Patents Represented by Attorney James W. Weinberger
  • Patent number: 5164270
    Abstract: An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.
    Type: Grant
    Filed: March 1, 1990
    Date of Patent: November 17, 1992
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Krishnamurti Natesan
  • Patent number: 5160367
    Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: November 3, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: R. Dean Pierce, John P. Ackerman, James E. Battles, Terry R. Johnson, William E. Miller
  • Patent number: 5157149
    Abstract: A method of making substantially pure L-BPA is disclosed. The method includes the steps of reacting 4-bromobenzaldehyde with ethylene glycol to form 4-bromobenzaldehyde ethylene glycol acetal, sequentially reacting 4-bromobenzaldehyde ethyleneglycol acetal with Mg to produce the Grignard reagent and thereafter reacting with tributyl borate and then converting to an acid environment to form 4-boronobenzaldehyde, reacting 4-boronobenzaldehyde with diethanol amine to form 4-boronobenzaldehyde diethanolamine ester, condensing the 4-boronobenzaldehyde diethanolamine ester with 2-phenyl-2-oxazolin-5-one to form an azlactone, reacting the azlactone with an alkali metal hydroxide to form z-.alpha.-benzoylamino-4-boronocinnamic acid, asymmetrically hydrogenating the z-.alpha.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: October 20, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Edward G. Samsel
  • Patent number: 5154987
    Abstract: An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800.degree. C.-1200.degree. C.), for example 1000.degree. C., than are typically required (1400.degree. C.) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250.degree. C. with conductivity values of 2.5 to 4.times.10.sup.-2 (ohm-cm).sup.-1. The matrix exhibits chemical stability against sodium for 100 hours at 250.degree. to 300.degree. C.
    Type: Grant
    Filed: July 17, 1990
    Date of Patent: October 13, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Mark C. Hash, Ira D. Bloom
  • Patent number: 5153780
    Abstract: A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.
    Type: Grant
    Filed: June 10, 1991
    Date of Patent: October 6, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Gary J. Jorgensen, Meir Carasso, Timothy J. Wendelin, Allan A. Lewandowski
  • Patent number: 5147616
    Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: September 15, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John P. Ackerman, James E. Battles, Terry R. Johnson, William E. Miller, R. Dean Pierce
  • Patent number: 5144026
    Abstract: The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy.
    Type: Grant
    Filed: February 4, 1992
    Date of Patent: September 1, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Detlef Gabel
  • Patent number: 5141723
    Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: August 25, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, John P. Ackerman, James E. Battles, Terry R. Johnson, R. Dean Pierce
  • Patent number: 5139594
    Abstract: A method for joining shapes of ceramic materials together to form a unitary ceramic structure. In the method of the invention, a mixture of two or more chemical components which will react exothermically is placed between the surfaces to be joined, and the joined shapes heated to a temperature sufficient to initiate the exothermic reaction forming a joining material which acts to bond the shapes together. Reaction materials are chosen which will react exothermically at temperatures below the degradation temperature of the materials to be joined. The process is particularly suited for joining composite materials of the silicon carbide-silicon carbide fiber type.
    Type: Grant
    Filed: June 26, 1990
    Date of Patent: August 18, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Barry H. Rabin
  • Patent number: 5132221
    Abstract: A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.
    Type: Grant
    Filed: May 10, 1989
    Date of Patent: July 21, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Thomas W. Ward, Debby F. Bruhn, Deborah K. Bulmer
  • Patent number: 5129801
    Abstract: An apparatus for synthesizing a composite material such as titanium carbide and alumina from exothermic reaction of a sample followed by explosive induced consolidation of the reacted sample. The apparatus includes a lower base for holding a powdered composite sample, an igniter and igniter powder for igniting the sample to initiate an exothermic reaction and a piston for dynamically compressing the sample utilizing an explosive reaction.
    Type: Grant
    Filed: January 16, 1991
    Date of Patent: July 14, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Barry H. Rabin, Gary E. Korth, Richard N. Wright, Richard L. Williamson
  • Patent number: 5128115
    Abstract: A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.
    Type: Grant
    Filed: April 8, 1991
    Date of Patent: July 7, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Gregory C. Glatzmaier
  • Patent number: 5125977
    Abstract: A two-stage dilute acid prehydrolysis process on xylan containing hemicellulose in biomass is effected by: treating feedstock of hemicellulosic material comprising xylan that is slow hydrolyzable and xylan that is fast hydrolyzable under predetermined low temperature conditions with a dilute acid for a residence time sufficient to hydrolyze the fast hydrolyzable xylan to xylose; removing said xylose from said fast hydrolyzable xylan and leaving a residue; and treating said residue having a slow hydrolyzable xylan with a dilute acid under predetermined high temperature conditions for a residence time required to hydrolyze said slow hydrolyzable xylan to xylose.
    Type: Grant
    Filed: April 8, 1991
    Date of Patent: June 30, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Karel Grohmann, Robert W. Torget
  • Patent number: 5126321
    Abstract: A superconductor and precursor therefor from oxide mixtures of Ca, Sr, Bi and Cu. Glass precursors quenched to elevated temperatures result in glass free of crystalline precipitates having enhanced mechanical properties. Superconductors are formed from the glass precursors by heating in the presence of oxygen to a temperature below the melting point of the glass.
    Type: Grant
    Filed: April 10, 1990
    Date of Patent: June 30, 1992
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: David G. Hinks, Donald W. Capone, II
  • Patent number: 5116470
    Abstract: The present invention relates to a method of producing Tc-96 from the proton irradiation of a rhodium target and a technique for isolating under remote hot cell conditions the Tc-96 from the proton irradiated target.
    Type: Grant
    Filed: August 10, 1990
    Date of Patent: May 26, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Leonard F. Mausner, Suresh C. Srivastava, Thomas Prach
  • Patent number: 5116980
    Abstract: The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: May 26, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Detlef Gabel
  • Patent number: 5114909
    Abstract: A fundamental pinning mechanism has been identified in the Bi-Sr-Ca-Cu-O system. The pinning strength has been greatly increased by the introduction of calcium- and copper-rich precipitates into the sample matrix. The calcium and copper are supersaturated in the system by complete melting, and the fine calcium and copper particles precipitated during subsequent crystallization anneal to obtain the superconducting phases. The intragrain critical current density has been increased from the order of 10.sup.5 A/cm.sup.2 to 10.sup.7 A/cm.sup.2 at 5 T.
    Type: Grant
    Filed: February 28, 1990
    Date of Patent: May 19, 1992
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Donglu Shi
  • Patent number: 5100585
    Abstract: The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.
    Type: Grant
    Filed: April 9, 1990
    Date of Patent: March 31, 1992
    Assignee: United States Department of Energy
    Inventors: E. Philip Horwitz, Mark L. Dietz
  • Patent number: 5100791
    Abstract: A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.
    Type: Grant
    Filed: January 16, 1991
    Date of Patent: March 31, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Diane D. Spindler, Karel Grohmann, Charles E. Wyman
  • Patent number: 5096545
    Abstract: A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride.
    Type: Grant
    Filed: May 21, 1991
    Date of Patent: March 17, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: John P. Ackerman