Abstract: A Wireless Access Point (WAP) of a Wireless Local Area Network (WLAN) infrastructure includes a processor, a radio and a directional antenna. The radio supports communications with a plurality of wireless terminals to gather participatory data, and listens to, but does not participate in transmissions of at least some of the plurality of wireless terminals to collect non-participatory WAP data. Based upon the participatory WAP data and non-participatory WAP data, the processor creates WAP operational reports and provides the WAP operational reports to the WLAN. The WLAN creates directions based thereon and directs the WAP to alter the gain pattern of the directional antenna.
Type:
Grant
Filed:
April 13, 2011
Date of Patent:
December 27, 2011
Assignee:
Broadcom Corporation
Inventors:
Jeffrey L. Thermond, Richard G. Martin, Jeffrey Abramowitz, Stephen Ray Palm
Abstract: A wireless transceiver includes a programmable antenna, that is configurable to a selected one of a plurality of antenna configurations, based on a control signal. An antenna interface is coupled to the programmable antenna. An RF transceiver section can include at least one power amplifier having a output section that includes a first plurality of tunable inductors that impedance match the output section to the antenna interface. The RF transceiver section can further include at least one low noise amplifier having an input section that includes a first plurality of tunable inductors that impedance match the input section to the antenna interface.
Abstract: A transmitting MIMO wireless device transmits a training sequence to a receiving MIMO wireless device. The receiving MIMO wireless device estimates a channel response based upon the training sequence, determines an estimated transmitter beamforming unitary matrix and a transmit path quality matrix, and then transmits some/all of these parameters to the transmitting MIMO wireless device. The transmitting MIMO wireless device receives these components and determines a modulation to be employed for each of a plurality of data streams. The transmitting MIMO wireless device transmits a data frame to the receiving MIMO wireless device that includes a short training sequence, a long training sequence, a signal field with demodulation control signals, and a data payload for each of multiple data streams. According to one embodiment of the signal field, the signal field indicates a number of data streams of the data frame and a modulation employed for each data stream.
Abstract: An integrated circuit radio transceiver and method therefor includes capacitive loop filter with selectable capacitive elements that are operable to adjust a signal level provided to a voltage controlled oscillator to control a frequency of an output signal of the oscillator. A plurality of switches are controlled by logic to define a discharge mode, a charge mode and charge sharing mode in which a plurality of capacitive elements share charge while generating the input voltage to the oscillator.
Abstract: Media content is received from at least one external device that is coupled to a set-top box. Subscriber channel content is generated based on the media content. The subscriber channel content is transferred to a cable network to produce a subscriber cable channel.
Abstract: A single chip radio transceiver includes circuitry that enables detection of radar signals to enable the radio transceiver to halt communications in overlapping communication bands to avoid interference with the radar transmitting the radar pulses. The radio transceiver is operable to evaluate a number of most and second most common pulse interval values to determine whether a traditional radar signal is present. The radio transceiver also is operable to FM demodulate an incoming signal to determine whether a non-traditional radar signal, such as a bin-5 radar signal, is present. After FM demodulation, the signal is averaged wherein a substantially large value is produced for non-traditional radar signals and a value approximately equal to zero is produced for a communication signal that is not FM modulated with a continuously increasing frequency signal. Gain control is used to limit incoming signal magnitude to a specified range of magnitudes.
Abstract: A radio device that is capable of positioning itself within a broadcast radio system includes a receiver operable to receive a plurality of broadcast radio signals, each broadcast from a respective one of a plurality of broadcast radio signal sources. The radio device further includes processing circuitry operable to determine respective call station identification information for each of the broadcast radio signal sources from the broadcast radio signals, measure respective signal quality characteristics for each of the received broadcast radio signals, identify station position data associated with each of the broadcast radio signal sources from the respective call station identification information, and calculate a location of the radio device using the signal quality characteristics and station position data associated with at least three broadcast radio signal sources.
Type:
Grant
Filed:
October 15, 2010
Date of Patent:
December 13, 2011
Assignee:
Broadcom Corporation
Inventors:
John Walley, Nambirajan Seshadri, Scott Bibaud
Abstract: A radio frequency (RF) transmission correction module includes an RF transmission error detection module and a correction module. The error detection module includes an RF envelope detector, a signal conversion module, and an error detection module. The RF envelope detector is operably coupled to produce an envelope signal from a transmit RF signal, wherein the envelope signal represents at least one of local oscillation leakage and in-phase (I) and quadrature (Q) imbalance. The signal conversion module is operably coupled to convert the envelope signal into an error signal in accordance with baseband processing of the transmit RF signal. The error detection module is operably coupled to determine at least one of a local oscillation leakage value and an I and Q imbalance value from the error signal.
Type:
Grant
Filed:
July 13, 2005
Date of Patent:
December 13, 2011
Assignee:
Broadcom Corporation
Inventors:
Arya Reza Behzad, Adedayo Ojo, C. Paul Lee
Abstract: An apparatus for high data throughput reception in a WLAN includes a receiving module, first and second determining modules, a generating module, and a producing module. The receiving module receives a symbol vector representing M streams of symbols transmitted via a wireless communication channel. The first determining module determines inner coded bits and extrinsic information of the inner coded bits based on the symbol vector, a channel matrix, and inner extrinsic information feedback. The second determining module determines outer coded bits and extrinsic information of the outer coded bits based on the extrinsic information of the inner coded bits, the inner coded bits, and a soft input soft output decoding process. The generating module generates the inner extrinsic information feedback based on the extrinsic information of the outer coded bits. The producing module produces decoded bits based on the outer coded bits.
Type:
Grant
Filed:
November 18, 2008
Date of Patent:
December 13, 2011
Assignee:
Broadcom Corporation
Inventors:
Christopher J. Hansen, Jason A. Trachewsky, Ashish Bhargave
Abstract: An Internet infrastructure with network devices and end point devices containing service module manager and service modules, that supports packet routing and vectoring based on payload comparison with spatially related templates. The network device that supports packet content analysis on arriving packet, consists of a plurality of packet switched interface circuitries, user interface circuitry, local storage comprising the service module manager software and a plurality of local service modules, and processing circuitry communicatively coupled to each of the packet switched interfaces, local storage and user interface circuit. The processing circuitry executes service module manager and thus analyzes the packet content and applies one or more selected local service module processing using the packet. The service module manager contains, for comparisons, header templates, spatially related payload trigger templates and spatially related payload supplemental templates.
Abstract: A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives at least one set of IR samples from the memory, forms a turbo code word from the at least one set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching, performs error detection operations, and extracts information from a MAC packet that it produces.
Type:
Grant
Filed:
May 7, 2009
Date of Patent:
December 6, 2011
Assignee:
Broadcom Corporation
Inventors:
Mark David Hahm, Li Fung Chang, Michiel Petrus Lotter
Abstract: A single chip wireless transceiver operable to perform voice, data and radio frequency (RF) processing is provided. This processing may be divided between various processing modules. This single chip includes a processing module having an ARM microprocessor and a digital signal processor (DSP), an RF section, and an interface module. The processing module converts an outbound voice signal into an outbound voice symbol stream, converts an inbound voice symbol stream into an inbound voice signal, converts outbound data into an outbound data symbol stream, and converts an inbound data symbol stream into inbound data. These functions may be divided between the ARM microprocessor and DSP, where the DSP supports physically layer type applications and the ARM microprocessor supports higher layer applications. Further bifurcation may be based on voice applications, data applications, and/or RF control.
Type:
Grant
Filed:
April 8, 2011
Date of Patent:
December 6, 2011
Assignee:
Broadcom Corporation
Inventors:
Vafa James Rakshani, Nelson R. Sollenberger, Claude G. Hayek, Frederic Christian Marc Hayem
Abstract: An antenna configuration controller configures a programmable antenna via a configuration procedure. The configuration procedure includes evaluating first candidate antenna configurations, based on quality data corresponding to each configuration, wherein the quality data includes mode interference data. A selected antenna configuration is identified when the quality data corresponding to the selected antenna configuration compares favorably to a quality threshold. A first proper subset of the first candidate antenna configurations is selected when the quality data corresponding to the first candidate antenna configurations compares unfavorably to the quality threshold; and second candidate antenna configurations are generated, based on the first proper subset.
Abstract: Bias circuitry that may be used within a communications or other device includes a first current mirror having first and second transistors with sources coupled to ground and operable to receive a reference current at a drain of first transistor. A second current mirror has first and second transistors with drains coupled to a battery voltage supply. A third current mirror has first and second transistors with drains coupled to sources of the first and second transistors of the second current mirror, respectively. A biasing transistor couples between the second transistor of the first current mirror and the first transistor of the third current mirror and operable to receive a tuning input voltage at its gate. A resistive element coupled between the second transistor of the third current mirror and ground produces a bias voltage produced at a connection of the resistive element and the second transistor of the third current mirror.
Type:
Grant
Filed:
April 27, 2009
Date of Patent:
December 6, 2011
Assignee:
Broadcom Corporation
Inventors:
Ali Afsahi, Arya Reza Behzad, Vijay Ramachandra Reddy
Abstract: A CDMA communication system supports designated mode data bursts and contention-based transmissions on a reverse link common channel from a subscriber unit to a base station. When transmissions are scheduled and serviced in the designated mode data burst, collisions are avoided. The number of slots consumed in the designated mode data bursts depend upon the volume of data the subscriber unit has to transmit to the base station. A common power control channel provides power control bits and reservation indications for at least one reverse link common channel for closed loop reverse link power control on the common channels.
Type:
Grant
Filed:
October 5, 1999
Date of Patent:
December 6, 2011
Assignee:
Ericsson AB
Inventors:
Alberto Gutierrez, Ibraham Ghaleb, Wen Tong
Abstract: A calibration circuit measures the variation in a filter resistor within the analog domain of the envelope path of a polar transmitter and produces a digital value representative of that variation. A digital processor determines a digital control signal from the digital value that is used to compensate, in the digital domain of the envelope path, for the variation in the filter resistor in the analog domain.
Type:
Grant
Filed:
January 2, 2008
Date of Patent:
December 6, 2011
Assignee:
Broadcom Corporation
Inventors:
Alireza Zolfaghari, Hooman Darabi, Henrik T. Jensen
Abstract: Collaborative coexistence of co-located mobile WiMAX, wireless LAN, and/or Bluetooth radios. Within a communication device that includes multi-protocol communication capability, the various radio modules included within such a communication device operate cooperatively such that collisions are avoided between those various radios. When a first of the radio modules operates as governed by a relatively rigid frame structure, a second of the radio modules capitalizes upon that predetermined nature (of the relatively rigid frame structure) to support communication during times in which that first radio module has a lower level of activity (e.g., turned off completely, within a power savings mode, in a sleep mode, etc.). The radio module operation is performed within a time-orthogonal manner, such that multiple radio modules are not attempting to transmit or receive simultaneously.
Abstract: Tail-biting turbo coding to accommodate any information and/or interleaver block size. The beginning and ending state of a turbo encoder can be made the same using a very small number of dummy bits. In some instances, any dummy bits that are added to an information block before undergoing interleaving are removed after interleaving and before transmission of a turbo coded signal via a communication channel thereby increasing throughput (e.g., those dummy bits are not actually transmitted via the communication channel). In other instances, dummy bits are added to both the information block that is encoded using a first constituent encoder as well as to an interleaved information block that is encoded using a second constituent encoder.
Abstract: Sliding block traceback decoding of block codes. Block by block basis decoding is performed in which a single block, and its corresponding overlap portion, are processed during a given time. The traceback saves a record of decision (e.g., among possible trellis branches between various trellis stages) and constructs only the surviving paths through each individual block. Since only one block (by also employing its corresponding overlap portion) is decoded per time, the traceback through the coded block signal is short. One block of the coded block signal is decoded at a time, and certain resulting information (e.g., bit estimates and/or states) of a first decoded block can be leveraged when decoding a second/adjacent block.
Abstract: Multiple cyclic redundancy check (CRC) engines for checking/appending CRCs during data transfers. Two distinctly implemented CRC engines are employed to enable the processing of different sized byte formats at two ends of a communication channel. These two distinctly implemented CRC engines can be employed to enable the processing of different sized byte formats in a host device at one end and an hard disk drive (HDD) at another end. For example, sometimes the size of blocks, frames, and/or sector sizes that are processed and employed within a first communication device at one end of a communication channel can differ from the size of blocks, frames, and/or sector sizes that are processed and employed within a second communication device at another end of the communication channel. Two distinctly implemented CRC engines allow the appropriate processing and translation of any desired different sized blocks, frames, and/or sector sizes of a communication channel.