Patents Represented by Attorney, Agent or Law Firm David C. Ripma
  • Patent number: 7265030
    Abstract: A method of fabricating a silicon-on-glass layer via layer transfer includes depositing a layer of SiGe on a silicon substrate; relaxing the SiGe layer; depositing a layer of silicon on the relaxed SiGe layer; implanting hydrogen ions in a second hydrogen implantation step to facilitate splitting of the wafer; bonding a glass substrate to the strained silicon layer to form a composite wafer; splitting the composite wafer to provide a split wafer; and processing the split wafer to prepare it for subsequent device fabrication.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: September 4, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-Shen Maa, Jong-Jan Lee, Douglas J. Tweet, Sheng Teng Hsu
  • Patent number: 7262879
    Abstract: A method of making second generation halftone images lacking visible interference, includes selecting an image which has been halftoned, and determining the number of tone levels required for each pixel of the halftoned image, A halftone cell size is identified, and a dot growth pattern is arranged to offset initial dot growth from the center of the halftone cell by defining sub-cells and growing the dot pattern relative to the sub-cell, A dot pattern in a second generation halftone of the selected image is grown.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: August 28, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Ching-Wei Chang
  • Patent number: 7256109
    Abstract: A high-quality isotropic polycrystalline silicon (poly-Si) and a method for fabricating high quality isotropic poly-Si film are provided. The method includes forming a film of amorphous silicon (a-Si) and using a MISPC process to form poly-Si film in a first area of the a-Si film. The method then anneals a second area, included in the first area, using a Laser-Induced Lateral Growth (LILaC) process. In some aspects, a 2N-shot laser irradiation process is used as the LILaC process. In some aspects, a directional solidification process is used as the LILaC process. In response to using the MISPC film as a precursor film, the method forms low angle grain boundaries in poly-Si in the second area.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: August 14, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Masao Moriguchi, Apostolos T. Voutsas, Mark A. Crowder
  • Patent number: 7247545
    Abstract: A method of fabricating a low defect germanium thin film includes preparing a silicon wafer for germanium deposition; forming a germanium film using a two-step CVD process, annealing the germanium thin film using a multiple cycle process; implanting hydrogen ions; depositing and smoothing a layer of tetraethylorthosilicate oxide (TEOS); preparing a counter wafer; bonding the germanium thin film to a counter wafer to form a bonded structure; annealing the bonded structure at a temperature of at least 375° C. to facilitate splitting of the bonded wafer; splitting the bonded structure to expose the germanium thin film; removing any remaining silicon from the germanium thin film surface along with a portion of the germanium thin film defect zone; and incorporating the low-defect germanium thin film into the desired end-product device.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: July 24, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-Shen Maa, Jong-Jan Lee, Douglas J. Tweet, Sheng Teng Hsu
  • Patent number: 7247530
    Abstract: A method of fabricating an ultrathin SOI memory transistor includes preparing a substrate, including forming an ultrathin SOI layer of the substrate; adjusting the threshold voltage of the SOI layer; depositing a layer of silicon oxide on the SOI layer; patterning and etching the silicon oxide layer to form a sacrificial oxide gate in a gate region; depositing a layer of silicon nitride and forming the silicon nitride into a silicon nitride sidewall for the sacrificial oxide gate; depositing and smoothing a layer of amorphous silicon; selectively etching the sacrificial gate oxide; growing a layer of oxide in the gate region; depositing and smoothing a second layer of amorphous silicon; patterning and etching the second layer of amorphous silicon; implanting ion to form a source region and a drain region; annealing the structure; and depositing a layer of passivation oxide.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: July 24, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee
  • Patent number: 7193267
    Abstract: Resistive cross-point memory devices are provided, along with methods of manufacture and use. The memory devices are comprised by an active layer of resistive memory material interposed between upper electrodes and lower electrodes. A bit region located within the resistive memory material at the cross-point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. A diode is formed between at the interface between the resistive memory material and the lower electrodes, which may be formed as doped regions. The resistive cross-point memory device is formed by doping lines within a substrate one polarity, and then doping regions of the lines the opposite polarity to form diodes.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: March 20, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei Pan, Wei-Wei Zhuang
  • Patent number: 7192479
    Abstract: A mask with sub-resolution aperture features and a method for smoothing an annealed surface using a sub-resolution mask pattern are provided. The method comprises: supplying a laser beam having a first wavelength; supplying a mask with a first mask section having apertures with a first dimension and a second mask section with apertures having a second dimension, less than the first dimension; applying a laser beam having a first energy density to a substrate region; melting a substrate region in response to the first energy density; crystallizing the substrate region; applying a diffracted laser beam to the substrate region; and, in response to the diffracted laser beam, smoothing the substrate region surface. In some aspects of the method, applying a diffracted laser beam to the substrate area includes applying a diffracted laser beam having a second energy density, less than the first energy density, to the substrate region.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: March 20, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yasuhiro Mitani, Apostolos T. Voutsas, Mark A. Crowder
  • Patent number: 7192802
    Abstract: Zinc-oxide nanostructures are grown without using a metal catalyst by forming a seed layer of polycrystalline zinc oxide on a surface of a substrate. The seed layer can be formed by an atomic layer deposition technique. Growth of at least one zinc-oxide nanostructure is induced on the seed layer. The seed layer can alternatively be formed by using a spin-on technique, such as a metal organic deposition technique, a spray pyrolisis technique, an RF sputtering technique or by oxidation of the seed layer.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: March 20, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Lisa H. Stecker, John F. Conley, Jr.
  • Patent number: 7192792
    Abstract: Resistive cross point memory devices are provided, along with methods of manufacture and use, including a method of changing an electrically programmable resistance cross point memory bit. The memory device comprises an active layer of perovskite material interposed between upper electrodes and lower electrodes. A bit region located within the active layer at the cross point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. Memory circuits are provided to aid in the programming and read out of the bit region.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: March 20, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei-Wei Zhuang
  • Patent number: 7183179
    Abstract: A hydrogen (H) exfoliation gettering method is provided for attaching fabricated circuits to receiver substrates. The method comprises: providing a Si substrate; forming a Si active layer overlying the substrate with circuit source/drain (S/D) regions; implanting a p-dopant into the S/D regions; forming gettering regions underling the S/D regions; implanting H in the Si substrate, forming a cleaving plane (peak concentration (Rp) H layer) in the Si substrate about as deep as the gettering regions; bonding the circuit to a receiver substrate; cleaving the Si substrate along the cleaving plane; and binding the implanted H underlying the S/D regions with p-dopant in the gettering regions, as a result of post-bond annealing.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: February 27, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Steven R. Droes, Yutaka Takafuji
  • Patent number: 7169624
    Abstract: A shared bit line cross-point memory array structure is provided, along with methods of manufacture. The memory structure comprises a bottom word line with a top word line overlying the bottom word line. A bit line is interposed between the bottom word line and the top word line such that a first cross-point is formed between the bottom word line and the bit line and a second cross-point is formed between the bit line and the top word line. A resistive memory material is provided at each cross-point above and below the bit line. A diode is formed at each cross-point between the resistive memory material and either the top word line or the bottom word line, respectively.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: January 30, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Sheng Teng Hsu
  • Patent number: 7170942
    Abstract: Embodiments of the present invention comprise systems and methods for quantization or dequantization of data related to video wherein reduced bit depth intermediate calculations are enabled.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 30, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Louis Joseph Kerofsky
  • Patent number: 7166485
    Abstract: A superlattice nanocrystal Si—SiO2 electroluminescence (EL) device and fabrication method have been provided. The method comprises: providing a Si substrate; forming an initial SiO2 layer overlying the Si substrate; forming an initial polysilicon layer overlying the initial SiO2 layer; forming SiO2 layer overlying the initial polysilicon layer; repeating the polysilicon and SiO2 layer formation, forming a superlattice; doping the superlattice with a rare earth element; depositing an electrode overlying the doped superlattice; and, forming an EL device. In one aspect, the polysilicon layers are formed by using a chemical vapor deposition (CVD) process to deposit an amorphous silicon layer, and annealing. Alternately, a DC-sputtering process deposits each amorphous silicon layer, and following the forming of the superlattice, polysilicon is formed by annealing the amorphous silicon layers. Silicon dioxide can be formed by either thermal annealing or by deposition using a DC-sputtering process.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: January 23, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Wei-Wei Zhuang
  • Patent number: 7160819
    Abstract: A method for selective ALD of ZnO on a wafer preparing a silicon wafer; patterning the silicon wafer with a blocking agent in selected regions where deposition of ZnO is to be inhibited, wherein the blocking agent is taken from a group of blocking agents includes isopropyl alcohol, acetone and deionized water; depositing a layer of ZnO on the wafer by ALD using diethyl zinc and H2O at a temperature of between about 140° C. to 170° C.; and removing the blocking agent from the wafer.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: January 9, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: John F. Conley, Jr., Yoshi Ono, David R. Evans
  • Patent number: 7162077
    Abstract: A system and method involving the compression of palette-based color images. Compression is based upon coding for boundaries that exist in the original uncompressed image, where such boundaries effectively define a character of binary color differentiation between next-adjacent color zones, which differentiation can be expressed as N and not N, where N is one of the colors in the color palette of the original image.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: January 9, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Xin Li
  • Patent number: 7156916
    Abstract: Monolithic integrated crystalline-structure-processed arrays of mechanical, and combined mechanical and electrical devices, and related systems and processing methods.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: January 2, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: John W. Hartzell
  • Patent number: 7157737
    Abstract: Single-crystal devices and a method for forming semiconductor film single-crystal domains are provided. The method comprises: forming a substrate, such as glass or Si; forming an insulator film overlying the substrate; forming a single-crystal seed overlying the substrate and insulator; forming an amorphous film overlying the seed; annealing the amorphous film; and, forming a single-crystal domain in the film responsive to the single-crystal seed. The annealing technique can be (conventional) laser annealing, a laser induced lateral growth (LiLAC) process, or conventional furnace annealing. In some aspects, forming a single-crystal seed includes forming a nanowire or a self assembled monolayer (SAM). For example, a Si nanowire can be formed having a crystallographic orientation of <110> or <100>. When, the seed has a <100> crystallographic orientation, then an n-type TFT can be formed.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 2, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Apostolos T. Voutsas, John W. Hartzell
  • Patent number: 7138309
    Abstract: A method of fabricating a biaxial tensile strained layer for NMOS fabrication and a uniaxial compressive strained layer for PMOS fabrication on a single wafer for use in CMOS ICs, includes preparing a silicon substrate for CMOS fabrication; depositing, patterning and etching a first and second insulating layers; removing a portion of the second insulating layer from a PMOS active area; depositing a layer of epitaxial silicon on the PMOS active area; removing a portion of the second insulating layer from an NMOS active area; growing an epitaxial silicon layer and growing an epitaxial SiGe layer on the NMOS active area; implanting H2+ ions; annealing the wafer to relax the SiGe layer; removing the remaining second insulating layer from the wafer; growing a layer of silicon; finishing a gate module; depositing a layer of SiO2 to cover the NMOS wafer; etching silicon in the PMOS active area; selectively growing a SiGe layer on the PMOS active area; wherein the silicon layer in the NMOS active area is under biaxia
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: November 21, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Jer-Shen Maa, Douglas J. Tweet, Sheng Teng Hsu
  • Patent number: 7135070
    Abstract: Monolithic stacked/layered room-temperature-processed materials whose internal crystalline structures are laser modification to create arrays of mechanical, and combined mechanical and electrical, devices with precision-established properties, such as important mechanical properties. Methodology and system configurations are disclosed.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: November 14, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: John W. Hartzell
  • Patent number: 7130348
    Abstract: Embodiments of the present invention comprise systems and methods for processing of data related to video wherein reduced bit depth intermediate calculations are enabled.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: October 31, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Louis J. Kerofsky