Patents Represented by Attorney Horizon IP Pte Ltd
  • Patent number: 7966142
    Abstract: A method for assessing metrology tool accuracy is described. Multi-variable regression is used to define the accuracy of a metrology tool such that the interaction between different measurement parameters is taken into account. A metrology tool under test (MTUT) and a reference metrology tool (RMT) are used to measure a set of test profiles. The MTUT measures the test profiles to generate a MTUT data set for a first measurement parameter. The RMT measures the test profiles to generate RMT data sets for the first measurement parameter, and at least a second measurement parameter. Multi-variable regression is then performed to generate a best-fit plane for the data sets. The coefficient of determination (R2 value) represents the accuracy index of the MTUT.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: June 21, 2011
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Wen Zhan Zhou, Zheng Zou, Jasper Goh, Mei Sheng Zhou
  • Patent number: 7960283
    Abstract: A method for forming silicide contacts in integrated circuits (ICs) is described. A spacer pull-back etch is performed during the salicidation process to reduce the stress between the spacer and source/drain silicide contact at the spacer undercut. This prevents the propagation of surface defects into the substrate, thereby minimizing the occurrence of silicide pipe defects. The spacer pull-back etch can be performed after a first annealing step to form the silicide contacts.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: June 14, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jeff Jianhui Ye, Huang Liu, Alex K H See, Wei Lu, Hai Cong, Hui Peng Koh, Mei Sheng Zhou, Liang Choo Hsia
  • Patent number: 7952131
    Abstract: Large tuning range junction varactor includes first and second junction capacitors coupled in parallel between first and second varactor terminals. First and second plates of the capacitors are formed by three alternating doped regions in a substrate. The second and third doped regions are of the same type sandwiching the first doped region of the second type. A first varactor terminal is coupled to the second and third doped regions and a second varactor terminal is coupled to the first doped region. At the interfaces of the doped regions are first and second depletion regions, the widths of which can be varied by varying the voltage across the terminals from zero to full reverse bias. At zero bias condition, junction capacitance (Cmax) is enhanced due to summation of two junction capacitances in parallel. At reverse bias condition, with the merging of the two junction depletion widths, the capacitor areas are drastically reduced, thereby reducing Cmin significantly.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 31, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Manju Sarkar
  • Patent number: 7947546
    Abstract: Some example embodiments of the invention comprise methods for and semiconductor structures comprised of: a MOS transistor comprised of source/drain regions, a gate dielectric, a gate electrode, channel region; a carbon doped SiGe region that applies a stress on the channel region whereby the carbon doped SiGe region retains stress/strain on the channel region after subsequent heat processing.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: May 24, 2011
    Assignees: Chartered Semiconductor Manufacturing, Ltd., International Business Machines Corporation (IBM)
    Inventors: Jin Ping Liu, Judson Robert Holt
  • Patent number: 7947604
    Abstract: The present invention relates to the reduction or complete prevention of Cu corrosion during a planarization or polishing process. In one aspect of the invention, RF signal is used to establish a negative bias in front of the wafer surface following polishing to eliminate Cu+ or Cu2+ migrations. In another aspect of the invention, a DC Voltage power supply is used to establish the negative bias.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: May 24, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Fan Zhang, Lup San Leong, Yong Kong Siew, Bei Chao Zhang
  • Patent number: 7948329
    Abstract: A gain circuit of an oscillator circuit includes an inverter portion having an input IN and an output OUT arranged for connection to an external feedback circuit comprising a pi network. A feedback member having a first resistive element is coupled between the input IN and output OUT. An offset sense and correction block (OSCB) is configured to detect a dc offset potential difference between said input IN and output OUT and to reduce the offset potential by supplying a current to said input IN.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: May 24, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Hong Sair Lim
  • Patent number: 7939348
    Abstract: A testing structure, and method of using the testing structure, where the testing structure comprised of at least one of eight test structures that exhibits a discernable defect characteristic upon voltage contrast scanning when it has at least one predetermined structural defect. The eight test structures being: 1) having an Active Area (AA)/P-N junction leakage; 2) having an isolation region to ground; 3) having an AA/P-N junction and isolation region; 4) having a gate dielectric leakage and gate to isolation region to ground; 5) having a gate dielectric leakage through AA/P-N junction to ground leakage; 6) having a gate dielectric to ground and gate/one side isolation region leakage to ground; 7) having an oversized gate dielectric through AA/P-N junction to ground leakage; and 8) having an AA/P-N junction leakage gate dielectric leakage.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: May 10, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Victor Seng Keong Lim, Jeffrey Lam
  • Patent number: 7939413
    Abstract: An example embodiments are structures and methods for forming an FET with embedded stressor S/D regions (e.g., SiGe), a doped layer below the embedded S/D region adjacent to the isolation regions, and a stressor liner over reduced spacers of the FET gate. An example method comprising the following. We provide a gate structure over a first region in a substrate. The gate structure is comprised of gate dielectric, a gate, and sidewall spacers. We provide isolation regions in the first region spaced from the gate structure; and a channel region in the substrate under the gate structure. We form S/D recesses in the first region in the substrate adjacent to the sidewall spacers. We form S/D stressor regions filling the S/D recesses.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: May 10, 2011
    Assignees: Samsung Electronics Co., Ltd., Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Yung Fu Chong, Zhijiong Luo, Joo Chan Kim, Brian Joseph Greene, Kern Rim
  • Patent number: 7935589
    Abstract: A transistor disposed on a substrate includes a gate, spacers on gate sidewalls, and diffusion regions adjacent to the gate. Silicide contacts on the diffusion regions are displaced from the spacers by a distance G. Stressors may be provided in the diffusion region to induce a first stress in the channel region of the transistor.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: May 3, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Lee Wee Teo, Jae Gon Lee, Shyue Seng Tan, Elgin Quek
  • Patent number: 7935632
    Abstract: Formation of metal pipes resulting from formation of metal silicide contacts are reduced or avoided. To reduce formation of metal pipes, an epitaxial layer is formed over the diffusion region on which the metal silicide contact is formed. The epitaxial layer reduces defects which enhances diffusion of metal atoms or molecules.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: May 3, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Wei Hua Tong, Lap Chan, K. Suresh Kumar, Miow Chin Tan
  • Patent number: 7932152
    Abstract: A method of forming an integrated circuit structure on a substrate, the substrate includes a primary region and a secondary region. A first layer of a first material of a first thickness is formed over the substrate. A portion of the first layer is removed over the primary region to expose the substrate. The structure is exposed to an oxidizing medium. This forms a second layer, for example, of an oxide material primary region of the substrate. The second layer has a second thickness. Additionally, at least a portion of said first layer is converted to a third layer, for example, of an oxynitride material. The third layer has a third thickness.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: April 26, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Will Wong, Lap Chan, Alan Lek
  • Patent number: 7930053
    Abstract: A method of automating validation in a manufacturing facility is disclosed. The method comprises defining requirements, selecting and integrating automated devices for manufacturing. A hub-box with communication links is used to integrate the automated devices. The hub-box controls and facilitates communication between automated devices. The hub-box further collects and analyzes processing data for validation of the process. By interconnecting the automated devices to a hub-box, processing data may be collected substantially real-time and accessed remotely, facilitating continuous process validation.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: April 19, 2011
    Assignee: Beacons Pharmaceuticals Pte Ltd
    Inventors: Wee Song Steve Loy, Wei Chak Joseph Lam
  • Patent number: 7923180
    Abstract: A method of fabricating a device is presented. The method includes forming a mask that includes multiple images. A substrate is patterned using the mask. An image of the multiple images corresponds to a respective patterning process. The substrate is processed further to complete the processing of the substrate to form the desired function of the device.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: April 12, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Sia Kim Tan, Guoxiang Ning, Gek Soon Chua, Soon Yoeng Tan, Byoung Il Choi, Jason Phua
  • Patent number: 7902066
    Abstract: Interconnects for integrated circuits, such as damascene structures are formed using a hard mask. The hard mask is formed from, for example, high-k dielectric material such as hafnium oxide or other materials having high etch selectivity to the interconnect dielectric material. This enables a thin mask to etch vias and trenches in the interconnect dielectric layer, avoiding the problems associated with the use of thick mask layers, such as contact hole striations and small depth of focus, which can result in shorts or opens.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: March 8, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jian Hui Ye, Mei Sheng Zhou
  • Patent number: 7898742
    Abstract: A microlens chip comprises a variable focus fluidic microlens and actuator. The actuator varies the pressure in a fluidic channel in the microlens chip which is coupled to an aperture opening containing the microlens. Applying an electric field to the actuator creates changes in fluid pressure in the fluidic channel, which in turn changes the radius of curvature (i.e., focal length) of the fluidic microlens.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: March 1, 2011
    Inventors: Isabel Rodríguez Fernández, Peter M. Moran, Aik Hau Khaw, Saman Dharmatilleke
  • Patent number: 7888214
    Abstract: A structure and method of fabrication of a semiconductor device, where a stress layer is formed over a MOS transistor to put either tensile stress or compressive stress on the channel region. The parameters such as the location and area of the contact hole thru the stress layer are chosen to produce a desired amount of stress to improve device performance. In an example embodiment for a tensile stress layer, the PMOS S/D contact area is larger than the NMOS S/D contact area so the tensile stress on the PMOS channel is less than the tensile stress on the NMOS channel. In an example embodiment for a compressive stress layer, the NMOS contact area is larger than the PMOS contact area so that the compressive stress on the NMOS channel is less than the compressive stress on the PMOS channel.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: February 15, 2011
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Lee Wee Teo, Elgin Quek, Dong Kyun Sohn
  • Patent number: 7888752
    Abstract: A structure and method of reducing junction capacitance of a source/drain region in a transistor. A gate structure is formed over on a first conductive type substrate. We perform a doped depletion region implantation by implanting ions being the second conductive type to the substrate using the gate structure as a mask, to form a doped depletion region beneath and separated from the source/drain regions. The doped depletion regions have an impurity concentration and thickness so that the doped depletion regions are depleted due to a built-in potential creatable between the doped depletion regions and the substrate. The doped depletion region and substrate form depletion regions between the source/drain regions and the doped depletion region. We perform a S/D implant by implanting ions having a second conductivity type into the substrate to form S/D regions. The doped depletion region and depletion regions reduce the capacitance between the source/drain regions and the substrate.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: February 15, 2011
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: King Jien Chui, Francis Benistant, Ganesh Shamkar Samudra, Kian Meng Tee, Yisuo Li, Kum Woh Vincent Leong, Kheng Chok Tee
  • Patent number: 7879673
    Abstract: A method for forming a semiconductor device is presented. The method includes providing a substrate prepared with first and second regions with a first device layer. A second device layer including nanocrystals is also formed. A cover layer is provided over the second device layer. The cover layer is patterned to expose portions of the second device layer in the first and second regions. The exposed portions of the second device layer in the first and second regions are processed to form modified portions. The processing of the exposed portions at least reduces the nanocrystals to a diameter below a threshold diameter in the modified portions. The modified portions are removed.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: February 1, 2011
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Yu Chen, Jae Gon Lee, Vincent Ho, Bangun Indajang
  • Patent number: 7867862
    Abstract: A high voltage device includes a substrate with a device region defined thereon. A gate stack is disposed on the substrate in the device region. A channel region is located in the substrate beneath the gate stack, while a first diffusion region is located in the substrate on a first side of the gate stack. A first isolation structure in the substrate, located on the first side of the gate stack, separates the channel and the first diffusion region. The high voltage device also includes a first drift region in the substrate coupling the channel to the first diffusion region, wherein the first drift region comprises a non-uniform depth profile conforming to a profile of the first isolation structure.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: January 11, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd
    Inventors: Jeoung Mo Koo, Purakh Raj Verma, Sanford Chu, Chunlin Zhu, Yisuo Li
  • Patent number: 7863141
    Abstract: Structures and methods of fabricating isolation regions for a semiconductor device. An example method comprises the following. We form one or more buried doped regions in a substrate. We form a stressor layer over the substrate. We form a strained layer over the stressor layer. We form STI trenches down through the strained layer and the stressor layer to as least partially expose the buried doped regions. We etch the buried doped regions to form at least a buried cavity in communication with the STI trenches. In the first and second embodiments, we fill only the STI trenches with insulation material to form isolation regions and form voids in the cavities. In the third and fourth embodiments, we fill both the STI trenches and the cavities with insulation material.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: January 4, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Jin Ping Liu