Patents Represented by Attorney Michelle Gallardo
  • Patent number: 8351342
    Abstract: A roaming emulator provides a tool for emulating system determination for monitoring the operation of a wireless communication device (WCD) during system determination. A signal monitoring program and service selection protocol are stored, and a signal emulation module provides a signal emulation output in accordance with a predetermined set of data. A processing module performs a simulation of a service selection procedure based on the service selection protocol and performed in accordance with the signal monitoring program and the signal emulation output. A result of the service selection is provided by an output module. The emulator can provide emulated system scanning based on geographical or market location, and can emulate scenarios when channels from neighboring systems or markets “bleed” into the RF environment of the WCD.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: January 8, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Rajeev D. Rajan, Andrew T. Hunter, Rotem Cooper, Tomas Galvez Santaella
  • Patent number: 8350358
    Abstract: A semiconductor die includes a semiconductive substrate layer with first and second sides, a metal layer adjacent the second side of the semiconductive substrate layer, one or more active devices in an active layer on the first side of the semiconductive substrate layer; and a passive device in the metal layer in electrical communication with the active layer. The passive device can electrically couple to the active layer with through silicon vias (TSVs).
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: January 8, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Jonghae Kim, Shiqun Gu, Brian Matthew Henderson, Thomas R. Toms, Matthew Nowak
  • Patent number: 8335196
    Abstract: Systems and methodologies are described that facilitate supporting narrowband and wideband operation within a wideband wireless communication environment. For example, wideband operation can be enhanced by enabling faster communication of information as compared to narrowband operation, transfer of supplemental data available to wideband devices, and the like. Pursuant to another example, timing of information transfer can be scheduled over a plurality of subbands to enable a narrowband device to obtain a set of information over one of the subbands during a set of time intervals, while a wideband device can receive the set of information over the plurality of subbands during a reduced set of time intervals.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: December 18, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Arnab Das, Pablo Alejandro Anigstein
  • Patent number: 8331946
    Abstract: Methods and apparatus which support the use of differently polarized antennas to schedule two or more users employing multiple antennas with different polarization, on the same communications segment, e.g. a time/frequency slab, in either the uplink or downlink are described. Various embodiments include an access node which classifies and schedules wireless terminals to segments as a function of suitability for single polarization direction communications. Some embodiments are directed to methods and apparatus for operating a communications device supporting the use of multiple antennas having different polarization, to implement a polarization based multiple access scheme. Unlike Spatial Division multiple access schemes, the users sharing a communications segment in the polarization based scheme need not be geographically well separated.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: December 11, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Vikram Reddy Anreddy, Saurabh Tavildar, Juergen Cezanne, Xinzhou Wu, Rajiv Laroia
  • Patent number: 8326365
    Abstract: Methods and apparatus for improved utilization of air link resources are discussed in wireless communications systems employing multi-sector base stations and wireless terminals with multiple antennas. Timing synchronization is maintained across the base station sectors, and the same set of tones are used in adjacent sectors. In a sector boundary region, which is typically a high interference region, a wireless terminal is set to a sector pair state and operated in a MIMO mode of operation, communicating with two adjacent base station antenna faces of the same base station concurrently, the two different adjacent base station antenna faces corresponding to different adjacent sectors. Thus, typically high interference sector boundary regions, are converted into high capacity regions by having the sectors coordinated and utilizing MIMO techniques.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 4, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Thomas Richardson, Vladimir Parizhsky
  • Patent number: 8324066
    Abstract: A method for manufacturing a semiconductor device includes fabricating an active layer on a first side of a semiconductor substrate. The method also includes fabricating a metal layer on a second side of the semiconductor substrate. The metal layer includes a passive device embedded within the metal layer. The passive device can electrically couple to the active layer with through vias.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: December 4, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Jonghae Kim, Shiqun Gu, Brian Matthew Henderson, Thomas R. Toms, Matthew Nowak
  • Patent number: 8326249
    Abstract: A communications device, e.g., a mobile wireless terminal, includes a plurality of antennas having different associated polarization directions. The plurality of antennas includes an electrical antenna, e.g., a dipole antenna and a magnetic antenna, e.g., a loop antenna or a slot antenna. In one embodiment the electrical antenna is used for receiving and/or transmitting signals associated with a vertical polarization direction, while the magnetic antenna is used for receiving and/or transmitting signals associated with a horizontal polarization direction. In some embodiments different data streams are communicated concurrently via the electrical and magnetic antennas. Methods for operating the communications device to switch between the electrical and magnetic antennas and/or to control reception and/or transmission are described.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: December 4, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Juergen Cezanne, Saurabha R. Tavildar, Bikram Reddy Anreddy, Xinzhou Wu, Rajiv Laroia
  • Patent number: 8325826
    Abstract: Base stations transmit strip signals using strip signal segments and self supporting modulation scheme techniques facilitating rapid channel estimate. A strip segment occupies one OFDM symbol time interval and uses a set of downlink tones; some, e.g., half, of the tones are left unused facilitating SIR measurement. The strip segments are advantageously timed to correspond to uplink access intervals in which connected wireless terminals do not typically transmit uplink signals. Connected wireless terminals including: multiple antennas used in combination, an antenna duplex module, single RF receiver chain and single RF transmitter chain, switch antenna coefficient combinations based on strip signal segment timing. The wireless terminal determines an independent downlink channel quality measurement, e.g., SNR and/or SIR for each strip signal segment and for on-going non-strip signaling.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: December 4, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Rajiv Laroia, Junyi Li, Frank A. Lane
  • Patent number: 8306473
    Abstract: A MIMO wireless communications device supports a dual polarized mode of antenna operation and a single polarized mode of antenna operation. Antenna mode selection is performed as a function of signal to noise ratio information and/or rank information corresponding to a communications channel matrix. One of a communications device's processing chains is switched between first and second polarization orientation antennas, e.g., vertical and horizontally polarized antennas, as a function of the antenna mode selection. In various embodiments, the dual polarized mode is advantageously used for high SNR users, while in the low SNR regime, where the capacity is limited by received power, the single polarized antenna configuration, sometimes referred to as the spatial MIMO configuration, is used.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: November 6, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Vikram Reddy Anreddy, Xinzhou Wu, Rajiv Laroia
  • Patent number: 8294280
    Abstract: A semiconductor manufacturing method includes attaching a first die to a substrate panel. The method also includes applying a mold compound after attaching the first die to the substrate panel to the first die and the substrate panel. The method further includes thinning the first die and the mold compound after applying the mold compound. Attaching the die to the substrate panel before thinning eliminates usage of a carrier wafer when processing thin semiconductors.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 23, 2012
    Assignee: QUALCOMM Incorporated
    Inventor: Arvind Chandrasekaran
  • Patent number: 8283776
    Abstract: An electrical package with improved thermal management. The electrical package includes a die having an exposed back surface. The package further includes a plurality of fins extending outwardly from the back surface for dissipating heat from the package. The die can be arranged in a multi-die stacking configuration. In another embodiment, a method of forming a die for improved thermal management of an electrical package is provided.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: October 9, 2012
    Assignee: QUALCOMM Incorporated
    Inventor: Arvind Chandrasekaran
  • Patent number: 8273995
    Abstract: A multiwall via structure in an electronic substrate having multiple conductive layers. The multiwall via structure includes an outer via coupled to a pair of the conductive layers, an inner via within the outer via and coupled to the same pair of conductive layers, and a dielectric layer between the inner and outer vias. In various embodiments, the pair of conductive layers can be inner conductive layers or outer conductive layers of the electronic substrate. In other embodiments, a method of preparing a multiwall via structure is provided.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: September 25, 2012
    Assignee: QUALCOMM Incorporated
    Inventor: Arvind Chandrasekraran
  • Patent number: 8264052
    Abstract: A symmetric Spin Transfer Torque Magnetoresistive Random Access Memory (STT-MRAM) bit cell and STT-MRAM bit cell array are disclosed. The STT-MRAM bit cell includes a poly silicon layer, a magnetic tunnel junction (MTJ) storage element, and a bottom electrode (BE) plate. The storage element and bottom electrode (BE) plate are symmetric along a center line of the poly silicon layer.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: September 11, 2012
    Assignee: QUALCOMM Incorporated
    Inventor: William Xia
  • Patent number: 8242543
    Abstract: A semiconductor manufacturing process for wafer-to-wafer stacking of a reconstituted wafer with a second wafer creates a stacked (3D) IC. The reconstituted wafer includes dies, die interconnects and mold compound. When stacked, the die interconnects of the reconstituted wafer correspond to die interconnects on the second wafer. Wafer-to-wafer stacking improves throughput of the manufacturing process. The reconstituted wafer may include dies of different sizes than those in the second wafer. Also, the dies of the reconstituted wafer may be singulated from a wafer having a different size than the second wafer. Thus, this wafer-to-wafer manufacturing process may combine dies and/or wafers of dissimilar sizes.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: August 14, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Arvind Chandrasekaran, Brian M. Henderson
  • Patent number: 8229427
    Abstract: A terminal is assigned an active identifier for use while in an active state of a connection with a base station. The base station periodically broadcasts the status of the active identifiers for that base station, e.g., via status validation bits that indicate whether each active identifier is currently assigned to a terminal or not assigned to any terminal. The base station may also broadcast the identity (e.g., a scrambling mask) of the terminal assigned with each active identifier that is currently in use. If a terminal believes that it is assigned a particular active identifier, then the terminal checks the status validation bit for this active identifier. If this status validation bit indicates that the active identifier is currently in use, then the terminal may further check the scrambling mask sent for the active identifier in order to determine whether the terminal is actually assigned the active identifier.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: July 24, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Rajiv Laroia, Junyi Li, Pablo Anigstein, Sathyadev Venkata Uppala
  • Patent number: 8227708
    Abstract: A system of via structures disposed in a substrate. The system includes a first via structure that comprises an outer conductive layer, an inner insulating layer, and an inner conductive layer disposed in the substrate. The outer conductive layer separates the inner insulating layer and the substrate and the inner insulating layer separates the inner conductive layer and the outer conductive layer. A first signal of a first complementary pair passes through the inner conductive layer and a second signal of the first complementary pair passes through the outer conductive layer. In different embodiments, a method of forming a via structure in an electronic substrate is provided.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: July 24, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Wei Zhao, Yu Cao, Shiqun Gu, Seung H. Kang, Ming-Chu King
  • Patent number: 8230239
    Abstract: A memory power management system and method supporting multiple power modes for powering memory channels. The power management system can include a memory controller that controls the memory channel; a throughput detector that detects a requested throughput of the memory channel; a power control logic that determines a desired power mode corresponding to the requested throughput; and a power control device that supplies a desired voltage of the desired power mode to the memory channel. The power management system can include multiple memory controllers for controlling a multi-channel memory independently. The method includes detecting a requested throughput for the memory channel; determining a desired voltage related to the requested throughput; requesting the desired voltage from a voltage device; and applying the desired voltage to the memory channel. In some embodiments, the method only applies the desired voltage if it does not change for a threshold time duration.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: July 24, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Feng Wang, Shiqun Gu
  • Patent number: 8225258
    Abstract: In designing an integrated circuit on a die having a set of die bumps, a method to generate a set of lumped circuit parameter values associated with the set of die bumps, based upon distances between the set of die bumps and the center of the die, the method also based upon a sample-data distribution function of a die bump distance variable and a sample-data distribution function of a lumped circuit parameter variable. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: July 17, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Xiaoming Chen, Jack Monjay Yao
  • Patent number: 8213538
    Abstract: Methods and apparatus for improving the utilization of air link resources in a wireless communications system, e.g., an OFDM MIMO system, including a base station with multiple transmit antennas are described. Superposition signaling in the downlink is employed. The superimposed signal includes a first transform result signal and a second lower power signal. The first transform result signal is generated from a first signal, which uses position modulation, e.g., including null components and high power non-null components. Different components of the first transform result signal are directed to different transmit antennas. The first transform result signal communicates information to a first wireless terminal, e.g., a weak receiver. The non-null received elements of the first transform result signal are utilized by a second wireless terminal, e.g., a superior receiver, as pilots to determine a channel estimate.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: July 3, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Thomas Richardson, Hui Jin, Rajiv Laroia, Junyi Li
  • Patent number: 8208497
    Abstract: System and method for providing a timestamp packetized data interface between an RF unit and a modem. According to one embodiment, the RF unit receives an inbound RF signal, processes and demodulates the inbound RF signal to generate samples, generates a timestamp indicative of when the inbound RF signal was received, packetizes and multiplexes the samples and the timestamp, and sends the multiplexed stream to the modem. The modem generates received data from the samples. If the received data type requires a response to be sent at a particular time, the modem generates symbols from responsive outbound data, generates a timestamp which indicates when the outbound data is to be transmitted, packetizes and multiplexes the symbols and the timestamp, and sends the multiplexed stream to the RF unit. The RF unit generates an outbound RF signal from the symbols, and transmits the outbound signal in accordance with the timestamp.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: June 26, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Sundeep Rangan, Frank Lane