Plural Pressure Varying Steps (e.g., Pressure Swing Adsorption, Etc.) Patents (Class 95/96)
  • Patent number: 8529664
    Abstract: The separation of a target gas selected from a high pressure gas mixture containing said target gas as well as a product gas using a swing adsorption process unit. A turboexpander is used upstream of the swing adsorber to reduce the pressure of the high pressure gas mixture. A compressor is optionally used downstream of the swing adsorber to increase the pressure of the target gas-containing stream for injecting into a subterranean formation.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, Bruce T. Kelley, Eugene R. Thomas, Ronald R. Chance, Paul S. Northrop, Edward W. Corcoran, Jr.
  • Publication number: 20130213229
    Abstract: An acid-gas sorbent comprising an amine-composite. The present composite may comprise a first component comprising an amine compound at a concentration of from about 1 wt % to about 75 wt %; a second component comprising a hydrophilic polymer and/or a pre-polymer compound at a concentration of from about 1 wt % to about 30 wt %; and a third component comprising a cross-linking agent, and/or a coupling agent at a concentration of from about 0.01 wt % to about 30 wt %.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: ARCHON TECHNOLOGIES LTD.
    Inventors: AHMED M. SHAHIN, CONRAD AYASSE
  • Patent number: 8512439
    Abstract: The present invention proposes a method for feeding a burden to a blast furnace (32), wherein the method comprises providing a charging device (38) having at least one material hopper (40), the material hopper (40) comprising a hopper chamber (42), a material inlet aperture for feeding a burden into the hopper chamber (40), and a material discharge aperture for feeding a burden from the hopper chamber (40) to the blast furnace (32); the material inlet aperture having an associated inlet seal valve 44) for opening and closing the material inlet aperture and the material discharge aperture having an associated material discharge valve (46) for opening and closing the material discharge aperture.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 20, 2013
    Assignee: Paul Wurth S.A.
    Inventors: Jeannot Loutsch, Jean-Paul Simoes, Lionel Hausemer
  • Patent number: 8512443
    Abstract: Hydrogen can be recovered in a refinery network using a combination of a cycling adsorber unit and a membrane separation unit. A membrane separation unit can be used to generate at least a portion of the purge hydrogen stream for the cycling adsorber unit. This can reduce the portion of the hydrogen product stream from the cycling adsorber unit required for regeneration of the adsorbent.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: August 20, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Narasimhan Sundaram, John W. Viets
  • Publication number: 20130206004
    Abstract: Adsorptive decomposition of a gas mixture is performed by vacuum pressure swing adsorption. The gas mixture is condensed to the adsorption pressure by means of at least one condenser prior to being fed into the vacuum pressure swing adsorption process. Regeneration of the adsorber(s) is carried out by means of at least one vacuum pump. The condensed gas mixture (1, 5, 6) is at least periodically and/or at least partially temporarily stored (S1) and/or fed to a consumer at those times when no gas mixture is being fed to the vacuum pressure swing adsorption process; and/or at least one of the vacuum pumps (P) that is not required for the regeneration is used at least occasionally for another application at those times when no regeneration of the adsorber or an adsorber (A, A?) is being carried out.
    Type: Application
    Filed: October 5, 2011
    Publication date: August 15, 2013
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventor: Matthias Grahl
  • Publication number: 20130205828
    Abstract: A method for integrating a liquefied natural gas liquefier system with production of liquefied natural gas from a methane-containing gas stream. The liquefied natural gas is produced by feeding a methane-containing gas stream through a heat exchanger to a distillation column and liquefying the natural gas while capturing the gaseous nitrogen. The liquefied natural gas is captured and the nitrogen gas is recovered, fed through the heat exchanger to recover cold and purified.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 15, 2013
    Inventors: Rustam H. Sethna, Richard Potthoff, Guillaume Pages
  • Patent number: 8500852
    Abstract: Methods, devices, and systems, and devices for carrying out sorption (adsorption and absorption) for separating and/or purifying fluid mixtures are disclosed. Medical oxygen generators, dehumidifying units, sorptive heat pumps, ozone generators and Peltier devices are also disclosed. The sorption methods involve pressure swing operation of at least two sorption units. Energy from the desorbing and decompressing fluid is substantially recovered and used within the system.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: August 6, 2013
    Assignee: Separation Design Group, LLC
    Inventor: S. Douglas Galbraith
  • Patent number: 8500850
    Abstract: The present invention relates to a process for the separation of gases which comprises putting a mixture of gases in contact with a zeolite of the ESV type to obtain the selective adsorption of at least one of the gases forming the gaseous mixture. The present invention also relates to particular zeolitic compositions suitable as adsorbents.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: August 6, 2013
    Assignee: ENI S.p.A.
    Inventors: Angela Carati, Caterina Rizzo, Marco Tagliabue, Luciano Cosimo Carluccio, Cristina Flego, Liberato Giampaolo Ciccarelli
  • Patent number: 8496738
    Abstract: A mixed gas is separated with collection of at least one constituent gas. An inlet leads to a blower or other gas compression element through a valve. This blower feeds a chamber which contains media which selectively adsorbs the constituent gas to be collected, such as nitrogen from air. An exhaust from the chamber leads to an exhaust through a check valve. The blower can be reversed after nitrogen has been adsorbed within the chamber to desorb nitrogen and deliver nitrogen back through the blower. The inlet valve is closed after blower reversing and a separate diversion pathway is opened so that nitrogen is delivered from the blower to a nitrogen collection region. A variant system also includes an oxygen collection region on a side of the chamber opposite the blower for collection of both nitrogen and oxygen separated from air simultaneously, or collection of other constituent gases.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 30, 2013
    Assignee: Pacific Consolidated Industries, Inc.
    Inventors: Tarik Naheiri, Steve Schellhase, Javier Lopez, James Yang
  • Patent number: 8496733
    Abstract: The present invention relates to large scale pressure swing adsorption systems (i.e., ranging from twelve to sixteen beds) utilizing new and advanced cycles to obtain enhanced hydrogen recovery from a hydrogen containing feed gas (i.e., synthesis gas).
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: July 30, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed S. A. Baksh, Marian Simo
  • Patent number: 8491704
    Abstract: The present invention relates to a six bed pressure swing adsorption (PSA) system utilizing new and advanced cycles to obtain enhanced hydrogen recovery from a hydrogen containing feed gas (i.e., synthesis gas). In one such cycle each of the six beds has four pressure equalization steps, and at least one of the beds is receiving and processing said feed gas to obtain a hydrogen product gas (i.e., a 6-1-4 cycle).
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: July 23, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed S. A. Baksh, Marian Simo
  • Patent number: 8480789
    Abstract: The present disclosure provides a method for separating and purifying a landfill gas stream. In one embodiment, the method includes a step of collecting a crude landfill gas stream which includes at least methane, carbon dioxide, oxygen, and nitrogen gases. The method also includes a step of separating the crude landfill gas stream into at least an intermediate landfill gas stream and a first waste gas stream using a membrane separation unit, wherein the intermediate landfill gas stream is enriched in methane and depleted in carbon dioxide relative to the crude landfill gas stream. The method further includes a step of separating the intermediate landfill gas stream into at least a final landfill gas stream and a second waste gas stream using a pressure swing adsorption separation unit, wherein the final landfill gas stream is enriched in methane and depleted in carbon dioxide, oxygen, and nitrogen relative to the intermediate landfill gas stream.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: July 9, 2013
    Assignee: Manufactured Methane Corporation
    Inventors: Cary V. Sorensen, Jeffrey R. Bailey
  • Patent number: 8465570
    Abstract: A method for the purification of a feed gas stream containing at least CO2 and at least one impurity with by the incorporation of a purification step, enabling water to be at least partially removed is provided.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: June 18, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Bruno Alban, Christophe Claeys, Philippe Court, Arthur Darde, Guillaume De Smedt, Bao Ha, Vladimir Hasanov, Simon Jallais, Christian Monereau, Serge Moreau, Elise Renou, Ivan Sanchez-Molinero, Jean-Pierre Tranier
  • Patent number: 8465571
    Abstract: A fluid treatment device is disclosed. The device includes a vessel having a fluid entrance and exit. Within the vessel hollow fiber of nano-porous material are arranged so as to define two volumes separated by the nano-porous material. In one embodiment the fluid, air, passes up the center of the hollow fiber drying as the air contacts the inner walls of the fiber. The device is purged by stopping the flow through the device and allowing the air pressure that builds up between the fibers to be released through the nano-porous material.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: June 18, 2013
    Assignee: Nano-Porous Solutions Limited
    Inventor: Colin Thomas Billiet
  • Patent number: 8449650
    Abstract: Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 28, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Robert P. Currier, Stephen J. Obrey, David J. Devlin, Jose Maria Sansinena
  • Patent number: 8449649
    Abstract: Systems and methods for initiating startup of PSA assemblies in hydrogen-processing assemblies, which may include a hydrogen-generation assembly and/or a fuel cell stack. The systems and methods include startup procedures that provide for pressurization of the adsorbent beds of the PSA assembly without the need for a stored quantity or other supply of purified hydrogen gas. The systems and methods additionally or alternatively include startup procedures that restrict or even prevent contamination of portions of the PSA assembly, hydrogen storage devices and/or accumulator tanks with an impure gas stream and/or decrease accumulation of the impure gas stream therein. This impure gas stream may be the mixed gas, reformate, or other gas stream that is intended to be purified by the PSA assembly when the PSA assembly is in its hydrogen-purifying operating state.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 28, 2013
    Assignee: Idatech, LLC
    Inventor: Benjamin Charles Greenough
  • Patent number: 8444750
    Abstract: The present invention relates to the separation of one or more of CO2, N2, and H2S gas components from a gas mixture containing at least a second gas using a swing adsorption process unit. The adsorbent contactors of the swing adsorption process unit are engineered structured adsorbent contactors having a plurality of flow channels wherein 20 volume percent or less of the open pore volume of the contactors is in the mesopore and macropore range.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, Ronald R. Chance, Sebastian C. Reyes, Gregory J. DeMartin, Eugene R. Thomas, Paul S. Northrop, Bruce T. Kelley, Edward W. Corcoran, Jr.
  • Publication number: 20130112075
    Abstract: A method is provided for cleaning a gas flow made of top gas and/or off gas and/or export gas from a direct reduction plant or a melt reduction plant, which is loaded with dust and/or fine particulate solids. The gas flow is subjected to a dry cleaning using at least one dry filter, wherein dusts and/or fine particulate raw materials are separated from the gas flow. The cleaned gas flow is fed into a CO2 separating device, wherein CO2 is separated, forming a product gas that is substantially free of water and CO2 and is used for backflushing the dry filter.
    Type: Application
    Filed: July 7, 2011
    Publication date: May 9, 2013
    Inventor: Robert Millner
  • Patent number: 8435328
    Abstract: The present invention relates to a ten bed pressure swing adsorption (PSA) system utilizing new and advanced cycles to obtain enhanced hydrogen recovery from a hydrogen containing feed gas (i.e., synthesis gas). More specifically, through the newly developed process cycles, the ten bed PSA system is capable of matching the hydrogen recovery of conventional twelve bed PSA systems designed to manufacture 100 million standard cubic feet per day of gas.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: May 7, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed S. A. Baksh, Marian Simo
  • Publication number: 20130108531
    Abstract: The present invention is directed toward a method for purifying a natural gas stream comprising: 1) removing the bulk of CO2 by at least one non-membrane gas separation means; and 2) removing oxygen and other impurities by at least one additional gas separation means, wherein the final natural gas product has low level of CO2 and oxygen.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: Guild Associates, Inc.
    Inventor: Michael J. Mitariten
  • Patent number: 8424525
    Abstract: A breathing gas supply system for an aircraft includes a plurality of oxygen concentrating apparatus, each of which in use, is operable to supply oxygen enriched gas to a breathing gas supply. Each oxygen concentrating apparatus includes at least two active molecular sieve beds which are operable so that while one sieve bed is adsorbing non-oxygen gas from a pressurized gas supply, the or another bed is being purged of non-oxygen gas by subjecting the bed to lower pressure. Each oxygen concentrating apparatus includes an oxygen enriched gas flow control device which permits the flow of oxygen enriched gas produced by the oxygen concentrating apparatus to the breathing gas supply and permits a restricted flow of oxygen enriched gas from the breathing gas supply to the oxygen concentrating apparatus. Oxygen enriched gas produced by the adsorbing sieve bed flows direct to the bed being purged.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: April 23, 2013
    Assignee: Honeywell Normalair-Garrett (Holdings) Ltd.
    Inventors: David John Peacey, Kraig Charles Murley
  • Patent number: 8425659
    Abstract: A method of separating a target component from a chemical mixture comprising contacting a chemical mixture with a microporous coordination polymer. The microporous polymer is described by the formula: [M2(C8H2O6)] where M is a transition metal, rare earth metal, or other element from the groups consisting of IIA through VB.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: April 23, 2013
    Assignee: The Regents of The University of Michigan
    Inventors: Adam J. Matzger, Antek G. Wong-Foy, Stephen Caskey
  • Publication number: 20130095017
    Abstract: The present invention provides a biological H2S removal system for the treatment of process gas, comprising: a housing that receives a process gas stream through a gas inlet, the housing comprising a plurality of layers through which the process gas stream flows while it is treated for H2S removal, and a gas outlet through which a treated gas stream exits; wherein air is added to the process gas stream prior to the process gas stream entering the housing.
    Type: Application
    Filed: November 26, 2012
    Publication date: April 18, 2013
    Inventor: Jeffrey J. Grill
  • Publication number: 20130095561
    Abstract: The present invention provides a biological H2S removal system for the treatment of process gas, comprising: a housing that receives a process gas stream through a gas inlet, the housing comprising a plurality of layers through which the process gas stream flows while it is treated for H2S removal, and a gas outlet through which a treated gas stream exits; wherein air is added to the process gas stream prior to the process gas stream entering the housing.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 18, 2013
    Inventor: Jeffrey J. Grill
  • Patent number: 8414689
    Abstract: A process for the reduction of carbon dioxide (or CO2) from various types of gas emitting sources containing carbon dioxide, including the reduction of carbon dioxide from industrial gas emitting sources via the use of an ion exchange material.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: April 9, 2013
    Assignee: LANXESS Sybron Chemicals Inc.
    Inventor: Anthony P. Tirio
  • Patent number: 8409329
    Abstract: A method for the purification of a feed gas stream containing CO2 and water and at least one impurity chosen from NOx and SOx, comprising the incorporation of a purification step for the preferential elimination of water is provided.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: April 2, 2013
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Bruno Alban, Christophe Claeys, Philippe Court, Arthur Darde, Guillaume De Smedt, Bao Ha, Vladimir Hasanov, Simon Jallais, Christian Monereau, Serge Moreau, Elise Renou, Ivan Sanchez-Molinero, Jean-Pierre Tranier
  • Patent number: 8404024
    Abstract: During the conventional temperature swing adsorption (TSA) process, NF3 co-adsorbed with the impurities is vented during regeneration. This invention is a novel TSA cycle in which the co-adsorbed NF3 is recovered. In this novel TSA cycle, a control scheme is used to stop the adsorption prior to the saturation of the adsorber with impurities and use a recovery purge gas (either co-current or counter-current) to release the co-adsorbed NF3 off the saturated adsorber. The effluent of the inert purge gas can be combined with the effluent of the on-stream vessel or can be recycled to the feed of the on-stream vessel. 10%-100% of the co-adsorbed NF3 is recovered and made available as product in this novel TSA cycle. Thus the overall process yield of NF3 is increased. The removing of the co-adsorbed NF3 from the adsorber also prevents adsorber degradation thus prolonging the useful life of the adsorber.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Philip Bruce Henderson, Patrick Michael Colleran, Forrest Eli Hulbert
  • Patent number: 8404022
    Abstract: A method of concentrating ozone gas in which, although the apparatus configuration is simple, ozone gas of a predetermined concentration can be efficiently taken out, and an apparatus therefor are provided. In a method of concentrating ozone gas in which an ozone-oxygen mixture gas is acted in an adsorbing column that is filled with an adsorbent, to cause the adsorbent to selectively adsorb the ozone gas, and the selectively adsorbed ozone gas is desorbed, thereby concentrating and purifying the ozone gas, the ozone-oxygen mixture gas is acted on the adsorbent in a non-cooled state to cause the ozone gas to be selectively adsorbed to the adsorbent, the adsorbing column is vacuumed when performing an operation desorbing of the ozone gas, thereby desorbing the ozone gas from the adsorbent, and an initial amount of the leading out of the desorbed ozone gas is not recovered, thereby obtaining high-concentration ozone gas.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: March 26, 2013
    Assignee: Iwatani Corporation
    Inventors: Kunihiko Koike, Sadaki Nakamura, Naohisa Makihira, Koichi Izumi, Shigenori Takatori
  • Patent number: 8398747
    Abstract: This invention relates in part to a process for producing high purity acetylene by withdrawing a crude acetylene stream from a storage source, and passing said stream through an adsorbent bed that contains layered adsorption media to selectively remove moisture, solvent and carbon dioxide from the stream, thereby producing the high purity acetylene. The adsorption media is regenerated in-situ. The high purity acetylene product is useful as a source material for depositing carbon and carbon-containing films in semiconductor applications.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: March 19, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Xuemei Song, Lloyd Anthony Brown, Thomas Thompson
  • Publication number: 20130061750
    Abstract: A method of concentrating ozone gas including: causing ozone gas contained in ozone-oxygen mixture gas to be selectively adsorbed to adsorbents which are filled in a non-cooled state in at least two adsorbing cylinders arranged parallel to one another; desorbing the ozone gas from the adsorbents by subjecting a depressurizing process to each adsorbing cylinder during an ozone gas desorption operation; repeating an adsorption step and a desorption step alternately in the at least two adsorbing cylinders; and controlling the adsorbing cylinders, in such a way that one of the adsorbing cylinders is performing the adsorption step while another one of the adsorbing cylinders is performing the desorption step.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 14, 2013
    Applicant: IWATANI CORPORATION
    Inventors: Naohisa Makihira, Sadaki Nakamura, Goichi Inoue, Kunihiko Koike
  • Patent number: 8394174
    Abstract: The present invention provides for various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit in combination with either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit. The present invention further relates to a process for optimizing the recovery of carbon dioxide from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/water gas shift reactor/H2 pressure swing adsorption unit utilizing either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 12, 2013
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Patent number: 8388734
    Abstract: A method for producing a CO2-enriched gas from a feed gas comprising carbon dioxide (CO2), at least one component selected from H2, N2, CH4, CO, O2 and argon, water vapor, optionally impurities such as NOx and/or SOx , and a solid-particle concentration of between 0.01 and 100 mg/m3, wherein the feed gas is at least partially dried upstream of a PSA unit in order to prevent the solid particles from caking in the PSA unit is provided.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: March 5, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, Arthur Darde, Anne Berthelemot
  • Publication number: 20130036910
    Abstract: An apparatus for separation of gases from ambient air that has at least one separation column with an inlet at a first end and an outlet at a second end, a buffer column having a single inlet at a first end, a vacuum pump, and a valve system that connects the vacuum pump to the outlet at the first end of the separation column, and that connects the outlet at the second end of separation column to the single inlet at the first end of the buffer column.
    Type: Application
    Filed: October 15, 2012
    Publication date: February 14, 2013
    Applicant: VBOX, INCORPORATED
    Inventor: Vbox, Incorporated
  • Patent number: 8372375
    Abstract: For recovering hydrogen with a high recovery from a reformed gas and contributing to downsizing and cost reduction of facilities, a high-purity hydrogen E is obtained by reforming a reformable raw material A through a reforming unit 1 to yield a hydrogen-rich reformed gas B, compressing the hydrogen-rich reformed gas B with a compressor 2, allowing the compressed gas to pass through a PSA unit 3 to remove unnecessary gases other than carbon monoxide by adsorption, and allowing the resulting gas to pass through a carbon monoxide remover 4 packed with a carbon monoxide adsorbent supporting a copper halide to remove carbon monoxide by adsorption.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: February 12, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Noboru Nakao, Takeshi Yamashita, Akitoshi Fujisawa, Keita Yura
  • Patent number: 8361205
    Abstract: A modular and compact adsorbent bed structure is disclosed for use in an adsorption-based gas separation plant. The conventional adsorbent bed in a gas separation plant is replaced with a plurality of modular adsorbent bed units connected to make the adsorbent bed structure. The modular design requires lower fabrication and maintenance costs; is easier to transport; and is easier to load with adsorbent material.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 29, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Ashwin Desai, Cem E. Celik, Mark William Ackley, James Smolarek
  • Patent number: 8361198
    Abstract: A process is described for purifying synthesis gas by means of a pressure swing adsorption unit which is desorbed by a vacuum produced by a so-called ejector, which is driven by steam generated by a heat exchanger which uses the heat in the flue gas duct or in the useful-gas duct for the generation of steam. The pressure swing adsorption unit is operated advantageously in cyclic turns of adsorption under excess pressure, depressurization desorption and vacuum desorption and the gas desorbed by the ejector being cooled in a cooler so that the contained steam can be condensed and discharged or is advantageously returned to the feed gas for the synthesis gas production. The foreign gas desorbed by the pressure swing adsorption unit, which contains at least partly not yet consumed fuel gas, is recycled to the fuel gas. In an advantageous embodiment, the vacuum from the ejector is stored in an intermediate tank and applied to the pressure swing adsorption unit according to the vacuum desorption cycle.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: January 29, 2013
    Assignee: UHDE GmbH
    Inventors: Thilo Von Trotha, Vincent Liu, Michael Wyschofsky
  • Publication number: 20130019750
    Abstract: The present invention relates to a six bed pressure swing adsorption (PSA) system utilizing new and advanced cycles to obtain enhanced hydrogen recovery from a hydrogen containing feed gas (i.e., synthesis gas). In one such cycle each of the six beds has four pressure equalization steps, and at least one of the beds is receiving and processing said feed gas to obtain a hydrogen product gas (i.e., a 6-1-4 cycle).
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Inventors: Mohamed S. A. Baksh, Marian Simo
  • Patent number: 8349053
    Abstract: A high efficiency gas concentrating apparatus includes an air compressor for supplying high pressure air, first and second adsorption towers that are disposed above the air compressor and communicating with the air compressor to adsorb nitrogen and concentrate oxygen as the high pressure air is alternately supplied thereto, first and second concentrating passages that are disposed above the respective first and second adsorption towers to discharge the concentrated oxygen, and a cleaning tank that is disposed between the first and second concentrating passages to receive a portion of the concentrated oxygen from one of the first and second adsorption towers, temporarily store the received concentrated oxygen therein, and alternately remove adsorbed nitrogen by supplying the temporarily concentrated oxygen to the other of the first and second adsorption towers.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: January 8, 2013
    Assignees: Oxus Co., Ltd., Sogang University Industry-University Cooperation Foundation
    Inventors: Tae Soo Lee, Yoon Sun Choi, Seung Kwon Oh, Shin Kyu Han
  • Patent number: 8343259
    Abstract: Disclosed is a method for subjecting feed air to fractionation for recovery of a product oxygen fraction therefrom in a pressure swing adsorption (PSA) process utilizing a nitrogen-selective adsorbent (“NSA”) that is sensitive to water. The PSA process includes the steps of feed pressurization, production, equalization, and blowdown. The improvement to this PSA process commences with placing a bed of pre-treatment adsorbent between feed air and a bed of NSA. Next, a controllable valve is interposed between the pre-treatment adsorbent bed and the NSA bed. Finally, the controllable valve is kept closed during the steps of production, equalization, and when the process is idle. An advantageous NSA is LiX zeolite, Li-LSX zeolite, CaX zeolite, and similar adsorbents, particularly highly hydrophilic zeolites. Another feature of the disclosed PSA cycle is that the pre-treatment adsorbent bed blows-down while the NSA bed equalizes.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: January 1, 2013
    Assignee: WearAir Oxygen, Inc.
    Inventor: Seth Pemberton Knaebel
  • Patent number: 8337674
    Abstract: Helium is introduced as an additive to any of the oxygen streams introduced into an ozone generator, such as a dielectric discharge (cold plasma) ozone generator, where the effluent of the generator is directed to an adsorption process for separating the ozone from the oxygen. Also disclosed is an improved PSA cycle, which is designed to reduce the amount of make-up helium and oxygen required to sustain the ozone generation and recovery process.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: December 25, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Annemarie Ott Weist, Shailesh Pradeep Gangoli, Edward Landis Weist, Jr.
  • Patent number: 8313561
    Abstract: The present invention relates generally to radial flow vessels and processes to achieve even fluid flow distribution through the bed during purification, separation or reaction processes. The radial bed vessel is designed such that the ratio of the cross-sectional flow areas of the flow channels is in proportion to the ratio of the mass flow rates of the process gas with the proportionality constant between 0.7 and 1.4. In addition, the channels each have a cross-sectional flow areas such that the pressure change within each channel is less than or equal to 10% of the pressure drop across the bed of active material under the process operating conditions for the particular gas employed.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: November 20, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Cem E. Celik, Mark W. Ackley
  • Patent number: 8303930
    Abstract: The present invention relates to various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit followed by either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with an additional CO2 pressure swing adsorption unit. By using an uncoupled H2 PSA and CO2 VSA unit it is possible to produce high purity H2 and high purity CO2. The present invention further relates to a process for optimizing the recovery of CO2 from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/H2 pressure swing adsorption unit utilizing either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with a CO2 pressure swing adsorption unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 6, 2012
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Patent number: 8303683
    Abstract: Guard layers are employed in the adsorbent beds of rapid cycle pressure swing adsorption (RCPSA) devices to protect the adsorbent therein from certain contaminants (e.g. water vapour). Conventional PSA devices typically pack the guard layer with as much guard material as is practical. In RCPSA devices however, the performance of the guard layer can be improved by using a reduced amount of guard material and increasing access to it. Such embodiments are characterized by guard layers with a channel fraction of greater than 50%.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: November 6, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andre Jason Boulet, Amy Chiu, Brian G. Sellars, Andrea C. Gibbs
  • Patent number: 8298319
    Abstract: Disclosed are a pressure swing adsorption apparatus for hydrogen purification and a hydrogen purification method using the same. The pressure swing adsorption apparatus for hydrogen purification includes a plurality of adsorption columns connected with a feed supply pipe, a hydrogen storage tank for collecting purified hydrogen from the adsorption columns, and valves for opening or closing a plurality of pipes connected to the respective adsorption columns, and the adsorption columns are packed with adsorbent beds of active alumina or silica gel, activated carbon, zeolite 13X, zeolite 5A, and a carbon monoxide-selective adsorbent other than the zeolite 5A, in order to remove carbon dioxide, methane, and carbon monoxide from a hydrogen-containing gas mixture supplied through the feed supply pipe, and the content of carbon monoxide in the discharged hydrogen is minimized through sequential adsorption on the adsorbents in the adsorption columns.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 30, 2012
    Assignee: Korean Institute of Energy Research
    Inventors: Soon Haeng Cho, Sodankoor Garadi Thirumaleshwara Bhat, Sang Sup Han, Jong Ho Park, Jong Nam Kim, Heon Jung
  • Publication number: 20120247573
    Abstract: A pressure swing adsorption system includes a pressure vessel, a nozzle plate coupled to the vessel and sealed with respect to the pressure vessel, a backing plate that supports the nozzle plate, and a manifold including a plenum cavity and coupled to the nozzle plate via a neck such that the plenum cavity is in fluid communication with an interior of the pressure vessel. The neck is sealed with respect to the nozzle plate via a movable sealing surface. A method is provided in which pressure from the plenum cavity assists in closing valve coupled to the manifold. A removable insert is provided to the manifold to provide a removable sealing surface against which the valve closes.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 4, 2012
    Inventors: Franklin D. Lomax, JR., Howard Abramowitz, Edward T. McCullough
  • Publication number: 20120247331
    Abstract: A temperature swing adsorption process to purify a gas comprising at least one adsorption step and at least one regeneration step wherein the regeneration step takes place at a lower pressure than the adsorption step. The pressure is increased by a repressurization step between the regeneration step and the adsorption step, and then a purge step takes place after said repressurization step.
    Type: Application
    Filed: February 14, 2012
    Publication date: October 4, 2012
    Applicant: UOP LLC
    Inventors: Steven S.M. Struyf, William C. Rooney
  • Patent number: 8268044
    Abstract: A feed stream, comprising hydrogen sulphide (H2S), carbon dioxide (CO2), hydrogen (H2) and, optionally, carbon monoxide (CO), is separated into at least a CO2 product stream and an H2 or H2 and CO product stream. The stream is separated using a pressure swing adsorption system, an H2S removal system and a further separation system, which systems are used in series to separate the stream. The method has particular application in the separation of a sour (i.e. sulphur containing) syngas, as for example produced from the gasification of solid or heavy liquid carbonaceous feedstock.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: September 18, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Vincent White, Kevin Boyle Fogash, Jeffrey William Kloosterman, Jeffrey Raymond Hufton, Charles Linford Schaffer
  • Patent number: 8268043
    Abstract: A modular and compact adsorbent bed structure is disclosed for use in an adsorption-based gas separation plant. The conventional adsorbent bed in a gas separation plant is replaced with a plurality of modular adsorbent bed units connected to make the adsorbent bed structure. Modular adsorbent bed units of this invention provide higher capacity of product per unit volume of adsorbent material (i.e., increased adsorbent utilization) as compared to that obtained from conventional adsorbent beds. The modular design requires lower fabrication costs; is easier to transport; has less maintenance and repair requirements; and is easier to load with adsorbent material.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 18, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Cem E. Celik, Mark William Ackley, James Smolarek
  • Publication number: 20120227583
    Abstract: The invention relates to a method for purifying a gas flow including at least a first compound selected from the compounds of a first group including water, ammonia, aromatics, alkane-, alkene-, or alkyne-type hydrocarbons containing at least 5 carbon atoms, aldehydes, ketones, halogen hydrocarbons, hydrogen sulfide, hydrogen chloride, and at least second and third compounds selected from the compounds of a second group including helium, hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, hydrocarbons lower than C5, wherein said method comprises a variable-pressure adsorption implementing at least one main adsorber comprising at least one contactor having parallel passages, characterized in that said first compound is at least partially stopped upstream from said main adsorber.
    Type: Application
    Filed: November 4, 2010
    Publication date: September 13, 2012
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Christian Monereau, Francois Fuentes, Celine Carriere, Bhadra S. Grover, Yudong Chen, Madhava Kosuri
  • Patent number: 8262772
    Abstract: A process and system for recovering valuable by-products (e.g., hydrogen) from refinery gas streams. For hydrogen-only recovery, the invention comprises a partial condensation step to upgrade the refinery fuel gas to a minimum of 60% hydrogen, which is further purified in a pressure swing adsorption process. When configured to recover hydrogen, methane-rich gas and raw LPG (methane depleted gas containing C2 hydrocarbons and heavier), the invention comprises two partial condensation steps where the feed is cooled in the first step to allow separation of ethane and heavier hydrocarbons, and the resulting vapor is cooled to a lower temperature in a second step for hydrogen recovery.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: September 11, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Ramona Manuela Dragomir, Raymond Francis Drnevich, Dante Patrick Bonaquist