Apparatus For Selective Diffusion Of Gases (e.g., Semipermeable Membrane, Etc.) Patents (Class 96/4)
  • Patent number: 7943543
    Abstract: New ionic liquid-solid-polymer mixed matrix membranes were proposed for gas separations such as CO2 removal from natural gas or N2. For the new mixed matrix membranes, the solids such as carbon molecular sieves, microporous molecular sieves, MCM-41 type of mesoporous molecular sieves, or polymer of intrinsic microporosity (PIM) are coated (or impregnated) with ionic liquids such as 1-butyl-3-methyl imidazolium bis[trifluoromethylsulfonyl]amide. The ionic liquids coated or impregnated solids are then dispersed in the continuous polymer matrix to form mixed matrix membranes. These hybrid mixed matrix membranes will combine the properties of the continuous polymer phase, the ionic liquids, and the dispersed ionic liquids coated or impregnated solids phase, which will possibly open up new opportunities for gas separation processes such as CO2 separation from natural gas or flue gas.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 17, 2011
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Santi Kulprathipanja, Mark E. Schott, Stephen T. Wilson
  • Patent number: 7943045
    Abstract: A device for the thermal separation of water into hydrogen and oxygen, including a closed reaction chamber (1) containing water and, in said reaction chamber: —a heating system including one or several heat source elements (4,11), —one or several membranes (3), essentially impermeable to gas, to permit the selective passage of oxygen, —one or several membranes (2), essentially impermeable to gas, to permit the selective passage of hydrogen and —a mechanism (5) to permit the passage of water into said reaction chamber. According to the invention, —said heat source(s) (4, 11) is(are) placed in the water inside said reaction chamber (1), and, —said selective membranes (3) for oxygen are placed in said zones at high temperatures, —said selective membranes (2) for hydrogen are placed in said zones at lower temperatures. Preferably, the heating system is comprised of one or several concentrators (8, 9) of solar rays focusing the rays toward the inside of the reactor.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: May 17, 2011
    Assignee: H2 Power Systems Ltd.
    Inventors: Klaus Rohrich, Harald Wirth, Nils Kongmark
  • Publication number: 20110111323
    Abstract: An electrolyte membrane for electrochemical cells, that has oxide ion permeability properties, and methods for producing the same, is made of an oxide ion conductor having a component composition expressed by a general formula: La1-XSrXGa1-YMgYO3 (where X=0.05 to 0.3, and Y=0.025 to 0.3), and having a perovskite type crystal structure, wherein the electrolyte membrane has a thickness of 1 to 10 ?m and a columnar crystal structure grown to a membrane surface in a direction perpendicular to a membrane face, and wherein the perovskite type crystal structure of the electrolyte membrane having the columnar crystal structure grown to the membrane surface, has a crystal structure with [112] direction oriented perpendicularly to the membrane face.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 12, 2011
    Inventors: Tatsumi ISHIHARA, Takashi YAMADA
  • Patent number: 7938868
    Abstract: The inventive stage system for producing hydrogen consists of at least two upstream/downstream stages, respectively, each of which comprises, optionally, a catalytic reactor (C1 to C5) followed by a separator comprising a space (E1 to E4) for circulation of a gaseous mixture contacting at least one oxygen extracting membrane and a hydrogen collecting space, wherein the reactor (C1) of the upstream stage is connected to a reaction gaseous mixture source, the circulation stage (E1) of the upstream stage separator is connected to the reactor (C2) of the downstream stage and the spaces for extracting/collecting oxygen from two separators are connected to a hydrogen collecting circuit (TC, 8) which is common for two stages.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: May 10, 2011
    Assignee: Compagnie Européenne des Technologies de l'Hydrogène (C.E.T.H.)
    Inventors: Eric Gernot, Arnaud Deschamps
  • Patent number: 7938891
    Abstract: Carbon dioxide or other gases can be separated from gas streams using ionic liquid, such as in an electrochemical cell. For example, a membrane can contain sufficient ionic liquid to reduce ionic current density of at least one of protons and hydroxyl ions, relative to carbon-containing ionic current density. A gas stream containing carbon dioxide can be introduced on a cathode side, while a source of hydrogen gas can be introduced on the anode side of the membrane. Operation of an electrochemical cell with such a membrane can separate the carbon dioxide from the gas stream and provide it at a separate outlet.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: May 10, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Karl Anthony Littau
  • Patent number: 7938893
    Abstract: A system for the selective removal of CO2, H2S, and H2 from a gaseous fluid mixture comprising CO2, H2S, and H2, which system includes a first membrane section having a nonporous metal oxide membrane, a second membrane section having a CO2-selective membrane, and a third membrane section having an H2-selective membrane. Each membrane section has a feed side and a permeate side and the membrane sections are arranged in series whereby the gaseous fluid mixture contacts the feed side, in sequence, of the first membrane section, the second membrane section and the third membrane section, resulting first in the separation or removal of H2S, second in the separation or removal of CO2, and third in the separation or removal of H2. The process can be used to process synthesis gas generated from the gasification or reforming of carbonaceous materials for hydrogen production and carbon dioxide capture.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 10, 2011
    Assignee: Gas Technology Institute
    Inventors: Shain-Jer Doong, Raja A. Jadhav, Francis Lau
  • Patent number: 7938884
    Abstract: A method and apparatus are provided for controlling the amount of purging that occurs within a membrane separation device. The membrane separation device includes a membrane separation component and sweep controlling component. Within the membrane separation component, a major portion of the non-permeate gas is sent out of the membrane separation device to work, while a minor portion is diverted for use as a sweep gas. The sweep gas is controlled by a valve that cycles with a device, such as a compressor. Thus, the membrane separation device is on when the compressor is on and is off when the compressor is off. As such, the membrane separation device is not required to sweep at all times.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: May 10, 2011
    Assignee: SPX Corporation
    Inventors: Darrin Barnette, Timothy Fox, Mark Honath, Craig Cuta, Carl Geisz, John Burban
  • Patent number: 7938892
    Abstract: Ionic liquids can be immobilized in a membrane by, for example, bonding to a support such as a matrix, or by inclusion within a gel. Immobilized ionic liquids can be used in a number of applications, such as separation of carbon dioxide or other gases from gas streams. Membranes can be included in electrochemical cells. For example, a membrane can contain sufficient immobilized ionic liquid to reduce ionic current density of at least one of protons and hydroxyl ions, relative to carbon-containing ionic current density. A gas stream containing carbon dioxide can be introduced on a cathode side, while a source of hydrogen gas can be introduced on the anode side of the membrane. Operation of an electrochemical cell with such a membrane can separate the carbon dioxide from the gas stream and provide it at a separate outlet.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: May 10, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Karl Anthony Littau
  • Patent number: 7938890
    Abstract: A layered structure can be formed having immobilized or segregated pH buffering groups that can be used to separate carbon dioxide or other gases. The pH buffering groups can be immobilized within a matrix, confined within a gel, or segregated by a semi-permeable membrane. The pH buffering groups can be configured to increase the efficiency of the system by maintaining a desirable pH profile within the cell and to permit the flow of the carbon-containing ions within the system while controlling diffusion of protons and/or hydroxyl ions.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: May 10, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Karl Anthony Littau, Francisco E. Torres
  • Patent number: 7938894
    Abstract: The invention discloses a composition comprising a hybrid composite organic-inorganic membrane. The hybrid organic-inorganic membrane according to the present invention may comprise an amorphous porous layer incorporating organic functionalities. The amorphous porous layer may be deposited on a porous alumina substrate by chemical vapor deposition (CVD). The amorphous porous layer may comprise a single top-layer (STL), multiple top-layers (MTL) or mixed top-layers (XTL). The substrate may comprise a single layer or multiple graded layers of alumina.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: May 10, 2011
    Assignees: ConocoPhillips Company, Virginia Tech Intellectual Properties, Inc.
    Inventors: Shigeo Ted Oyama, Yunfeng Gu, Joe D. Allison, Garry C. Gunter, Scott A. Scholten
  • Publication number: 20110100211
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Application
    Filed: June 17, 2010
    Publication date: May 5, 2011
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Patent number: 7935254
    Abstract: We disclose a device for the production of hydrogen from water using heat. The device employs thermal water splitting and works essentially without electricity. It is based on the concept of a membrane reactor with two kinds of membranes allowing the separation of hydrogen and oxygen simultaneously in stoichiometric quantities from the reactor volume. The device has a special geometry resulting in a temperature distribution inside the reaction chamber to accommodate the use of hydrogen selective membranes. The device will help to reduce the need for hydrogen transport and storage as it will be rather compact for on-site use in households, small factories or gas stations. The use of the device in mobile applications is conceivable. The heat source of the device as described is combustion of a hydrocarbon using porous burner technology; however the device can be modified to exploit any other heat source, especially solar radiation.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: May 3, 2011
    Assignee: H2 Power Systems Ltd
    Inventors: Nils Kongmark, Klaus Röhrich, Harald Wirth
  • Patent number: 7936566
    Abstract: An electronic control unit has a respiratory filter mounted on a waterproof case. Raised protective walls formed in the case surround the portion of the case at which the respiratory filter is arranged. At least two concave portions are provided for drainage that each extend through different positions of the protective walls.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: May 3, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Toshikazu Shigyo, Kazunori Nozawa
  • Publication number: 20110094230
    Abstract: A system includes a compression system fluidly coupled to a compartment to compress a first quantity of gas for storage in the compartment, the compression system including a compression path to convey the first quantity of gas; an expansion system fluidly coupled to the compartment to expand a second quantity of gas from the compartment, the expansion system including an expansion path to convey the second quantity of gas; a first path fluidly coupled to the compression path to convey the first quantity of gas to the compartment; a second path fluidly coupled to the expansion path to convey the second quantity of gas from the compartment to the expansion system; and a separation unit fluidly coupled to one of the first path, second path, compression path, and expansion path, wherein the separation unit removes a quantity of carbon dioxide from one of the first and second quantities of gas.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Inventors: Matthias Finkenrath, Gabor Ast, Matthew Lehar, Thomas Frey, Samuel David Draper, Richard Aumann, Stephanie Marie-Noelle Hoffmann
  • Patent number: 7931733
    Abstract: A method and a system for providing a hypoxic environment inside an enclosed compartment with simultaneous removal of carbon dioxide and moisture produced by occupants; said method and system designed for fire prevention and for simulated altitude training, wellness and hypoxic therapy, including equine and other animal applications.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: April 26, 2011
    Inventor: Igor K. Kotliar
  • Patent number: 7927405
    Abstract: Porous composites comprise a porous membrane having a structure defining a plurality of pores extending therethrough, nonporous discontinuous surface layer affixed to said porous membrane, in which the nonporous discontinuous surface layer forms regions of gas permeability, and regions of gas impermeability, and a coating disposed upon the porous composite which renders at least a portion of the porous composite oleophobic.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: April 19, 2011
    Assignee: Gore Enterprise Holdings, Inc
    Inventors: John E. Bacino, John L. DiMeo, Alex R. Hobson, Klaus Meindl
  • Patent number: 7922795
    Abstract: A nanoscale membrane exposed on opposite sides thereof and having an average thickness of less than about 100 nm, and a lateral length to thickness aspect ratio that is more than 10,000 to 1 is disclosed. Also disclosed are methods of making such membranes, and use thereof in a number of devices including fuel cells, sensor devices, electrospray devices, and supports for examining a sample under electron microscopy.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 12, 2011
    Assignee: University of Rochester
    Inventors: Christopher C. Striemer, Philippe M. Fauchet
  • Patent number: 7922780
    Abstract: To provide a method and an apparatus for reforming a hydrocarbon with a prolonged life of an oxygen-permeable membrane and a high recovery rate. The oxygen-permeable membrane absorbs the free energy change, ?G, of a partial oxidation reforming reaction and then converts it into work for oxygen isolation and Joule heat, Q. Here, as seen in Table 1 and FIG. 1, ?G of the partial oxidation reforming reaction is approximately ten times larger than ?H, and further increases as the temperature increases. The generated Joule heat, Q, has to be removed at a high efficiency, and this removal process is achieved by returning a portion of the Joule heat to the system as the entropy change, T?S, of the partial oxidation reaction itself and by steam reforming using the total energy change, ?H.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: April 12, 2011
    Assignees: Japan Science and Technology Agency, TDK Corporation
    Inventors: Hitoshi Takamura, Masuo Okada, Masayuki Ogawa, Tomoyuki Saito
  • Patent number: 7914611
    Abstract: In various embodiments, a support system includes a multi-layer cover sheet with a number of layers. In certain embodiments, a source to move air inside and outside the multi-layer cover sheet can be provided. The source can include a source of positive pressure or negative pressure.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 29, 2011
    Assignee: KCI Licensing, Inc.
    Inventors: John H. Vrzalik, Alan L. Bartlett, Royce Johnson
  • Publication number: 20110067405
    Abstract: Integrated gas turbine combustion engine and ion transport membrane system comprising a gas turbine combustion engine including a compressor with a compressed oxygen-containing gas outlet; a combustor comprising an outer shell, a combustion zone in flow communication with the compressed oxygen-containing gas outlet, and a dilution zone in flow communication with the combustion zone and having one or more dilution gas inlets; and a gas expander. The system includes an ion transport membrane oxygen recovery system with an ion transport membrane module that includes a feed zone, a permeate zone, a feed inlet to the feed zone in flow communication with the compressed oxygen-containing gas outlet of the compressor, a feed zone outlet, and a permeate withdrawal outlet from the permeate zone. The feed zone outlet of the membrane module is in flow communication with any of the one or more dilution gas inlets of the combustor dilution zone.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicants: CONCEPTS ETI, INC., AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Phillip A. Armstrong, Elia P. Demetri
  • Patent number: 7909911
    Abstract: A carbon dioxide permeable membrane is described. In some embodiments, the membrane includes a body having a first side and an opposite second side; a plurality of first regions formed from a molten carbonate having a temperature of about 400 degrees Celsius to about 1200 degrees Celsius, the plurality of first regions forming a portion of the body and the plurality of first regions extending from the first side of the body to the second side of the body; a plurality of second regions formed from an oxygen conductive solid oxide, the plurality of second regions combining with the plurality of first regions to form the body and the plurality of second regions extending from the first side of the body to the second side of the body; and the body is configured to allow carbon dioxide to pass from the first side to the second side.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: March 22, 2011
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Klaus S. Lackner, Alan C. West, Jennifer L. Wade
  • Patent number: 7897207
    Abstract: Nano-molecular sieve-polymer mixed matrix membranes (MMMs) for CO2 removal from natural gas have been prepared by incorporating dispersible template-free nano-molecular sieves into polymer matrices such as Matrimid 5218 polyimide matrix or Ultem 1000 polyetherimide matrix. The nano-molecular sieves used in this invention include template-free nano-AlPO-18, nano-AlPO-5, nano-Silicalite, nano-SAPO-34, and PEG-functionalized nano-Silicalite. These template-free nano-molecular sieves were synthesized by an organic ligand grafting method.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 1, 2011
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson
  • Patent number: 7896948
    Abstract: A membrane suitable for separating a gas, in particular carbon dioxide, from a gas mixture containing the gas is provided by a blend of polyvinyl alcohol (PVA) and polyvinylamine (PVAm).
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: March 1, 2011
    Inventors: Liyuan Deng, May-Britt Hagg, Taek-Joong Kim
  • Patent number: 7892321
    Abstract: An integrated heating system for adding heat to a feed fuel within a module by way of an integrated heating element within the body or casing of the module. The heat may be selectively added to maintain a selected temperature.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 22, 2011
    Assignee: Intelligent Energy, Inc.
    Inventors: Diane Lee Aagesen, Kandaswamy Duraiswamy
  • Patent number: 7893002
    Abstract: The invention relates to an oxygen conducting membrane includes a dense, mixed-conducting, multi-metallic oxide membrane having one surface which is coated with dispersed particles based on noble metals or magnesium oxide.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: February 22, 2011
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: David Farrusseng, Claude Mirodatos, Michael Rebeilleau, André Van Veen, Simon Rushworth, Jean-Luc Rousset
  • Publication number: 20110036238
    Abstract: The invention relates to a device for preparing a gas flow for introduction thereof into a mass spectrometer, wherein the gas flow contains one or more analytes and has helium as carrier gas. According to the invention, a selective separating device is provided for separating off a part of the carrier gas from the gas flow (10), to form a residual gas flow (11) and a separated carrier gas flow (12). A higher fraction of the analyte is present therein than in the gas flow and in the separated carrier gas flow there is a lower fraction of the analyte.
    Type: Application
    Filed: March 18, 2009
    Publication date: February 17, 2011
    Inventor: Reinhold Pesch
  • Publication number: 20110023716
    Abstract: Mixed matrix membranes that are capable of separation and purification of gas mixtures are disclosed. These membranes comprise polymers that include dispersed therein nanomolecular sieve particles. In a preferred embodiment, the nanomolecular sieve particles contain attached functional groups to prevent their agglomeration.
    Type: Application
    Filed: October 14, 2010
    Publication date: February 3, 2011
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Beth Mc Culloch
  • Patent number: 7875177
    Abstract: The present invention is directed toward membrane leaf packets, spiral wound modules and methods for making and using the same. The subject leaf packet comprises a membrane sheet folded upon itself and reinforced with sealant and tape along at least a portion of the fold on the back side of the membrane sheet.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: January 25, 2011
    Assignee: Dow Global Technologies Inc.
    Inventors: Thomas N. Haynes, Pam G. Hinton, Jon E. Johnson, Thomas M. Lanz, Abhishek Shrivastava
  • Patent number: 7871456
    Abstract: A membrane for use in an implantable glucose sensor including at least one crosslinked substantially hydrophobic polymer and at least one crosslinked substantially hydrophilic polymer; wherein the first and second polymers are different polymers and substantially form an interpenetrating polymer network, semi-interpenetrating polymer network, polymer blend, or copolymer. The membranes are generally characterized by providing a permeability ratio of oxygen to glucose of about 1 to about 1000 in units of (mg/dl glucose) per (mmHg oxygen). Three methods of making membranes from hydrophobic and hydrophilic monomers formed into polymer networks are provided, wherein according to at least two of the methods, the monomers may be substantially immiscible with one another.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 18, 2011
    Assignee: The Regents of the University of California
    Inventors: David A. Gough, Joseph Y. Lucisano, Joe T. Lin, Hwai-Min Tsay, Drahoslav Lim, Jana Limova, legal representative
  • Patent number: 7867319
    Abstract: A filled epoxy tubesheet comprises an epoxy filled with a metal, such as aluminum flakes. Embodiments of the filled epoxy tubesheets can bend due to stress on the surface rather than crack. Embodiments of the filled epoxy tubesheet can be used to improve Air Separation Module performance by reducing or eliminating leakage through crack in the tubesheet.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: January 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Rehan Zaki, Stephen Yates, Tihomir Tonev
  • Patent number: 7866486
    Abstract: Composites comprising at least one hollow fiber of oxygen-transporting ceramic material, which is a ceramic material which conducts oxygen anions and electrons or a combination of ceramic material which conducts oxygen anions and a ceramic or nonceramic material which conducts electrons, with the outer surface of the hollow fiber being in contact with the outer surface of the same hollow fiber or another hollow fiber and the contact points being joined by sintering, are described. Further composites comprise at least one hollow fiber of oxygen-transporting ceramic material which is a ceramic material which conducts oxygen anions and electrons or a combination of ceramic material which conducts oxygen anions and ceramic or nonceramic material which conducts electrons and a connection element for the introduction or discharge of fluids at at least one end face, with hollow fibers and connection element being joined.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: January 11, 2011
    Assignees: Uhde GmbH, BORSIG Process Heat Exchanger GmbH
    Inventors: Steffen Werth, Nicole Dinges, Mirjam Kilgus, Thomas Schiestel
  • Patent number: 7862648
    Abstract: Thin layers of a mixed composition are deposited on a porous substrate by chemical vapor deposition in an inert atmosphere at high temperature. The resulting membrane has excellent stability to water vapor at high temperatures. An exemplary membrane comprises an amorphous mixed-element surface layer comprising silica and at least one oxide of additional element, an optional porous substrate on which said surface layer is deposited, and a porous support on which said substrate or mixed-element surface layer is deposited, wherein the permeance of the membrane is higher than 1×10?7 mol m?2s?1Pa?1 and the selectivity of H2 over CO, CO2, and CH4 is larger than 100, and wherein the H2 permeance of the membrane after exposure to a stream containing 60 mol % water vapor at 673 K for 120 h is at least 50% of its initial H2 permeance.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: January 4, 2011
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: S. Ted Oyama, Yunfeng Gu
  • Patent number: 7862643
    Abstract: A method of manufacturing a hydrogen separation membrane comprises the steps of forming an intermediate layer suitable for controlling oxidation of a hydrogen permeable metal layer on the surface of the hydrogen permeable metal layer on the surface of the hydrogen permeable metal used as a substrate; and attaching a catalytic metal in a granular form on the surface of the intermediate layer. This method can be used to manufacture a hydrogen separation membrane in which the quantity of catalytic metal used is controlled.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 4, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Satoshi Aoyama
  • Publication number: 20100319534
    Abstract: Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 23, 2010
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Robert P. Currier, Stephen J. Obrey, David J. Devlin, Jose Maria Sansinena
  • Publication number: 20100322845
    Abstract: The inventive method of gaseous hydrogen purification from a gaseous mixture comprises purifying hydrogen from a permeate gas enriched with compressed hydrogen by pressure modulation (PSA) in which one or more adsorbers are used that each follow a cycle at intervals with an adsorption phase at a high cycle pressure and a regeneration phase, producing two regeneration flows; a first recycled regeneration flow and a second non-recycled regeneration flow, characterized by the fact that the recycled regeneration flow exiting the adsorber(s) is recycled, directly or indirectly, by a sole compressor, without intermediate compression so that the sole compressor ensures both the compression of the hydrogen-enriched permeate and compression of the recycled regeneration gas.
    Type: Application
    Filed: August 3, 2007
    Publication date: December 23, 2010
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventor: Guillaume De Souza
  • Patent number: 7854788
    Abstract: A filter membrane includes a substrate, a polymer layer provided on the substrate and a plurality of filter openings each having a width of from about 2 nanometers to about 5 nanometers provided in the polymer layer. A method of controlling pore size of a filter membrane and a method of decontaminating a filter membrane are also disclosed.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 21, 2010
    Assignee: The Boeing Company
    Inventors: Norman R. Byrd, James P. Huang, Gwen Gross
  • Publication number: 20100313752
    Abstract: The present invention relates to gas separation membranes for separating carbon dioxide from other gas species, polymer compositions suitable for this application, and processes for the manufacture thereof. In particular, the present invention relates polymeric compositions comprising a host polymer that is permeable to the targeted gas species, such as carbon dioxide and has a selectivity for the target gas species over other gas species. The polymeric composition also comprises domains of a polymeric material that are, for example at least 0.5 nm in diameter and that have a higher permeability for the targeted gas compared to the host polymer. The present invention can provide membranes that have a permeability and selectivity above the Robeson's upper bound.
    Type: Application
    Filed: November 5, 2008
    Publication date: December 16, 2010
    Applicant: CO2CRC TECHNOLOGIES PTY LTD
    Inventors: Clem Evans Powell, Greg Guang Hua Qiao, Sandra Elizabeth Kentish
  • Publication number: 20100313753
    Abstract: The invention relates to a porous membrane having a particle filtration value of at least 10 under U.S. Military Standard MIL-STD-282 (1956), where the porous membrane is a polyethylene membrane. The membranes according to the invention are particularly useful for filters such as ASHRAE filters, HEPA filters and ULPA filters for example in heating, ventilating, respirators and air conditioning applications.
    Type: Application
    Filed: February 20, 2009
    Publication date: December 16, 2010
    Applicant: LYDALL SOLUTECH B.V.
    Inventors: Gijsbertus Hendrikus Maria Calis, Hendrik Derk Hoving
  • Publication number: 20100313751
    Abstract: Herein disclosed is an apparatus comprising (1) a porous rotor symmetrically positioned about an axis of rotation and surrounding an interior space; (2) an outer casing, wherein the outer casing and the rotor are separated by an annular space; (3) a motor configured for rotating the rotor about the axis of rotation; (4) a feed inlet positioned along the axis of rotation and fluidly connected with the interior space; and (5) a first outlet, wherein the first outlet is fluidly connected with the interior space. Herein disclosed is a system, comprising at least one disclosed apparatus. Herein disclosed is also a method of separating a feed gas into a first fraction and a second fraction, wherein the first fraction has an average molecular weight lower than the average molecular weight of the second fraction.
    Type: Application
    Filed: February 19, 2010
    Publication date: December 16, 2010
    Applicant: H R D CORPORATION
    Inventors: Abbas Hassan, Rayford G. Anthony, Aziz Hassan
  • Publication number: 20100314320
    Abstract: The present invention includes: a water separation membrane device 2 that separates a process-target fluid into a dehydrated product and water; and a temperature monitoring device 3 for the water separation membrane device 2. The temperature monitoring device 3 detects a temperature. Further, a temperature adjustment device 4 is provided in a previous stage of the water separation membrane device 2. The temperature adjustment device 4 controls a temperature of the process-target fluid on the basis of the temperature detected by the temperature adjustment device 3 to thereby optimize an amount of water permeation in a separation process in the water separation membrane device 2.
    Type: Application
    Filed: March 14, 2008
    Publication date: December 16, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto
  • Publication number: 20100313750
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 16, 2010
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Edgar S. Sanders, JR., Sarang Gadre, Michael D. Bennett, Ian C. Roman, David J. Hasse, Indrasis Mondal
  • Patent number: 7850753
    Abstract: A filter (8) for venting an enclosure (1) containing an electrical apparatus (4), such as a lens or lighting unit of a motor vehicle, and exposed to moisture or atmospheric agents, includes a tubular body (20) with a through cavity or conduit (11) opening at opposite ends (9, 10) of the body (20), which is coupled to a venting aperture (6) of the enclosure (1), the filter (8) including a hydrophobic filtering element; the body (20) of this filter (8) has at least two portions (20A, 20B) set at an angle to each other, the membrane filtering element (15) being in the interior of the body (20) and associated therewith so as to form one piece therewith, and being coupled to the body (20) in a manner transverse to an axis of at least one of the portions. The membrane is located within the mould before injection molding.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: December 14, 2010
    Assignee: GVS S.p.A.
    Inventor: Marco Scagliarini
  • Patent number: 7846496
    Abstract: Mixed matrix membranes that are capable of separation and purification of gas mixtures are disclosed. These membranes comprise polymers that include dispersed therein nanomolecular sieve particles. In a preferred embodiment, the nanomolecular sieve particles contain attached functional groups to prevent their agglomeration.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: December 7, 2010
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Beth McCulloch
  • Patent number: 7846238
    Abstract: Provided is a method of manufacturing a porous polytetrafluoroethylene (PTFE) membrane capable of achieving both a high collection efficiency and a low pressure drop, though it has a larger average pore size and a greater thickness than conventional porous PTFE membranes. This manufacturing method includes: stretching an unsintered polytetrafluoroethylene sheet by a factor of 5 to 30 in a predetermined direction at a temperature equal to or higher than the melting point of polytetrafluoroethylene; further stretching the stretched sheet by a factor of 5 to 40 in a direction different from the predetermined direction at a temperature lower than the melting point; and after the stretchings, heating the stretched sheet at a temperature equal to or higher than the melting point.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: December 7, 2010
    Assignee: Nitto Denko Corporation
    Inventors: Masatoshi Suzuki, Youji Uchida
  • Patent number: 7842124
    Abstract: This invention relates to a polymeric membrane composition comprising an associating polymer. The polymer coating is characterized as having hard and soft segments where the hard segment comprises TMPA, combined with HDPA. The membrane may utilize a porous substrate.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Randall D. Partridge, Dennis G. Peiffer, David C. Dalrymple, Walter Weissman
  • Patent number: 7841227
    Abstract: A device for passing through a gas mixture comprises a capillary apparatus with one or more capillaries connecting a first side of the capillary apparatus to a second side of the capillary apparatus, wherein each capillary tapers from one side towards the other side of the capillary apparatus at least in sections.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: November 30, 2010
    Assignee: MEMBRANOTEC GmbH & Co. KG
    Inventor: Andreas Varesi
  • Patent number: 7837764
    Abstract: An oxygen exchange manifold converts oxygenate air into an oxygen depleted air stream for use in inerting an otherwise flammable environment. A system including the oxygen exchange manifold may be utilized to inert fuel tanks of an aircraft or another environment. Methods of inerting such environments are also disclosed.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: November 23, 2010
    Assignee: The Boeing Company
    Inventor: William C. Sanford
  • Patent number: 7837763
    Abstract: The invention under consideration concerns novel his-molecular-weight polyazoles, which are suitable for the production of fibers, films, membranes, and molded articles, on the basis of their high molecular weight, expressed as intrinsic viscosity, of at least 1.3 dl/g. Moreover, the invention under consideration describes a method for the production of high-molecular-weight polyazoles.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 23, 2010
    Inventors: Gordon Calundann, Oemer Uensal, Brian Benicewicz, Bobby G. Dawkins, J. Dean Baker, Rita H. Joiner
  • Patent number: 7833321
    Abstract: There is provided a protective filter 1 for an extracorporeal circulation circuit pressure monitor, having a dialysis device side housing 2, an extracorporeal circulation circuit side housing 3, and a hydrophobic filter 4 held between both the housings, which allows passage of a gas but does not allow passage of a liquid, characterized in that a plurality of ribs 27 and 38 capable of supporting the hydrophobic filter 4 are respectively provided in both housings, and a protective member 5 for preventing direct contact between the ribs 38 and the hydrophobic filter 4 is interposed between the ribs 38 provided in the extracorporeal circulation circuit side housing 3 and the hydrophobic filter 4.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: November 16, 2010
    Assignee: Nipro Corporation
    Inventors: Katsunori Kawai, Akinobu Yamaguchi
  • Publication number: 20100282084
    Abstract: A feed gas drying system is described for a PSA or VPSA oxygen concentrator. A membrane dryer is inserted into the feed gas path to the concentrator absorbent beds, such that the moisture in the feed gas is directed to a part of the dryer exposed to the concentrator exhaust, thus achieving efficient operation of the membrane dryer with no loss of concentrator feed gas.
    Type: Application
    Filed: July 15, 2010
    Publication date: November 11, 2010
    Inventors: Brenton Taylor, Peter Hansen