Patents Represented by Attorney Jacqueline J. Garner
  • Patent number: 7601577
    Abstract: Forming metal gate transistors that have different work functions is disclosed. In one example, a first metal, which is a ‘mid gap’ metal, is manipulated in first and second regions by second and third metals, respectively, to move the work function of the first metal in opposite directions in the different regions. The resulting work functions in the different regions correspond to that of different types of the transistors that are to be formed.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Robert Visokay, Luigi Colombo, Antonio Luis Pacheco Rotondaro
  • Patent number: 7601639
    Abstract: The present invention provides, in one aspect, the present invention provides, in one embodiment, a method of conditioning a deposition chamber 100. This method comprises placing an undercoat on the walls of a deposition chamber 100 and depositing a pre-deposition coat over the undercoat with a plasma gas mixture conducted at a high pressure and with high gas flow.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Salvator F. Pavone, Jason J New
  • Patent number: 7601578
    Abstract: A method for improving high-? gate dielectric film (104) properties. The high-? film (104) is subjected to a two step anneal sequence. The first anneal is performed in a reducing ambient (106) with low partial pressure of oxidizer to promote film relaxation and increase by-product diffusion and desorption. The second anneal is performed in an oxidizing ambient (108) with a low partial pressure of reducer to remove defects and impurities.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J. Chambers, Mark R. Visokay, Antonio Luis Pacheco Rotondaro
  • Patent number: 7601575
    Abstract: The present invention facilitates semiconductor device operation and fabrication by providing a cap-annealing process that improves channel electron mobility without substantially degrading PMOS transistor devices. The process uses an oxide/nitride composite cap to alter the active dopant profile across the channel regions. During an annealing process, dopants migrate out of the Si/SiO2 in a channel region thereby altering the dopant profile of the channel region. This altered profile generally improves channel mobility thereby improving transistor performance and permitting smaller density designs.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: October 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Haowen Bu, Shashank Ekbote, Rajesh Khamankar, Shaoping Tang, Freidoon Mehrad
  • Patent number: 7572733
    Abstract: Gas switching is used during an etch process to modulate the characteristics of the etch. The etch process comprises a sequence of at least three steps, wherein the sequence is repeated at least once. For example, the first step may result in a high etch rate of oxide (108) while the second step is a polymer coating steps and the third step results in a low etch rate of oxide and high etch rate of another material (114) and/or sputtering.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 11, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Ping Jiang, Francis Celii
  • Patent number: 7572698
    Abstract: A ferroelectric memory device is fabricated while mitigating edge degradation. A bottom electrode is formed over one or more semiconductor layers. A ferroelectric layer is formed over the bottom electrode. A top electrode is formed over the ferroelectric layer. The top electrode, the ferroelectric layer, and the bottom electrode are patterned or etched. A dry clean is performed that mitigates edge degradation. A wet etch/clean is then performed.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: August 11, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Lindsey H. Hall, Francis G. Celii, Scott R. Summerfelt
  • Patent number: 7572693
    Abstract: Methods are disclosed for semiconductor device fabrication in which dopants are selectively implanted into transistor gate structures to counteract or compensate for dopant depletion during subsequent fabrication processing. A patterned implant mask is formed over a semiconductor device, which exposes at least a portion of the gate structure and covers the remaining upper surfaces of the device. Thereafter, dopants are selectively implanted in to the exposed gate structure.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: August 11, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: F. Scott Johnson, Tad Grider, Benjamin P. McKee
  • Patent number: 7562333
    Abstract: A method (300) for generating an optical proximity correction model for a mask layout having an asymmetric feature structure includes fabricating a mask (310) having a plurality of symmetric and asymmetric test structures thereon, and image processing one or more semiconductor wafers (320) using the fabricated mask to create a plurality of symmetric and asymmetric resist structures overlying the one or more wafers. At least one critical dimension of the symmetric resist structures and the asymmetric resist structures are measured (330), thereby generating symmetric and asymmetric critical dimension data, and a difference between a desired feature size of the symmetric and asymmetric structures and the measured feature size of the symmetric and asymmetric structures is evaluated (380) in order to generate an optical proximity correction model (398) based thereon.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Ashesh Parikh, Jarvis Jacobs
  • Patent number: 7560385
    Abstract: A method and system for etching a substrate control selectivity of the etch process by modulating the gas specie of the reactants. The gas specie selectively form and etch a buffer layer that protects underlying etch stop materials thereby providing highly selective etch processes.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Francis G. Celii, Ping Jiang
  • Patent number: 7560779
    Abstract: A mixed voltage circuit is formed by providing a substrate (12) having a first region (20) for forming a first device (106), a second region (22) for forming a second device (108) complementary to the first device (106), and a third region (24) for forming a third device (110) that operates at a different voltage than the first device (106). A gate layer (50) is formed outwardly of the first, second, and third regions (20, 22, 24). While maintaining a substantially uniform concentration of a dopant type (51) in the gate layer (50), a first gate electrode (56) is formed in the first region (20), a second gate electrode (58) is formed in the second region (22), and a third gate electrode (60) is formed in the third region (24). The third region (24) is protected while implanting dopants (72) into the first region (20) to form source and drain features (74) for the first device (106).
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Mark S. Rodder, Jarvis B. Jacobs
  • Patent number: 7553718
    Abstract: A method (100) of forming semiconductor structures (202) including high-temperature processing steps (step 118), incorporates the use of a high-temperature nitride-oxide mask (220) over protected regions (214) of the device (202). The invention has application in many different embodiments, including but not limited to, the formation of recess, strained device regions (224).
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 30, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Periannan Chidambaram, Haowen Bu, Rajesh Khamankar, Douglas T. Grider
  • Patent number: 7531436
    Abstract: The invention relates to a method of forming a shallow junction. The method (100) comprises forming source/drain extension regions with a non-amorphizing tail implant (105) which is annealed conventionally (spike/RTP) and amorphizing implant which is re-grown epitaxially (SPER) (110). The non-amorphizing tail implant is generally annealed (106) before a doped amorphous layer for SPE is formed (107). SPE provides a high active dopant concentration in a shallow layer. The non-amorphizing tail implant (105) expands the source/drain extension region beyond the range dictated by the SPE-formed layer and keeps the depletion region of the P-N junction away from where end-of-range defects form during the SPE process. Thus, the SPE-formed layer primarily determines the conductivity of the junction while the tail implant determines the location of the depletion region. End-of-range defects form, but are not in a position to cause significant reverse bias leakage.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: May 12, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Puneet Kohli
  • Patent number: 7531415
    Abstract: A three layer film (116/114/112), such as nitride/oxide/nitride for a CMP stop layer (110). A gap filling material (120) is polished, stopping on the first film (112). The first film (112) is then stripped using an etch chemistry that is selective against removing the second film (114). CMP is then continued stopping on the third film (116).
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: May 12, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Siang Ping Kwok
  • Patent number: 7516037
    Abstract: A method evaluating threshold of a data cell in a memory device including a programming locus coupled with the data cell for receiving a programming signal setting a stored signal level in the data cell and responding to a read signal to indicate the stored signal at a read locus; includes the steps of: (a) in no particular order; (1) selecting a test threshold signal; and (2) setting a read signal at a non-read level; (b) applying the test threshold signal to the programming locus; (c) cycling the read signal between a read level and a non-read level while applying the test threshold signal to the programming locus to present at least two test signals at the read locus when the read signal is at the read level; and (d) while cycling, observing whether the at least two test signals manifest a difference greater than a predetermined amount.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: April 7, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: David John Baldwin, Eric Blackall, Joseph Devore, Ross E. Teggatz
  • Patent number: 7508013
    Abstract: The present, invention provides a system for providing a cross-lateral junction field effect transistor (114) having desired high-performance desired voltage, frequency or current characteristics. The cross-lateral transistor is formed on a commercial semiconductor substrate (102). A channel structure (124) is formed along the substrate, having source (120) and drain (122) structures laterally formed on opposites sides thereof. A first gate structure (116) is formed along the substrate, laterally adjoining the channel structure orthogonal to the source and drain structures. A second gate structure (118) is formed along the substrate, laterally adjoining the channel structure, orthogonal to the source and drain structures and opposite the first gate structure.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: March 24, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E Howard, Leland Swanson
  • Patent number: 7498654
    Abstract: A transistor apparatus includes a silicon substrate and a barrier structure extending substantially from generally adjacent the silicon substrate to a locus displaced from the silicon substrate. The barrier structure generally surrounds a volume containing connection loci for the transistor apparatus and a buried layer in a silicon medium. The connection loci and the buried layer occupy a space generally presenting a first lateral expanse generally parallel with the silicon substrate. The volume presents a second lateral expanse generally parallel with the silicon substrate. The second lateral expanse is greater than the first lateral expanse within a predetermined distance of the substrate.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: March 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Leland Scott Swanson, Gregory E. Howard
  • Patent number: 7499354
    Abstract: The present invention provides a method for testing an electrical property of one or more functionally separate transistors located within an active region that is common with other transistors, a method for characterizing the leakage current of at least one of a plurality of functionally separate transistors located in a common active region of a circuit, and a test structure for testing one or more functionally separate transistors located within a common active region. The method for testing the electrical property, among other steps, includes providing a pair of functionally separate transistors (110) located within a common active region, and biasing a terminal (135) between the pair (110) relative to gates (125, 155) of the pair (110) and terminals (130, 160) outlying the pair (110) to obtain a leakage current associated with the pair (110).
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: March 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore W. Houston, Xiaowei Deng, Tito Gelsomini
  • Patent number: 7498652
    Abstract: The present invention provides, in one embodiment, a transistor (100). The transistor (100) comprises a doped semiconductor substrate (105) and a gate structure (110) over the semiconductor substrate (105), the gate structure (110) having a gate corner (125). The transistor (100) also includes a drain-extended well (115) surrounded by the doped semiconductor substrate (105). The drain-extended well (115) has an opposite dopant type as the doped semiconductor substrate (105). The drain-extended well (115) also has a low-doped region (145) between high-doped regions (150), wherein an edge of the low-doped region (155) is substantially coincident with a perimeter (140) defined by the gate corner (125). Other embodiments of the present invention include a method of manufacturing a transistor (200) and an integrated circuit (300).
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: March 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, James R. Todd
  • Patent number: 7483332
    Abstract: The present invention provides circuitry for writing to and reading from an SRAM cell core, an SRAM cell, and an SRAM device. In one aspect, the circuitry includes a write circuit coupled to the SRAM cell core that includes at least one write transistor. The circuitry also includes a read circuit coupled to the SRAM cell core that includes at least one read transistor having a gate signal in common with the gate signal of the write transistor. The read transistor and the write transistor share a common gate signal, and each have an electrical characteristic, for which the electrical characteristic of the read transistor differs from that of the write transistor.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: January 27, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Patent number: 7482214
    Abstract: The present invention facilitates semiconductor device fabrication and performance by providing a semiconductor device that can improve channel mobility for both N type and P type transistor devices. The semiconductor device of the present invention is fabricated on a semiconductor substrate 802 that has a first and second crystallographic orientation axes (e.g., <110>, <100>) 804 and 806. Source to drain channel regions for P type devices are formed 904 and aligned along the first crystallographic orientation axis. Source to drain channel regions for N type devices are formed 906 rotated from the channel regions of the P type devices by an offset angle so that the source to drain channel regions for the N type devices are aligned with the second crystallographic orientation axis.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: January 27, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Timothy A. Rost