Formed From Hybrid Organic/inorganic Semiconductor Compositions Patents (Class 977/827)
  • Patent number: 8911887
    Abstract: Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MOx and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 16, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Nobuhiro Fuke, Alexey Y. Koposov, Milan Sykora, Laura Hoch
  • Patent number: 8877284
    Abstract: A method for making a flexible and clear plastics material article of manufacture having a low electric surface resistance, starting from a plastics material having a higher electric surface resistance, in which the electric surface conductivity of the starting article of manufacture is modified by partially including, into at least a portion of the outer surface of the article, carbon nanotubes. With respect to conventional methods, the inventive method allows to modify the starting plastics material electric surface resistance so as to lower it to values smaller than 102 k?/sq, even starting from articles having a higher resistance of the order of 1013 k?/sq, while preserving the starting clearness and flexibility thereof.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 4, 2014
    Assignee: IVG Colbachini S.p.A.
    Inventors: Gabriele Marcolongo, Moreno Meneghetti
  • Patent number: 8623237
    Abstract: The present invention describes a composition and a method for producing mesoporous silica materials with a chiral organization. In the method, a polymerizable inorganic monomer is reacted in the presence of nanocrystalline cellulose (NCC) to give a material of inorganic solid with cellulose nanocrystallites embedded in a chiral nematic organization. The NCC can be removed to give a stable porous structure that retains the chiral organization of the NCC template. The new materials may be obtained as iridescent free-standing films with high surface area. Through control of the reaction conditions, the color of the films can be varied across the entire visible spectrum. These are the first materials to combine mesoporosity with long-range chiral ordering that leads to photonic properties.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: January 7, 2014
    Assignees: University of British Columbia, FPInnovations
    Inventors: Mark John MacLachlan, Kevin Eric Shopsowitz, Wadood Yasser Hamad, Hao Qi
  • Patent number: 8569615
    Abstract: Provided are solar cells and methods of forming the same. The solar cell includes an anti-reflection layer on a substrate, a first electrode on the anti-reflection layer, a photo-electro conversion layer on the first electrode, and a second electrode on the photo-electro conversion layer.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mi Hee Jung, Mangu Kang
  • Patent number: 8552110
    Abstract: Polymerization process for preparing mono-disperse organic/inorganic nanocomposite microspheres in the field of nano technology is disclosed. The process comprises preparing of two different miniemulsion systems of A with inorganic nanoparticles and B with polymeric monomers in advance; adding water-soluble initiator into miniemulsion A, stirring till complete dissolution finally, heating the mixed system to a given temperature for isothermal reaction. The grain size of the as-prepared superparamagnetic Fe3O4/polystyrene using to present invention is homogeneous and controllable, and the magnetic particles content is controllable.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: October 8, 2013
    Assignee: Shanghai Allrun Nano Science and Technology Co., Ltd.
    Inventors: Longlan Cui, Hong Xu, Hongchen Gu
  • Patent number: 8524365
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 3, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: Paul O'Brien, Nigel Pickett
  • Patent number: 8481162
    Abstract: A semiconductor nanocrystal associated with a polydentate ligand. The polydentate ligand stabilizes the nanocrystal.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 9, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi G. Bawendi, Sungjee Kim, Nathan E. Stott
  • Patent number: 8231848
    Abstract: Ternary and quaternary Chalcopyrite CuInxGa1-xSySe2-y (CIGS, where 0?x and y?1) nanoparticles were synthesized from molecular single source precursors (SSPs) by a one-pot reaction in a high boiling solvent using salt(s) (i.e. NaCl as by-product) as heat transfer agent via conventional convective heating method. The nanoparticles sizes were 1.8 nm to 5.2 nm as reaction temperatures were varied from 150° C. to 190° C. with very high-yield. Tunable nanoparticle size is achieved through manipulation of reaction temperature, reaction time, and precursor concentrations. In addition, the method developed in this study was scalable to achieve ultra-large quantities production of tetragonal and quaternary Chalcopyrite CIGS nanoparticles.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: July 31, 2012
    Assignee: Sun Harmonics Ltd
    Inventors: Yuhang Ren, Chivin Sun, Kai Shum
  • Patent number: 8211735
    Abstract: Techniques for fabricating nanowire/microwire-based solar cells are provided. In one, a method for fabricating a solar cell is provided. The method includes the following steps. A doped substrate is provided. A monolayer of spheres is deposited onto the substrate. The spheres include nanospheres, microspheres or a combination thereof The spheres are trimmed to introduce space between individual spheres in the monolayer. The trimmed spheres are used as a mask to pattern wires in the substrate. The wires include nanowires, microwires or a combination thereof A doped emitter layer is formed on the patterned wires. A top contact electrode is deposited over the emitter layer. A bottom contact electrode is deposited on a side of the substrate opposite the wires.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: William Graham, Supratik Guha, Oki Gunawan, George S. Tulevski, Kejia Wang, Ying Zhang
  • Publication number: 20120119072
    Abstract: An optical electrical system that converts a photo image pattern to a conductance pattern comprises a photoconductive layer for receiving light image patterns and a conversion layer for converting an electrostatic voltage into a conductance pathway for a current flow. The light image pattern can be generated into a page sized area and generated from a light source comprising an array of projectors coupled together.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Meng H. Lean, David K. Biegelsen
  • Publication number: 20110186785
    Abstract: There is provided a method for producing a nanocarbon material dispersion in which individual nanocarbon materials are separated from each other by mild processing. The method for producing a nanocarbon material dispersion of the present invention is characterized by including a step of preparing a composition by mixing a nanocarbon material with a dispersion medium comprising an amphiphilic triphenylene derivative, and a step of subjecting the composition to a mechanical dispersing processing.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 4, 2011
    Inventors: Masaru Kato, Shigeo Maruyama, Takuzo Aida, Takanori Fukushima, Tatsuhiro Yamamoto, Yuhei Miyauchi
  • Patent number: 7977690
    Abstract: Techniques for combining nanotechnology with photovoltaics are provided. In one aspect, a method of forming a photovoltaic device is provided comprising the following steps. A plurality of nanowires are formed on a substrate, wherein the plurality of nanowires attached to the substrate comprises a nanowire forest. In the presence of a first doping agent and a first volatile precursor, a first doped semiconductor layer is conformally deposited over the nanowire forest. In the presence of a second doping agent and a second volatile precursor, a second doped semiconductor layer is conformally deposited over the first doped layer. The first doping agent comprises one of an n-type doping agent and a p-type doping agent and the second doping agent comprises a different one of the n-type doping agent and the p-type doping agent from the first doping agent. A transparent electrode layer is deposited over the second doped semiconductor layer.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Hendrik F. Hamann, Emanuel Tutuc
  • Patent number: 7977761
    Abstract: The present invention provides for an array of nanostructures grown on a conducting substrate. The array of nanostructures as provided herein is suitable for manufacturing electronic devices such as an electron beam writer, and a field emission device.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: July 12, 2011
    Assignee: Smoltek AB
    Inventor: Mohammad Shafiqul Kabir
  • Patent number: 7897712
    Abstract: An organic-inorganic hybrid composition comprising inorganic fine particles having a refractive index of from 1.90 to 3.00, and a thermoplastic resin having a functional group capable of forming a chemical bond with the inorganic fine particles at one or more polymer chain terminals and having a number average molecular weight of from 1,000 to 500,000. The composition has high refraction properties and excellent transparency.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: March 1, 2011
    Assignee: FUJIFILM Corporation
    Inventors: Ryo Suzuki, Tatsuhiko Obayashi, Hiroaki Mochizuki
  • Patent number: 7829351
    Abstract: Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: November 9, 2010
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Linda T. Romano, David P. Stumbo
  • Patent number: 7754524
    Abstract: Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: July 13, 2010
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Linda T. Romano, David P. Stumbo
  • Patent number: 7687876
    Abstract: The present invention provides for nanostructures grown on a conducting substrate, and a method of making the same. The nanostructures grown according to the claimed method are suitable for manufacturing electronic devices such as an electron beam writer, and a field emission display.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: March 30, 2010
    Assignee: Smoltek AB
    Inventor: Mohammad Shafiqul Kabir
  • Patent number: 7682449
    Abstract: Disclosed herein are heterostructure semiconductor nanowires. The heterostructure semiconductor nanowires comprise semiconductor nanocrystal seeds and semiconductor nanocrystal wires grown in a selected direction from the surface of the semiconductor nanocrystal seeds wherein the semiconductor nanocrystal seeds have a composition different from that of the semiconductor nanocrystal wires. Further disclosed is a method for producing the heterostructure semiconductor nanowires.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun
  • Patent number: 7662659
    Abstract: The invention is a method of producing an array, or multiple arrays of quantum dots. Single dots, as well as two or three-dimensional groupings may be created. The invention involves the transfer of quantum dots from a receptor site on a substrate where they are originally created to a separate substrate or layer, with a repetition of the process and a variation in the original pattern to create different structures.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: February 16, 2010
    Assignee: Banpil Photonics, Inc.
    Inventors: Nobuhiko P. Kobayashi, Achyut Kumar Dutta
  • Patent number: 7641820
    Abstract: A nano compound. The nano compound includes a metal or oxide thereof and an organic compound capable of oxidation and reduction bonded to the metal or oxide thereof. The invention also provides an organic memory device including the nano compound.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: January 5, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Jung Chen, Gue-Wuu Hwang, Ching Ting, Yi-Jen Chan, Zing-Way Pei, Chia-Chieh Chang, Chen-Pang Kung
  • Patent number: 7601391
    Abstract: There is provided an organic-inorganic composite material containing a single nanoparticle therein, which is prepared by individually dispersing hydrophilic inorganic nanoparticles having a uniform particle size and conjugating biodegradable polymers to the surface of the nanoparticle, and a method of preparing the same.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 13, 2009
    Assignee: Korea Institute of Science & Technology
    Inventors: Kyoungja Woo, Dong Hyun Koo
  • Patent number: 7563507
    Abstract: Nanoparticulate composites and dispersion thereof using novel polymeric ligand compounds, in certain embodiments in conjunction with pyridinyl moieties coupling the nanoparticulate and ligand.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: July 21, 2009
    Assignee: University of Massachusetts
    Inventors: Todd S. Emrick, Habib Skaff
  • Patent number: 7368086
    Abstract: Functionalized fluorescent nanocrystal compositions and methods for making and using these compositions are disclosed. The compositions are fluorescent nanocrystals coated with at least one material. The coating material has chemical compounds or ligands with functional groups or moieties with conjugated electrons and moieties for imparting solubility to coated fluorescent nanocrystals in aqueous solutions. The coating material provides for functionalized fluorescent nanocrystal compositions which are water soluble, chemically stable, and emit light with a high quantum yield and/or luminescence efficiency when excited with light. The coating material may also have chemical compounds or ligands with moieties for bonding to target molecules and cells as well as moieties for cross-linking the coating.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: May 6, 2008
    Assignee: Invitrogen Corporation
    Inventor: Imad Naasani
  • Patent number: 7268364
    Abstract: Hybrid devices, such as optically erasable memory cells and light sensors, and related methods are disclosed. In some embodiments, a device includes a structure capable of converting between a first resistance state and a second resistance state, and a light source configured to convert the structure from the first resistance state to the second resistance state. The structure includes an organic first material and a second material different from the first material.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: September 11, 2007
    Assignee: Aculon, Inc.
    Inventors: Norbert Koch, Hisao Ishii
  • Patent number: 7067328
    Abstract: Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: June 27, 2006
    Assignee: Nanosys, Inc.
    Inventors: Robert Dubrow, Linda T. Romano, David Stumbo
  • Patent number: RE44510
    Abstract: The invention relates to tuned multifunctional linker molecules for charge transport through organic-inorganic composite structures. The problem underlying the present invention is to provide multifunctional linker molecules for tuning the conductivity in nanoparticle-linker assemblies which can be used in the formation of electronic networks and circuits and thin films of nanoparticles. The problem is solved according to the invention by providing a multifunctional linker molecule of the general structure CON1-FUNC1-X-FUNC2-CON2 in which X is the central body of the molecule, FUNC1 and FUNC2 independently of each other are molecular groups introducing a dipole moment and/or capable of forming inter-molecular and/or intramolecular hydrogen bonding networks, and CON1 and CON2 independently of each other are molecular groups binding to nanostructured units comprising metal and semiconductor materials.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Sony Deutschland GmbH
    Inventors: Jurina Wessels, William E. Ford, Akio Yasuda