Patents Represented by Attorney, Agent or Law Firm Martin Novack
  • Patent number: 8269431
    Abstract: A method for producing an optical output in substantially linear relationship with an input electrical AC signal, including the following steps: providing a light-emitting transistor having emitter, base, and collector regions, the light-emitting transistor producing light emission from its base region in response to electrical signals applied with respect to the emitter, base, and collector regions; applying a signal derived from the input signal to the light-emitting transistor; deriving a feedback signal from an electrical operating signal of the light-emitting transistor; applying a predistortion factor to the derived feedback signal to produce a predistorted feedback signal; and combining the predistorted feedback signal with the input signal to produce the signal derived from thr input signal; whereby the light emission comprises an optical output in substantially linear relationship with the input signal.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: September 18, 2012
    Assignee: The Board of Trustees of The University of Illinois
    Inventors: Han Wui Then, Milton Feng, Nick Holonyak, Jr.
  • Patent number: 8259797
    Abstract: A method for converting an encoded digital video signal from a decoded relatively lower frame rate to a decoded relatively higher frame rate, including the following steps: deriving, from the encoded video signal, at the relatively lower frame rate, a decoded high resolution component and a decoded low resolution component; increasing the frame rate of the decoded low resolution component by interpolating successive frames of the decoded low resolution component; increasing the frame rate of the decoded high resolution component by duplicating frames of the decoded high resolution component; and obtaining an output relatively higher frame rate video signal by combining the increased frame rate low resolution component and the increased frame rate high resolution component.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 4, 2012
    Assignee: Florida Atlantic University
    Inventor: William E. Glenn
  • Patent number: 8189664
    Abstract: A method for compressing and transmitting a sequence of video frames represented by arrays of digital pixel values includes the following steps: transmitting a representation of a first frame (I1) of the sequence; deriving a sorting permutation P1 of the first frame; using the sorting permutation of the first frame, P1, to approximately sort a second frame (I2) of the sequence, to obtain approximately sorted frame P1(I2); and compressing and transmitting the approximately sorted frame P1(I2).
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: May 29, 2012
    Assignee: Florida Atlantic University
    Inventors: Daniel Socek, Hari Kalva, Spyros Magliveras
  • Patent number: 8179939
    Abstract: A two terminal semiconductor device for producing light emission in response to electrical signals, includes: a terminal-less semiconductor base region disposed between a semiconductor emitter region and a semiconductor collector region having a tunnel junction adjacent the base region; the base region having a region therein exhibiting quantum size effects; an emitter terminal and a collector terminal respectively coupled with the emitter region and the collector region; whereby application of the electrical signals with respect to the emitter and collector terminals, causes light emission from the base region. Application of the electrical signals is operative to reverse bias the tunnel junction. Holes generated at the tunnel junction recombine in the base region with electrons flowing into the base region, resulting in the light emission. The region exhibiting quantum size effects is operative to aid recombination.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: May 15, 2012
    Assignee: The Board of Trustees Of The University Of Illinois
    Inventors: Nick Holonyak, Jr., Milton Feng, Gabriel Walter, Adam James
  • Patent number: 8179937
    Abstract: A method for producing a high frequency optical signal component representative of a high frequency electrical input signal component, includes the following steps: providing a semiconductor transistor structure that includes a base region of a first semiconductor type between semiconductor emitter and collector regions of a second semiconductor type; providing, in the base region, at least one region exhibiting quantum size effects; providing emitter, base, and collector electrodes respectively coupled with the emitter, base, and collector regions; applying electrical signals, including the high frequency electrical signal component, with respect to the emitter, base, and collector electrodes to produce output spontaneous light emission from the base region, aided by the quantum size region, the output spontaneous light emission including the high frequency optical signal component representative of the high frequency electrical signal component; providing an optical cavity for the light emission in the regi
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: May 15, 2012
    Assignees: Quantum Electro Opto Systems Sdn. Bhd., The Board of Trustees of The University of Illinois
    Inventors: Gabriel Walter, Milton Feng, Nick Holonyak, Jr., Han Wui Then, Chao-Hsin Wu
  • Patent number: 8159287
    Abstract: A field-effect transistor device, including: a semiconductor heterostructure comprising, in a vertically stacked configuration, a semiconductor gate layer between semiconductor source and drain layers, the layers being separated by heterosteps; the gate layer having a thickness of less than about 100 Angstroms; and source, gate, and drain electrodes respectively coupled with said source, gate, and drain layers. Separation of the gate by heterosteps, rather than an oxide layer, has very substantial advantages.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: April 17, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Milton Feng, Nick Holonyak, Jr.
  • Patent number: 8005124
    Abstract: A method for producing wide bandwidth laser emission responsive to high frequency electrical input signals, including the following steps: providing a heterojunction bipolar transistor device having collector, base, and emitter regions; providing at least one quantum size region in the base region, and enclosing at least a portion of the base region in an optical resonant cavity; coupling electrical signals, including the high frequency electrical input signals, with respect to the collector, base and emitter region, to cause laser emission from the transistor device; and reducing the operating beta of the transistor laser device to enhance the optical bandwidth of the laser emission in response to the high frequency electrical signals.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 23, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Han Wui Then, Gabriel Walter, Milton Feng, Nick Holonyak, Jr.
  • Patent number: 7998807
    Abstract: A method for increasing the speed of a bipolar transistor, includes the following steps: providing a bipolar transistor having emitter, base, and collector regions; providing electrodes for coupling electrical signals with the emitter, base, and collector regions; and adapting the base region to enhance stimulated emission to the detriment of spontaneous emission, so as to reduce carrier recombination lifetime in the base region.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: August 16, 2011
    Assignee: The Board of Trustees of The University of Illinois
    Inventors: Milton Feng, Nick Holonyak, Jr.
  • Patent number: 7953133
    Abstract: A two terminal semiconductor device for producing light emission in response to electrical signals, includes: a terminal-less semiconductor base region disposed between a semiconductor emitter region and a semiconductor collector region having a tunnel junction adjacent the base region; the base region having a region therein exhibiting quantum size effects; an emitter terminal and a collector terminal respectively coupled with the emitter region and the collector region; whereby application of the electrical signals with respect to the emitter and collector terminals, causes light emission from the base region. Application of the electrical signals is operative to reverse bias the tunnel junction. Holes generated at the tunnel junction recombine in the base region with electrons flowing into the base region, resulting in the light emission. The region exhibiting quantum size effects is operative to aid recombination.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 31, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Nick Holonyak, Jr., Milton Feng, Gabriel Walter, Adam James
  • Patent number: 7913088
    Abstract: A signing technique of a disclosed identification/digital signature method hereof uses a mixing system based on multiplication in a ring and reduction modulo an ideal q in that ring, while a disclosed verification technique uses special properties of products of elements whose validity depends on elementary probability theory. The security of the identification/digital signature scheme comes from the interaction of reduction modulo q and the difficulty of forming products with special properties. In an embodiment of the identification/digital signature scheme hereof that employs a quotient ring of polynomials, the security also relies on the experimentally observed fact that for most lattices, it is very difficult to find a vector whose length is only a little bit longer than the shortest vector, and it is also difficult to find a lattice vector that is quite close to a randomly chosen nonlattice vector.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: March 22, 2011
    Assignee: NTRU Cryptosystmes, Inc.
    Inventors: Jeffrey Hoffstein, Nicholas A. Howgrave-Graham, Jill C. Pipher, Joseph H. Silverman, William J. Whyte
  • Patent number: 7888625
    Abstract: A method for producing an optical output in substantially linear relationship with an electrical AC signal, includes the following steps: providing a light-emitting transistor having emitter, base, and collector regions, and associated respective emitter, base, and collector terminals, the transistor having a light-emitting output port; applying the AC signal to a first input port defined across a given one of the terminals and a common one of the terminals; applying an amplified version of the AC signal to a second input port defined across a further one of the terminals and the common one of the input terminals; and selecting an amplification of the amplified version of the AC signal to substantially cancel a nonlinearity characteristic of the light emitting transistor.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 15, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Nick Holonyak, Jr., Milton Feng, Han Wui Then
  • Patent number: 7888199
    Abstract: A semiconductor light-emitting transistor device, including: a bipolar pnp transistor structure having a p-type collector, an n-type base, and a p-type emitter; a first tunnel junction coupled with the collector, and a second tunnel junction coupled with the emitter; and a collector contact coupled with the first tunnel junction, an emitter contact coupled with the second tunnel junction, and a base contact coupled with the base; whereby, signals applied with respect to the collector, base, and emitter contacts causes light emission from the base by radiative recombination in the base.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 15, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Gabriel Walter, Nick Holonyak, Jr., Milton Feng, Richard Chan
  • Patent number: 7834927
    Abstract: A method is disclosed for producing signals representative of an image of a scene including the following steps: providing an image sensor with a lenticular lens pattern thereon, and projecting the image onto the image sensor via the lenticular lens pattern, the image sensor having a pixel element pattern and the lenticular lens pattern having diamond shaped lenticles and being diagonally oriented with respect to the horizontal scanning direction of the pixel element pattern; and producing image-representative signals by reading out signals from the pixel elements of the image sensor.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: November 16, 2010
    Assignee: Florida Atlantic University
    Inventor: William E. Glenn
  • Patent number: 7813396
    Abstract: A method for producing light emission from a semiconductor device includes the following steps: providing a semiconductor base region disposed between a semiconductor emitter region and a semiconductor collector region that forms a tunnel junction adjacent the base region; providing, in the base region, a region exhibiting quantum size effects; providing an emitter terminal, a base terminal, and a collector terminal respectively coupled with the emitter region, the base region, and the collector region; and applying electrical signals with respect to the emitter terminal, the base terminal and the collector terminal to produce light emission from the base region.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: October 12, 2010
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Milton Feng, Nick Holonyak, Jr., Gabriel Walter, Han Wui Then
  • Patent number: 7711015
    Abstract: A method for controlling operation of a transistor includes the following steps: providing a bipolar transistor having emitter, base and collector regions; applying electrical signals to the transistor to produce light emission from the transistor; effecting photon-assisted tunneling of carriers in the transistor with self-generated photons of the light emission, and controlling operation of the transistor by controlling the photon-assisted tunneling.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: May 4, 2010
    Assignee: The Board of Trustees of The University of Illinois
    Inventors: Nick Holonyak, Jr., Milton Feng, Gabriel Walter
  • Patent number: 7696536
    Abstract: A method for enhancing operation of a bipolar light-emitting transistor includes the following steps: providing a bipolar light-emitting transistor having emitter, base, and collector regions; providing electrodes for coupling electrical signals with the emitter, base, and collector regions; and adapting the base region to promote carrier transport from the emitter region toward the collector region by providing, in the base region, several spaced apart quantum size regions of different thicknesses, with the thicknesses of the quantum size regions being graded from thickest near the collector to thinnest near the emitter.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: April 13, 2010
    Assignee: The Board of Trustees of The University of Illinois
    Inventors: Milton Feng, Nick Holonyak, Jr.
  • Patent number: 7693195
    Abstract: A method for producing an optical output, including the following steps: providing first and second electrical signals; providing a bipolar light-emitting transistor device that includes collector, base, and emitter regions; providing a collector electrode coupled with the collector region and an emitter electrode coupled with the emitter region, and coupling electrical potentials with respect to the collector and emitter electrodes; providing an optical coupling in optical communication with the base region; providing first and second base electrodes coupled with the base region; and coupling the first and second electrical signals with the first and second base electrodes, respectively, to produce an optical output emitted from the base region and coupled into the optical coupling, the optical output being a function of the first and second electrical signals.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 6, 2010
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Milton Feng, Nick Holonyak, Jr., Richard Chan
  • Patent number: 7688362
    Abstract: A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 30, 2010
    Assignee: Florida Atlantic University
    Inventor: William E. Glenn
  • Patent number: 7667158
    Abstract: A method of modifying the structure of workpiece (1) is provided. The method comprises a first step of causing relative movement between a power beam and the workpiece (1) so that a region (3) of the workpiece (1) is melted and the melted material displaced to form a projection (2) at a first location in the region (3) and a hole (4) at a different location in the region. The melted material is then allowed to at least partially solidify after which the first step is repeated one or more times, with the region corresponding to each repeat intersecting the region (3) of the first step.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: February 23, 2010
    Assignee: The Welding Institute
    Inventors: Bruce Guy Irvine Dance, Ewen James Crawford Kellar
  • Patent number: 7649713
    Abstract: A thin-film magnetic head that has an improved protrusion efficiency under the condition of not only assuring the reliability of the-heating operation, but also stabilizing the read output is provided. The head comprises: a magnetic head element for writing and/or reading data signals; a heating element for generating heat at least during operations of the magnetic head element; and a first heatsink element provided adjacent to the heating element for receiving a part of the heat generated from the heating element, the first heatsink element being a distance from the magnetic head element.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: January 19, 2010
    Assignee: TDK Corporation
    Inventors: Norikazu Ota, Katsuki Kurihara, Hiraku Hirabayashi, Taro Oike, Hiroki Matsukuma