Integrated With Dissimilar Structures On A Common Substrate Patents (Class 977/701)
  • Patent number: 11364197
    Abstract: The present invention includes compositions and methods for treating and delivering medicinal formulations using an inhaler. The composition includes a space filled flocculated suspension having one or more flocculated particles of one or more active agents and a hydrofluoroalkane propellant. A portion of the one or more flocculated particles is templated by the formation of hydrofluoroalkane droplets upon atomization and the templated floc compacts upon the evaporation of the hydrofluoroalkane propellant to form a porous particle for deep lung delivery.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: June 21, 2022
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Keith P. Johnston, Joshua Engstrom, Jasmine Rowe, Alan B. Watts, Robert O. Williams, III
  • Patent number: 10660850
    Abstract: The present invention includes compositions and methods for treating and delivering medicinal formulations using an inhaler. The composition includes a space filled flocculated suspension having one or more flocculated particles of one or more active agents and a hydrofluoroalkane propellant. A portion of the one or more flocculated particles is templated by the formation of hydrofluoroalkane droplets upon atomization and the templated floc compacts upon the evaporation of the hydrofluoroalkane propellant to form a porous particle for deep lung delivery.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: May 26, 2020
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Keith P. Johnston, Joshua Engstrom, Jasmine Rowe, Alan B. Watts, Robert O. Williams, III
  • Patent number: 10434062
    Abstract: The present invention includes compositions and methods for treating and delivering medicinal formulations using an inhaler. The composition includes a space filled flocculated suspension having one or more flocculated particles of one or more active agents and a hydrofluoroalkane propellant. A portion of the one or more flocculated particles is templated by the formation of hydrofluoroalkane droplets upon atomization and the templated floc compacts upon the evaporation of the hydrofluoroalkane propellant to form a porous particle for deep lung delivery.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: October 8, 2019
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Keith P. Johnston, Joshua Engstrom, Jasmine Rowe, Alan B. Watts, Robert O. Williams, III
  • Patent number: 8916200
    Abstract: Functional nanoparticles may be formed using at least one nanoimprint lithography step. In one embodiment, sacrificial material may be patterned on a multilayer substrate including one or more functional layers between removable layers using an imprint lithography process. At least one of the functional layers includes a functional material such as a pharmaceutical composition or imaging agent. The pattern may be further etched into the multilayer substrate. At least a portion of the functional material may then be removed to provide a crown surface exposing pillars. Removing the removable layers releases the pillars from the patterned structure to form functional nanoparticles such as drug or imaging agent carriers.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: December 23, 2014
    Assignee: Molecular Imprints, Inc.
    Inventors: Vikramjit Singh, Frank Y. Xu, Sidlgata V. Sreenivasan
  • Patent number: 8900517
    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: December 2, 2014
    Assignee: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, George Gruner, Keith Bradley
  • Patent number: 8834746
    Abstract: Nanostructured compositions containing carbon nanotubes and at least one other type of nanoparticle can display the beneficial properties of both substances. Nanostructured compositions can contain a plurality of carbon nanotubes, a plurality of nanoparticles, and a plurality of linker moieties, where at least a portion of the linker moieties connect at least a portion of the carbon nanotubes to the nanoparticles. The nanostructured compositions can form a substrate coating. The nanostructured compositions can contain two or more different types or sizes of nanoparticles. Methods for forming a nanostructured composition can include forming a non-covalent bond between a linker moiety and a carbon nanotube, forming a covalent bond between a linker moiety and a nanoparticle or a surfactant coating thereon, and applying a plurality of carbon nanotubes to a substrate. The linker moiety can be non-covalently bonded to the carbon nanotube before or after applying the carbon nanotubes to the substrate.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 16, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Timothy B. Stachowiak, Georgina B. Higginbotham, Ashley E. Pietz, Hilary S. Lackritz
  • Patent number: 8826529
    Abstract: A device includes a substrate (308) and a metallic layer (336) formed over the substrate (308) with a deposition process for which the metallic layer (336) is characterizable as having a pre-determinable as-deposited defect density. As a result of a fabrication process, the defect density of the metallic layer (336) is reduced relative to the pre-determinable as-deposited defect density of the same layer (336) or another layer having like composition and which is formed under like deposition conditions. In a related method, a substrate (308) is provided and a removable layer (330) is formed over the substrate (308). A metallic layer (336) is formed over the removable layer (330) and is patterned and etched to define a structure over the removable layer (330). The removable layer (330) is removed, and the metallic layer (336) is heated for a time beyond that necessary for bonding of a hermetic sealing cap (340) thereover.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Andrew Joseph Detor, Reed Corderman, Christopher Keimel, Marco Aimi
  • Patent number: 8784966
    Abstract: A method of forming a material. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Robert Dennis Miller, Willi Volksen
  • Patent number: 8772756
    Abstract: A method of forming a nanowire structure is disclosed. The method comprises applying on a surface of carrier liquid a layer of a liquid composition which comprises a surfactant and a plurality of nanostructures each having a core and a shell, and heating at least one of the carrier liquid and the liquid composition to a temperature selected such that the nanostructures are segregated from the surfactant and assemble into a nanowire structure on the surface.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: July 8, 2014
    Assignee: Ben-Gurion University of the Negev Research and Development Authority
    Inventors: Roman Volinsky, Raz Jelinek
  • Patent number: 8734685
    Abstract: The present invention relates to design and development of carbon nanotubes (CNT) reinforced electrically conducting synthetic foams comprising resin matrix system, carbon nanotubes, hollow glass microspheres and optionally hardener or catalyst for electrical conductivity and related applications especially electromagnetic interference (EMI) shielding.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: May 27, 2014
    Assignee: Director General, Defence Reserch & Development Organization
    Inventors: Sundaram Sankaran, Samudra Dasgupta, Ravi Sekhar Kandala, Ravishankar Bare Narayana
  • Publication number: 20140120242
    Abstract: Compositions useful for improving the adhesion of coating compositions, such as dielectric film-forming compositions, to a substrate are provided. Also provided are methods of improving the adhesion of coating compositions to a substrate.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Zidong WANG, Michael K. GALLAGHER, Kevin Y. WANG, Gregory P. PROKOPOWICZ
  • Patent number: 8709708
    Abstract: A method and a device for detecting the presence of a predetermined substance, in which a quantum dot is produced on a substrate. The quantum dot emits a radiation at a predetermined wavelength, and is covered with a surface layer to which the predetermined substance attaches. A deviation of the value of a parameter related to the radiation is produced when the predetermined substance attaches to the surface layer. This deviation can be detected to thereby sense the presence of the predetermined substance.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: April 29, 2014
    Assignee: Societe de Commercialisation des Produits de la Recherche Appliquee SOCPRA-Sciences et Genie S.E.C.
    Inventors: Jan J. Dubowski, Ximing Ding, Eric H. Frost, Emanuel Escher
  • Patent number: 8703073
    Abstract: A lithographically structured device has an actuation layer and a control layer operatively connected to the actuation layer. The actuation layer includes a stress layer and a neutral layer that is constructed of materials and with a structure such that it stores torsional energy upon being constructed. The control layer is constructed to maintain the actuation layer substantially in a first configuration in a local environmental condition and is responsive to a change in the local environmental condition such that it permits a release of stored torsional energy to cause a change in a structural configuration of the lithographically structured device to a second configuration, the control layer thereby providing a trigger mechanism. The lithographically structured device has a maximum dimension that is less than about 10 mm when it is in the second configuration.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 22, 2014
    Assignee: The Johns Hopkins University
    Inventors: David Hugo Gracias, Timothy Gar-Ming Leong
  • Patent number: 8685550
    Abstract: The present invention relates to an organic-inorganic composite comprising bacteria and transition metal oxides and a method of manufacturing the same. More specifically, the present invention relates to an organic-inorganic composite comprising bacteria and transition metal oxides manufactured by attaching cationic transition metal precursor to bacterial surface, wherein the bacteria with high negative charge on its surface is used as a template, refluxing the bacteria and transition metal ions at room temperature in the presence of sodium borohydride (NaBH4), and inducing reduction/spontaneous oxidation, thereby having an excellent high capacity electrochemical properties, and a method of manufacturing the same.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: April 1, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong-Wan Kim, HyunWoo Shim, Young Dae Ko, Kyoung Jin Choi, Jae-Gwan Park
  • Publication number: 20140062255
    Abstract: Various aspects as described herein are directed to piezoelectric materials. As consistent with one or more embodiments, an apparatus includes a nanomaterial and structures coupled to the nanomaterial. This nanomaterial-structure combination manifests piezoelectric characteristics, via the combination. In certain implementations, neither the nanomaterial nor the coupled structures independently exhibit piezoelectric characteristics, yet do so in combination.
    Type: Application
    Filed: February 25, 2013
    Publication date: March 6, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventor: The Board of Trustees of the Leland Stanford Junior University
  • Patent number: 8636972
    Abstract: Processing a composite material includes forming a nanomaterial comprising nanotubes. The nanotubes comprise first nanotubes and second nanotubes, where the first nanotubes and the second nanotubes have different lengths. The nanomaterial is combined with a matrix to yield a composite material.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: January 28, 2014
    Assignee: Raytheon Company
    Inventor: Timothy J. Imholt
  • Patent number: 8628980
    Abstract: Labels and methods of producing labels for use in clinical, analytical and pharmaceutical development assays are provided. Labels may comprise shape-encoded particles which may be coupled to ligands such as DNA, RNA and antibodies, where different shapes are used to identify which ligand(s) are present. Labels may also comprise reflectors, including retroreflectors and retroreflectors susceptible to analyte-dependent assembly for efficient homogeneous assays.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 14, 2014
    Inventors: Richard C. Willson, Raul Ruchhoedft
  • Patent number: 8613287
    Abstract: An apparatus for preventing stiction of a three-dimensional MEMS (microelectromechanical system) microstructure, the apparatus including: a substrate; and a plurality of micro projections formed on a top surface of the substrate with a predetermined height in such a way that a cleaning solution flowing out from the microstructure disposed thereabove is discharged.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 24, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chang Han Je, Myung Lae Lee, Sung Hae Jung, Gunn Hwang, Chang Auck Choi
  • Patent number: 8603803
    Abstract: Methods for electrochemically synthesizing polymers are provided in which a cleavable linker is coupled to the surface of at least one electrode of an array of electrodes on a substrate and a polymer coupled to the cleavable linker is synthesized through a series of monomer addition cycles. Polymers that are synthesized include nucleic acids and peptides. Cleavable linkers include linkers that can be cleaved under conditions such as reducing, oxidizing, acidic, and or basic conditions. Additionally, provided are devices that comprise an array of individually addressable electrodes having surface-attached cleavable linker molecules.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: December 10, 2013
    Assignee: Intel Corporation
    Inventors: Wei Wang, Yuan Gao
  • Patent number: 8592225
    Abstract: A nanopore device capable of single molecule detection is described. The nanopores are formed in thin, rigid membranes and modified by a sputtered metal that forms an overhang during application. The overhang causes the pore to be narrower in a certain region, allowing passage of only a single molecule through the pore at a time, or binding to a biomolecule on the pore to be detected by a change in ionic current flow through the nanopore. Embodiments include a silicon nitride membrane formed on a silicon substrate and having a nanopore drilled with a focused ion beam system, followed by gold sputtering onto the membrane. Devices are formed with one or more nanopores and chambers having electrodes on either side of the nanopore.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 26, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mostafa Ronaghi, Amir Ali Haj Hossein Talasaz, Ronald W. Davis
  • Patent number: 8587860
    Abstract: A radiation-protection device is provided that includes a substrate and a surface structure formed on the substrate. The surface structure has an arrangement and interacts with radiation and the substrate to at least (a) substantially transmit or attenuate radiation at a wavelength and an energy below a threshold energy, and (b) substantially reflect radiation at the wavelength and an energy above the threshold energy.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: November 19, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Idan Mandelbaum, Arie Ziegler, Konstantinos Papadopoulos, Louise C. Sengupta
  • Patent number: 8569615
    Abstract: Provided are solar cells and methods of forming the same. The solar cell includes an anti-reflection layer on a substrate, a first electrode on the anti-reflection layer, a photo-electro conversion layer on the first electrode, and a second electrode on the photo-electro conversion layer.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mi Hee Jung, Mangu Kang
  • Patent number: 8562938
    Abstract: The present invention relates to a composite sintering materials using a carbon nanotube (including carbide nano particles, hereinafter the same) and a manufacturing method thereof, the method comprises the steps of: combining or generating carbon nanotubes in metal powders, a compacted product, or a sintered product; growing and alloying the carbon nanotubes by compacting or sintering the metal powders, the compacted product, or the sintered product; and strengthening the mechanical characteristics by repeatedly performing the sintering process and the combining process or the generating process of the carbon nanotubes.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 22, 2013
    Inventors: Sang-chul Ahn, Sun-hwa Yang, Hyeung-eun Ahn
  • Patent number: 8520202
    Abstract: An asymmetrical-nanofinger device for surface-enhanced luminescence. The device includes a substrate, and a plurality of nanofingers coupled with the substrate. The plurality of nanofingers includes a primary nanofinger having a primary active-material cap, and a secondary nanofinger having a secondary active-material cap. An average diameter of the primary active-material cap is substantially greater than an average diameter of the secondary active-material cap. The primary nanofinger and secondary nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with an analyte molecule disposed between the primary active-material cap and the secondary active-material cap. A method for fabricating the asymmetrical-nanofinger device, and an optical apparatus including an optical component that includes the asymmetrical-nanofinger device are also provided.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 27, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Zhiyong Li
  • Patent number: 8506922
    Abstract: The present invention relates to a composite sintering materials using a carbon nanotube (including carbide nano particles, hereinafter the same) and a manufacturing method thereof, the method comprises the steps of: combining or generating carbon nanotubes in metal powders, a compacted product, or a sintered product; growing and alloying the carbon nanotubes by compacting or sintering the metal powders, the compacted product, or the sintered product; and strengthening the mechanical characteristics by repeatedly performing the sintering process and the combining process or the generating process of the carbon nanotubes.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: August 13, 2013
    Assignee: C & Tech Co., Ltd.
    Inventors: Sang-chul Ahn, Sun-hwa Yang, Hyeung-eun Ahn
  • Patent number: 8507556
    Abstract: A core-shell nanoparticle having a core that includes a fluorophore and a first oxide of a first metal and a shell that includes a second oxide of a second metal such that the first oxide and the second oxide are different. Also disclosed are methods relating to the core-shell nanoparticle.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: August 13, 2013
    Assignee: Boise State University
    Inventors: Hua Wang, Denise Wingett, Kevin Feris, Mfadhusudan R. Kongara, Alex Punnoose
  • Patent number: 8501595
    Abstract: Disclosed herein is a thin film prepared using a mixture of nanocrystal particles and a molecular precursor. The nanocrystal is used in the thin film as a nucleus for crystal growth to minimize grain boundaries of the thin film and the molecular precursor is used to form the same crystal structure as the nanocrystal particles, thereby improving the crystallinity of the thin film. The thin film can be used effectively in a variety of electronic devices, including thin film transistors, electroluminescence devices, memory devices, and solar cells. Further disclosed is a method for preparing the thin film.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Hyun Dam Jeong, Shin Ae Jun, Jong Baek Seon
  • Patent number: 8492249
    Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Nano-Electronic And Photonic Devices And Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8481164
    Abstract: A material and an associated method of formation. A self-assembling block copolymer that includes a first block species and a second block species respectively characterized by a volume fraction of F1 and F2 with respect to the self-assembling block copolymer is provided. At least one crosslinkable polymer that is miscible with the second block species is provided. The self-assembling block copolymer and the at least one crosslinkable polymer are combined to form a mixture. The mixture having a volume fraction, F3, of the crosslinkable polymer, a volume fraction, F1A, of the first block species, and a volume fraction, F2A, of the second block species is formed. A material having a predefined morphology where the sum of F2A and F3 were preselected is formed.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Robert Dennis Miller, Willi Volksen
  • Patent number: 8476065
    Abstract: The present invention is directed to a device comprising (a) a substrate having a surface and (b) an ordered array of posts over the surface, wherein the posts are capable of binding a protein or small molecule ligand, and wherein the pitch between adjacent posts is less than about 100 nm. The invention is also directed to methods for identifying the presence of an analyte in a fluid and to methods for measuring relative binding specificity or affinity between an analyte in a fluid and the posts, using the device of the present invention.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: July 2, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Michael P. Sheetz, Samuel J. Wind
  • Publication number: 20130164510
    Abstract: Disclosed is a high thermally conductive composite, including a first composite and a second composite having a co-continuous and incompatible dual-phase manner. The first composite consists of glass fiber distributed into polyphenylene sulfide, and the second composite consists of carbon material distributed into polyethylene terephthalate. The carbon material includes graphite, graphene, carbon fiber, carbon nanotube, or combinations thereof.
    Type: Application
    Filed: May 9, 2012
    Publication date: June 27, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chien-Ming CHEN, Yao-Chu CHUNG, Fu-Ming CHIEN, Chun-Hsiung LIAO, Chih-Jen CHANG, Chin-Lang WU, Tien-Jung HUANG, Cheng-Chou WONG, Chih-Chung CHANG
  • Publication number: 20130130383
    Abstract: The present invention is directed to a hierarchical structure characterized by ultrahigh surface area comprising: a solid substrate; an intermediate layer; and at least one plurality of nanoscale attachments that are strongly bonded to the intermediate layer. Also disclosed is a method of fabricating a hierarchical structure comprising: selecting and preparing a parent substrate, wherein the preparing may optionally include cleaning or activation; modifying the substrate surface to form an intermediate layer; attaching at least one plurality of nanoscale attachments, wherein the nanoscale attachments are selected from nanotubes, nanoparticles, or combinations thereof, onto the intermediate layer; optionally attaching a second plurality of nanoscale attachments, wherein the nanoscale attachments are selected from nanotubes, nanoparticles, or combinations thereof, onto the first plurality of nanoscale attachments and intermediate layer.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 23, 2013
    Applicant: WRIGHT STATE UNIVERSITY
    Inventor: Wright State University
  • Publication number: 20130072839
    Abstract: The present invention relates to an immobilization device for immobilizing a body part, the immobilization device comprising a sheet of a thermoplastic material which has been shaped to conform to the body part to be immobilized. The thermoplastic material contains at least one nano filler material which is exfoliated.
    Type: Application
    Filed: March 15, 2010
    Publication date: March 21, 2013
    Applicant: ORFIT INDUSTRIES
    Inventors: Steven Cuypers, Bogdan Bogdanov
  • Patent number: 8394625
    Abstract: This invention generally relates to an integrated ‘lab-on-a-Pipette’™ which will provide sample-to-answer single cell genetic diagnosis for preimplantation genetic diagnosis (PGD) and other forms of single cell analysis (SCA). SCA is a quickly growing field with substantial impact in prenatal testing, cancer biopsies, diabetes, stem cell research, and our overall understanding of heterogeneity in biology. However, single cell genetic analysis is challenging, inaccurate, and in many cases impossible, due to the small amount of sample (5 pg), and difficulties in handling small sample volumes (50-100 pL). The ‘lab-on-a-pipette’ device integrates a microaspiration tip with microfluidic analysis components to conduct in-situ, real-time single cell genetic diagnosis in a single device. The microaspiration tip extracts and encapsulate a cell into an ultra-low volume plug (˜300 pL).
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 12, 2013
    Inventors: Angelo Gaitas, Amar Basu
  • Patent number: 8384058
    Abstract: A battery can be fabricated from a substrate including silicon. This allows the battery to be produced as an integrated unit. The battery includes a anode formed from an array of spaced elongated structures, such as pillars, which include silicon and which can be fabricated on the substrate. The battery also includes a cathode which can include lithium.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: February 26, 2013
    Assignee: Nexeon Ltd.
    Inventor: Mino Green
  • Patent number: 8314665
    Abstract: A nano electromechanical integrated circuit filter and method of making. The filter comprises a silicon substrate; a sacrificial layer; a device layer including at least one resonator, wherein the resonator includes sub-micron excitable elements and wherein the at least one resonator possess a fundamental mode frequency as well as a collective mode frequency and wherein the collective mode frequency of the at least one resonator is determined by the fundamental frequency of the sub-micron elements.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: November 20, 2012
    Assignee: Trustees of Boston University
    Inventors: Pritiraj Mohanty, Robert L. Badzey, Alexei Gaidarzhy
  • Patent number: 8298445
    Abstract: Microstructures, microdevices and related methods are disclosed.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: October 30, 2012
    Assignee: The Trustees of Boston College
    Inventors: John T. Fourkas, Richard A. Farrer
  • Patent number: 8253536
    Abstract: A security document is disclosed which includes an electrical circuit embedded in a document substrate, where the electrical circuit includes a power source with at least one electroactive polymer power generator, and an optical display including at least one electroluminescent display element and at least one nanohole array which forms a layer of the electroluminescent display element. A method of authenticating a security document is also disclosed, the method including illuminating an encoded nanohole array in the security document with a focused light beam or laser light source emitting at least one defined wavelength of incident light, detecting a transmitted portion of the incident light transmitted through the nanohole array with an optoelectronic sensor, analyzing at least one wavelength of the transmitted portion of light to produce a detected signal, and comparing the detected signal with an authentication signal to authenticate the security document.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 28, 2012
    Assignee: Simon Fraser University
    Inventors: Bozena Kaminska, Clinton K. Landrock
  • Patent number: 8232561
    Abstract: Embodiments of the invention relate to vertical field effect transistor that is a light emitting transistor. The light emitting transistor incorporates a gate electrode for providing a gate field, a first electrode comprising a dilute nanotube network for injecting a charge, a second electrode for injecting a complementary charge, and an electroluminescent semiconductor layer disposed intermediate the nanotube network and the electron injecting layer. The charge injection is modulated by the gate field. The holes and electrons, combine to form photons, thereby causing the electroluminescent semiconductor layer to emit visible light. In other embodiments of the invention a vertical field effect transistor that employs an electrode comprising a conductive material with a low density of states such that the transistors contact barrier modulation comprises barrier height lowering of the Schottky contact between the electrode with a low density of states and the adjacent semiconductor by a Fermi level shift.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 31, 2012
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Bo Liu, Mitchell Austin McCarthy, John Robert Reynolds, Franky So
  • Patent number: 8232112
    Abstract: Labels and methods of producing labels for use in clinical, analytical and pharmaceutical development assays are provided. Labels may comprise shape-encoded particles which may be coupled to ligands such as DNA, RNA and antibodies, where different shapes are used to identify which ligand(s) are present. Labels may also comprise reflectors, including retroreflectors and retroreflectors susceptible to analyte-dependent assembly for efficient homogeneous assays.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: July 31, 2012
    Inventors: Richard C. Willson, Raul Ruchhoedft
  • Publication number: 20120181507
    Abstract: A semiconductor structure including an ordered array of parallel graphene nanoribbons located on a surface of a semiconductor substrate is provided using a deterministically assembled parallel set of nanowires as an etch mask. The deterministically assembled parallel set of nanowires is formed across a gap present in a patterned graphene layer utilizing an electric field assisted assembly process. A semiconductor device, such as a field effect transistor, can be formed on the ordered array of parallel graphene nanoribbons.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos D. Dimitrakopoulos, Alfred Grill, Timothy J. McArdle
  • Patent number: 8225238
    Abstract: Systems, devices, and methods for designing and/or manufacturing transparent conductors. A system is operable to evaluate optical and electrical manufacturing criteria for a transparent conductor. The system includes a database including stored reference transparent conductor data, and a controller subsystem configured to compare input acceptance manufacturing criteria for a transparent conductor to stored reference transparent conductor data.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: July 17, 2012
    Assignee: Cambrios Technologies Corporation
    Inventors: Jeffrey Wolk, Haixia Dai, Xina Quan, Michael A. Spaid
  • Patent number: 8222515
    Abstract: An object of the present invention is to provide an electrolyte for photoelectric conversion elements, and a photoelectric conversion element and a dye-sensitized solar cell using the electrolyte, wherein high energy conversion efficiency can be achieved while substantially not including iodine. The electrolyte for a photoelectric conversion element of the present invention includes an ionic liquid (A) and a carbon material (B). The carbon material (B) is a carbon material (B1) displaying a pH, measured by a pH measuring method specified in Japanese Industry Standard (JIS) Z8802, of from 2 to 6 and/or a boron-modified acetylene black (B2). A content of the carbon material (B) is from 10 to 50 parts by mass per 100 parts by mass of the ionic liquid (A).
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: July 17, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Yoshimasa Imazaki, Tsukasa Maruyama
  • Publication number: 20120161237
    Abstract: Provided are devices having at least three and at least four different types of transistors wherein the transistors are distinguished at least by the thicknesses and or compositions of the gate dielectric regions. Methods for making devices having three and at least four different types of transistors that are distinguished at least by the thicknesses and or compositions of the gate dielectric regions are also provided.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventors: Chia-Hong Jan, Curtis Tsai, Joodong Park, Jeng-Ya D. Yeh, Walid M. Hafez
  • Patent number: 8206505
    Abstract: The inventive method for forming nano-dimensional clusters consists in introducing a solution containing a cluster-forming material into nano-pores of natural or artificial origin contained in a substrate material and in subsequently exposing said solution to a laser radiation pulse in such a way that a low-temperature plasma producing a gaseous medium in the domain of the existence thereof, wherein a cluster material is returned to a pure material by the crystallization thereof on a liquid substrate while the plasma is cooling, occurs, thereby forming mono-crystal quantum dots spliced with the substrate material. Said method makes it possible to form two- or three-dimensional cluster lattices and clusters spliced with each other from different materials. The invention also makes it possible to produce wires from different materials in the substrate nano-cavities and the quantum dots from the solution micro-drops distributed through an organic material applied to a glass.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: June 26, 2012
    Inventors: Sergei Nikolaevich Maximovsky, Grigory Avramovich Radutsky
  • Patent number: 8202496
    Abstract: A molecule is separated from a liquid sample containing said molecule and at least one additional molecule having a larger hydrodynamic diameter than the hydrodynamic diameter of the molecule to be separated, by means of a separation device comprising a substrate, at least one circulation channel arranged in said substrate, and at least one nanotube associated with said molecule to be separated and formed on a free surface of the substrate. Separation is achieved by means of the internal channel of a nanotube, such as a carbon nanotube, presenting an effective diameter chosen in predetermined and controlled manner. The effective diameter of the internal channel is chosen such as to be larger than the hydrodynamic diameter of the molecule to be separated and smaller than the hydrodynamic diameter of the additional molecules of larger hydrodynamic diameters.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: June 19, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Christophe Coiffic, Frédéric-Xavier Gaillard, Pierre Puget
  • Publication number: 20120148789
    Abstract: An aircraft structure including structural composite parts assembled together to form the aircraft structure. A bonding interlayer material bonds the structural composite parts to each other. The bonding interlayer material includes a nanostructure enhanced material. A method of producing an aircraft structure of assembled structural composite parts, being cured or semi-cured before assembly.
    Type: Application
    Filed: June 11, 2009
    Publication date: June 14, 2012
    Inventors: Per Hallander, Mikael Petersson, Björn Weidmann, Tommy Grankäll, Pontus Nordin
  • Patent number: 8119095
    Abstract: The present invention relates to a composite sintering materials using a carbon nanotube (including carbide nano particles, hereinafter the same) and a manufacturing method thereof, the method comprises the steps of: combining or generating carbon nanotubes in metal powers, a compacted product, or a sintered product; growing and alloying the carbon nanotubes by compacting or sintering the metal powers, the compacted product, or the sintered product; and strengthening the mechanical characteristics by repeatedly performing the sintering process and the combining process or the generating process of the carbon nanotubes.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: February 21, 2012
    Assignee: C & Tech Co., Ltd.
    Inventors: Sang-chul Ahn, Sun-hwa Yang, Hyeung-eun Ahn
  • Patent number: 8094378
    Abstract: A design method, apparatus, and fabrication method for structures for controlling the flow of electromagnetic energy at a sub-wavelength scale is disclosed. Transformational optics principles are used as a starting point for the design of structures that operate as, for example, hyperlenses or concentrators such that evanescent waves at a first surface are radiated in the far field at a second surface. Plane waves incident at a first surface may be focused to a spot size substantially smaller than a wavelength, so as to interact with objects at the focal point, or be re-radiated.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: January 10, 2012
    Assignee: Purdue Research Foundation
    Inventors: Alexander V. Kildishev, Vladimir M. Shalaev
  • Patent number: 8088282
    Abstract: Disclosed herein are an apparatus and a method for separating molecules on the basis of size and or structure, and to a method of making the apparatus. Generally, the separation method includes passing a fluid comprising particles having different effective molecular diameters through a plurality of open, nanoscale channels disposed in surfaces of substrates. The method also includes obtaining a plurality of fractions of the passed fluid such that each of the fractions includes a major portion containing particles having similar size and shape and substantially free of particles having larger size and shape. The apparatus includes first and second substrates each of which has a surface containing a plurality of open, nanoscale channels disposed therein. The surfaces are bonded together such that each of the channels of the first substrate is in fluid communication with at least two of the channels of the second substrate and is misaligned relative to the channels of the second substrate.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 3, 2012
    Assignee: Intel Corporation
    Inventor: Scott Sibbett