With Specified Chirality And/or Electrical Conductivity (e.g., Chirality Of (5,4), (5,5), (10,5), Etc.) Patents (Class 977/751)
  • Patent number: 7560136
    Abstract: Methods of using thin metal layers to make Carbon Nanotube Films, Layers, Fabrics, Ribbons, Elements and Articles are disclosed. Carbon nanotube growth catalyst is applied on to a surface of a substrate, including one or more thin layers of metal. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes. Portions of the non-woven fabric are selectively removed according to a defined pattern to create the article. A non-woven fabric of carbon nanotubes may be made by applying carbon nanotube growth catalyst on to a surface of a wafer substrate to create a dispersed monolayer of catalyst. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes in contact and covering the surface of the wafer and in which the fabric is substantially uniform density.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: July 14, 2009
    Assignee: Nantero, Inc.
    Inventors: Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Publication number: 20090111174
    Abstract: A biomolecule analyzing system (10) that provides an expeditious, accurate and reliable method for analyzing a biomolecule (150). The system (10) includes two substrates (12,28) each having an inner edge (14,30), an outer edge (16,32) and an inner surfaces (20,36) from where extends a multiplicity of cilia (22). To the inner edges (14,30) is attached an input tube (82) that is also attached to a biomolecule sample reservoir (90). To the outer edges (16,32) is attached an output tube (106) that is also attached to a sample deposit chamber (120). The tubes (82,106) include a plurality of conductive plates (98) that are applied an electrical charge that causes the biomolecule (150) to traverse through the tubes (82,106). When the biomolecule (150) passes through the cilia (22) signals are produced that are applied to a pair of image capturing devices (40,50).
    Type: Application
    Filed: October 25, 2007
    Publication date: April 30, 2009
    Inventors: John A. Parker, Mike VanDeMortel
  • Patent number: 7514063
    Abstract: A method of obtaining purified semiconducting SWCNTs from a bulk mixture of metallic SWCNTs and semiconducting SWCNTs by first creating an aqueous solution containing the bulk mixture and adding a functionalized particle or nanoparticle to the solution, whereby the functionalized particle or nanoparticle reacts chemically with the metallic SWCNTs to form a high density particle-nanotube composite that can be physically separated by centrifugation.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: April 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: George S Tulevski, Ali Afzali-Ardakani, Daniel P Sanders
  • Publication number: 20090061194
    Abstract: Various methods related to the preparation of transparent electrical conductors based on carbon nanotubes having enhanced optical and electrical properties are disclosed. In some embodiments, the methods involve employing carbon nanotubes that have been presorted according to electronic type and/or optical absorbance for use in transparent electrical conductors. Other embodiments involve use of carbon nanotube bundles that have been pre-sorted according to bundle density.
    Type: Application
    Filed: August 25, 2008
    Publication date: March 5, 2009
    Inventors: Alexander A. Green, Mark C. Hersam
  • Publication number: 20090057623
    Abstract: Disclosed herein is an article comprising a nucleic acid-carbon nanotube molecular composite in selective communication with at least one of a plurality of material phases; the selective communication being the result of an affinity of functional groups present in the nucleic acid-carbon nanotube molecular composite for the at least one of the plurality of material phases; the material phases being at least a part of a substrate; the nucleic acid-carbon nanotube molecular composite comprising at least one of i) a nucleic acid disposed on a functionalized carbon nanotube; ii) a functionalized nucleic acid disposed on a carbon nanotube; and iii) a functionalized nucleic acid disposed on a functionalized carbon nanotube to form a nucleic acid-carbon nanotube molecular composite.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jennifer N. Cha, Christine M. Micheel
  • Publication number: 20090054576
    Abstract: Disclosed are an intermediate transfer belt for use in a laser printer, a fax machine and a copier, and a production method thereof. Specifically, an intermediate transfer belt including silicone modified polyimide resin and a production method thereof are provided, thereby realizing a monolayer intermediate transfer belt having excellent electrical properties, water repellency and heat dissipation properties and good mechanical strength. Further, even without the additional use of an adhesive layer for adhesion to a fluorine resin layer and fluorine resin, the intermediate transfer belt can exhibit satisfactory properties, and process efficiency can be maximized.
    Type: Application
    Filed: January 3, 2007
    Publication date: February 26, 2009
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Hyo Jun Park, Chae Hyun Lim, Chung Seock Kang, Sang Min Song
  • Publication number: 20090035555
    Abstract: This invention is directed to an article comprising a transparent substrate and an electrically conductive transparent coating deposited on the transparent substrate. This invention is also directed to methods for preparing the electrically conductive transparent coating and depositing the coating on the transparent substrate. This invention is further directed to devices containing such articles. The electrically conductive transparent coating comprises carbon nanotubes filled, coated, or both filled and coated by a non-carbon material.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 5, 2009
    Inventors: Sean Imtiaz Brahim, Robert L. Gump, Steven G. Colbern, Leonid Grigorian
  • Publication number: 20090027069
    Abstract: The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 29, 2009
    Applicant: William Marsh Rice University
    Inventors: Enrique V. Barrera, Richard Wilkins, Meisha Shofner, Merlyn X. Pulikkathara, Ranjii Vaidyanathan
  • Patent number: 7481990
    Abstract: The present invention provides a method of differentiating metallic carbon nanotubes from semiconducting carbon nanotubes. The method comprising providing a nanotube dispersion, wherein the nanotube dispersion comprises a plurality of carbon nanotubes, osmium tetroxide, or ruthenium tetroxide, and a solvent; and irradiating the nanotube dispersion with ultraviolet light, wherein the metallic carbon nanotubes are osmylated, or ruthenylated, thereby differentiating the metallic carbon nanotubes from the semiconducting carbon nanotubes.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: January 27, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Sarbajit Banerjee
  • Publication number: 20080274036
    Abstract: Methods for producing microstructured catalytic substrates and microstructured catalytic substrates produced by the methods, and methods for growing single-walled carbon nanotubes on the microstructured catalytic substrates wherein the single-walled carbon nanotubes are preferably of a highly specific chirality.
    Type: Application
    Filed: April 29, 2008
    Publication date: November 6, 2008
    Inventors: Daniel E. Resasco, Yongqiang Tan
  • Patent number: 7374685
    Abstract: A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, ?-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: May 20, 2008
    Assignee: Clemson University
    Inventor: Ya-Ping Sun
  • Patent number: 7204970
    Abstract: The present invention discloses the process of supplying high pressure (e.g., 30 atmospheres) CO that has been preheated (e.g., to about 1000° C.) and a catalyst precursor gas (e.g., Fe(CO)5) in CO that is kept below the catalyst precursor decomposition temperature to a mixing zone. In this mixing zone, the catalyst precursor is rapidly heated to a temperature that results in (1) precursor decomposition, (2) formation of active catalyst metal atom clusters of the appropriate size, and (3) favorable growth of SWNTs on the catalyst clusters. Preferably a catalyst cluster nucleation agency is employed to enable rapid reaction of the catalyst precursor gas to form many small, active catalyst particles instead of a few large, inactive ones. Such nucleation agencies can include auxiliary metal precursors that cluster more rapidly than the primary catalyst, or through provision of additional energy inputs (e.g., from a pulsed or CW laser) directed precisely at the region where cluster formation is desired.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: April 17, 2007
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Ken A. Smith, Daniel T. Colbert, Pavel Nikolaev, Michael J. Bronikowski, Robert K. Bradley, Frank Rohmund