oxygen from ambient air utilizing a vacuum swing adsorption process has a mass of less than 2.3 kg. A carrier is mountable on a person to support the oxygen separator for ambulatory use.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: October 17, 2006
    Assignee: Vbox, Incorporated
    Inventors: Theodore W. Jagger, Nicholas P. Van Brunt, John A. Kivisto, Perry B. Lonnes
  • Patent number: 7114932
    Abstract: A pivoting vane rotary compressor includes a housing having a generally pear-shaped chamber. A rotor mounted within the chamber defines a main and constricted chamber regions. Reversible intake and exhaust ports alternately introduce air into and exhaust air from the chamber. The rotor carries pivotable vanes and a motor drives the rotor alternately in opposing first and second directions to open the vanes and define compartments that transmit the air through the chamber between the ports. Air introduced through one of the ports is compressed and discharged through the other port. A concentrator employs a pair of these compressors as well as associated filters and crossover valves.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: October 3, 2006
    Inventor: Stuart Bassine
  • Patent number: 7108736
    Abstract: A method of installing a molecular sieve bed gas enrichment system in a vehicle such as an aircraft. A system controller, a product gas distribution conduit, a high pressure gas supply conduit which extends from a high pressure gas source, and a plurality of molecular sieve beds are installed in the vehicle. Each sieve bed has a first port which delivers product gas through a check valve to an outlet duct. Each sieve bed also includes a second port connected to a valve assembly which is controlled by the system controller to connect the second port either to a gas supply duct during a charging phase or to a venting duct during a venting phase. The outlet duct for each sieve bed is connected to the product gas distribution conduit, and the gas supply duct for each sieve bed is connected to the high pressure gas supply conduit.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: September 19, 2006
    Assignee: Honeywell Normalair-Garrett (Holdings) Limited
    Inventor: Robert John Phillips
  • Patent number: 7087101
    Abstract: A method of controlling a gas adsorption apparatus including a sieve bed containing molecular sieve bed material, the bed being cyclically operable in a charge mode to adsorb non-product gas from an air supply thereby to increase the concentration of a product gas in a product gas supply which passes to a product gas line and in a vent mode to desorb the adsorbed non-product gas which passes to a non-product gas line, and there being a passage to permit a restricted amount only of the product gas supply to pass from the product gas supply line to the bed when operating in vent mode, and wherein the method includes operating a variable flow device to permit an increased amount of the product gas supply to pass to the bed when operating in vent mode, under predetermined conditions.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 8, 2006
    Assignee: Honeywell Normalair-Garrett (Holdings) Limited
    Inventors: Kraig Charles Murley, David John Peacey, Terence Oborne
  • Patent number: 7081153
    Abstract: The present invention provides a system and method for generation of nitrogen enriched air for inerting aircraft fuel tanks. One embodiment of the present invention includes a duct assembly; a primary heat exchanger; a gas generating system heat exchanger; a first temperature sensor; a second temperature sensor; a controller monitor; a valve; an air separation module assembly having a primary module and a secondary module; at least one flow control orifice; and a pressure sensor. The present invention utilizes a minimal complement of components and streamlined processes, thus minimizing structural and operational costs while optimizing performance and safety features.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: July 25, 2006
    Assignee: Honeywell International Inc.
    Inventors: James E. Leigh, Kader A. Fellague, Giorgio C. Isella, Paul J. Roach
  • Patent number: 7066985
    Abstract: A portable gas fractionalization apparatus that provides oxygen rich air to patients is provided. The apparatus is compact, lightweight, and low-noise. The components are assembled in a housing that is divided into two compartments. One compartment is maintained at a lower temperature than the other compartment. The lower temperature compartment is configured for mounting components that can be damaged by heat. The higher temperature compartment is configured for mounting heat generating components. An air stream is directed to flow from an ambient air inlet to an air outlet constantly so that there is always a fresh source of cooling air. The apparatus utilizes a PSA unit to produce an oxygen enriched product. The PSA unit incorporates a novel single ended column design in which all flow paths and valves can be co-located on a single integrated manifold. The apparatus also can be used in conjunction with a satellite conserver and a mobility cart.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: June 27, 2006
    Assignee: Inogen, Inc.
    Inventors: Geoffrey Frank Deane, Brenton Alan Taylor, Rex O. Bare, Andrew J. Scherer
  • Patent number: 7041155
    Abstract: A nitrogen selective adsorbent comprises a zeolite of a faujasite crystalline structure containing Li+ and at least one of NH+ and H+ as essential cations, and has a nitrogen adsorption characteristic represented by specific correlation between the number of associated Li+ ions per unit lattice of a zeolite crystal and the amount of adsorbed nitrogen per unit lattice of the zeolite crystal. An air separation method employs the aforesaid nitrogen selective adsorbent for separation between nitrogen and oxygen by selective adsorption of nitrogen in air.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: May 9, 2006
    Assignee: Air Water, Inc.
    Inventors: Jin-Bae Kim, Hisanao Jo, Haruo Yoshioka, Hiromi Kiyama
  • Patent number: 7029521
    Abstract: Process in conjunction with the production of oxygen (22), wherein incoming air (10, 16, 16a, 16b,) is brought to pass through a sorbent/zeolite structure (18), which comprises at least three zeolite units (50a–f) intermittently operated in a first stage comprising adsorption of nitrogen from the air and a second stage comprising desorption (20, 20a, 20b) of thus adsorbed nitrogen. At least two of the zeolite units are operated in the adsorption stage, the incoming air being brought to pass consecutively (53a) through the at least two zeolite units to form an increasing nitrogen gradient; and/or at least two units of the zeolite units are operated in the desorption stage, a pressure being released and/or a desorbing gas (22a, 22b) being brought to pass consecutively (53b) through the at least two zeolite units to form a decreasing nitrogen gradient in the zeolite units.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: April 18, 2006
    Assignee: Ifo Ceramics Aktiebolag
    Inventor: Thomas Johansson
  • Patent number: 7025801
    Abstract: The treatment unit comprises N adsorption units, N being greater than or equal to 1, operating on a parametrized cycle split uniformly into at most N phase times. Further more, use is made of a control unit for controlling the treatment unit, designed to modify at least one parameter of the cycle. Each time there is a predicted change in the composition of the feed gas, the control unit is sent a pre-established signal representing this change. The processing unit then processes the signal to determine the parameters of an exceptional operating cycle of the treatment unit which cycle is suited to the predicted change.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: April 11, 2006
    Assignee: L'Air Liquide, Société Anonyme àl Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventor: Christian Monereau
  • Patent number: 7011693
    Abstract: A PSA unit for purifying hydrogen in a fuel processor system. The PSA unit employs rotary valves that cycle the pressurization of vessels, including an adsorbent, between a high pressure state and a low pressure state. The purified hydrogen is released from the vessels through a purified gas output port when the vessels are in the high pressure state and the impurities are released through an exhaust port when the vessels are in the low pressure state. The PSA unit also employs a mass flow control device and a pressure sensor in the purified gas output port. A controller receives a pressure signal from the pressure sensor, and controls the flow through the mass flow control device and the speed of the rotary valves so that the proper pressure is maintained at the hydrogen output port.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: March 14, 2006
    Assignee: General Motors Corporation
    Inventors: Kiran Mallavarapu, John B Ruhl, Craig S. Gittleman
  • Patent number: 6997970
    Abstract: A gas generation method and apparatus, capable of use in an aircraft, generates oxygen with at least one On Board Oxygen Generating System (OBOGS) and generates an inert gas with at least one On Board Inert Gas Generating System (OBIGGS) and selectively supplies an auxiliary supply of inert gas utilizing a waste gas output of the at least one OBOGS. The inert gas can include nitrogen. An auxiliary source of oxygen can also be provided. Control valves can be used to selectively supply the waste gas output of the at least one OBOGS to the atmosphere or to either of two locations. The oxygen can be used in a passenger compartment of the aircraft and the inert gas used in either a fuel tank or cargo bay of the aircraft.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: February 14, 2006
    Assignee: Carleton Life Support Systems, Inc.
    Inventor: Victor P. Crome
  • Patent number: 6955711
    Abstract: Component contained in a gas mixture can be separated based on a PSA method and recovered with high purities at the same time, the system is simple, the system cost is low, and the operation is easy and may be used for separating oxygen and nitrogen from air or for separating noble gases and nitrogen from a gas mixture containing noble gases and nitrogen, and obtaining each gas as a product.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: October 18, 2005
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Masato Kawai, Akihiro Nakamura, Tatsuya Hidano
  • Patent number: 6955710
    Abstract: Method and system on board an aircraft for the production of an oxygen-enriched gas stream from an oxygen/nitrogen gas mixture, particularly air, comprising at least one adsorber containing at least one adsorbent for adsorbing at least some of the nitrogen molecules contained in the oxygen/nitrogen feed mixture, characterized in that the adsorbent comprises a faujasite-type zeolite, having a Si/Al ratio of 1 to 1.50, exchanged to at least 80% with lithium cations. Aircraft equipped with such a system, in particular an airliner, especially an airliner of the long-range, large-capacity type.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 18, 2005
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et, l 'Exploitation des Procedes Georges Claude
    Inventors: Stéphane Lessi, Richard Zapata, Jean-Michel Cazenave, Jean Dehayes
  • Patent number: 6929683
    Abstract: A pressure swing adsorption system including a pressure vessel having an opening and a valve manifold including a body having a first cavity fluidly connected to the opening. The body further includes a passage and a channel, such that the passage connects the channel to the cavity. The valve manifold further includes a valve provided within the passage. The valve is configured to selectively permit and restrict flow between the channel and the cavity via the passage.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: August 16, 2005
    Assignee: H2gen Innovations, Inc.
    Inventors: Franklin D. Lomax, Jr., Michael S. Streeks
  • Patent number: 6923844
    Abstract: A gas separation method and apparatus that recovers efficiently principal gas components from a feed gas that includes a plurality of components, and enables supplying the product gases continuously at a stable flow rate and component concentration. A first separation step using a first adsorption column and a second separation step using a second adsorption column are provided, a circulating feed gas, consisting of the recovered exhaust gases discharged in each of the steps and the feed gas, is used as a gas to be separated. The outflow rate and component concentration of a second gas product are maintained constant by controlling the outflow rate of the first gas product.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 2, 2005
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Tatsushi Urakami, Tooru Nagasaka, Masato Kawai, Akihiro Nakamura
  • Patent number: 6918948
    Abstract: A Process for the production and uses of a molecular sieve adsorbent blend product with improved performance characteristics produced by preparing a zeolite powder, preparing a highly dispersed attapulgite fiber binder, mixing the zeolite powder with the highly dispersed attapulgite binder to form a mixture, forming molecular sieve adsorbent products into a shaped material and calcining the shaped material, wherein the tapped bulk density of the highly dispersed attapulgite fibers measured according to DIN/ISO 787 is more than about 550 g/ml.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: July 19, 2005
    Assignee: Zeochem LLC
    Inventors: Dave Jaussaud, Kerry Weston, Armin Pfenninger, Beat Kleeb
  • Patent number: RE40006
    Abstract: Pressure swing adsorption (PSA) separation of a gas mixture is performed in an apparatus with a plurality of adsorbent beds. The invention provides rotary multiport distributor valves to control the timing sequence of the PSA cycle steps between the beds, with flow controls cooperating with the rotary distributor valves to control the volume rates of gas flows to and from the adsorbent beds in blowdown, purge, equalization and repressurization steps.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: January 22, 2008
    Assignee: QuestAir Technologies Inc.
    Inventors: Bowie G. Keefer, David G. Doman