Patents Represented by Attorney Rosemary L. S. Pike
  • Patent number: 6406994
    Abstract: A triple layered low dielectric constant material dual damascene metallization process is described. Metal lines are provided covered by an insulating layer overlying a semiconductor substrate. A first dielectric layer of a first type is deposited overlying the insulating layer. A second dielectric layer of a second type is deposited overlying the first dielectric layer. A via pattern is etched into the second dielectric layer. Thereafter, a third dielectric layer of the first type is deposited overlying the patterned second dielectric layer. Simultaneously, a trench pattern is etched into the third dielectric layer and the via pattern is etched into the first dielectric layer to complete the formation of dual damascene openings in the fabrication of an integrated circuit device. If the first type is a low dielectric constant organic material, the second type will be a low dielectric constant inorganic material.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: June 18, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Ting Cheong Ang, Shyue Fong Quek, Yee Chong Wong, Sang Yee Loong
  • Patent number: 6403478
    Abstract: A new method for preventing intermittent high Kelvin via resistance is achieved. This is accomplished by lowering the chamber pressure during warm-up, which prevents the wafer temperature from rising above about 380° C. The present invention uses a pressure of between 2 and 3 Torr during warm-up of the wafer prior to barrier metal deposition rather than 5 Torr, which is conventionally used. Using the conventional pressure of 5 Torr the wafer temperature overshoots to about 395° C. before settling to about 380° C. By reducing the pressure to between 2 and 3 Torr, the thermal conductivity between the wafer heater and the wafer is reduced and the overshoot reduced or eliminated. The lower temperature reduces the deposition rate by approximately 10 angstroms over a 15 second deposition, but this is compensated for by an increase in deposition time. However, because the reaction is carried out in the reaction-limited regime, the step coverage will increase when wafer temperature is reduced.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 11, 2002
    Assignee: Chartered Semiconductor Manufacturing Company
    Inventors: Chim-Seng Seet, Chyi Shyuam Chern, Juan Boon Tan
  • Patent number: 6403425
    Abstract: A new method is provided for the creation of layers of gate oxide of different thicknesses. A substrate is provided, the surface of the substrate is divided into a first surface region over which a thick layer of gate oxide has to be created and a second surface region over which a thin layer of gate oxide is to be created. Thick gate-oxide implants are performed into the surface of the substrate. A thick layer of gate oxide is created over the surface of the substrate, the thick layer of gate oxide is successively patterned for thin gate-oxide implants, comprising thin gate-oxide n-well/p-well, threshold, punchthrough implants, into the second surface region of the substrate. The thick layer of gate oxide is removed from the second surface region of the substrate. The (now contaminated) top layer of the thick layer of gate oxide is removed, a thin layer of gate oxide is grown over the second surface region of the substrate.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: June 11, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew-Hoe Ang, Wenhe Lin, Jia Zhen Zheng
  • Patent number: 6403484
    Abstract: A method of forming shallow trench isolations is described. A plurality of isolation trenches are etched through a first etch stop layer into the underlying semiconductor substrate. An oxide layer is deposited over the first etch stop layer and within the isolation trenches using a high density plasma chemical vapor deposition process (HDP-CVD) wherein after the oxide layer fills the isolation trenches, the deposition component is discontinued while continuing the sputtering component until corners of the first etch stop layer are exposed at edges of the isolation trenches whereby the oxide layer within the isolation trenches is disconnected from the oxide layer overlying the first etch stop layer. Thereafter, a second etch stop layer is deposited overlying the oxide layer within the isolation trenches, the oxide layer overlying the first etch stop layer, and the exposed first etch stop layer corners.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: June 11, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Victor Seng Keong Lim, Lap Chan, James Lee, Chen Feng, Wang Ling Goh
  • Patent number: 6403485
    Abstract: A method of forming a pseudo-SOI device having elevated source/drain (S/D) regions that can be extended for use as local interconnect is described. Shallow trench isolation (STI) regions separating adjacent active regions are provided within a semiconductor substrate. Polysilicon gate electrodes and associated SID extensions are fabricated in and on the substrate in the active regions wherein a hard mask layer overlies each of the gate electrodes. Dielectric spacers are formed on sidewalls of each of the gate electrodes. A polysilicon layer is deposited overlying the gate electrodes and the substrate. The polysilicon layer is polished back with a polish stop at the hard mask layer. The polysilicon layer is etched back whereby the polysilicon layer is recessed with respect to the gate electrodes. Thereafter, the polysilicon layer is etched away overlying the STI regions where a separation between adjacent active areas is desired.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: June 11, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd
    Inventors: Elgin Quek, Ravi Sundaresan, Yang Pan, James Lee Yong Meng, Ying Keung, Yelehanka Ramachandramurthy Pradeep, Jia Zhen Zheng, Lap Chan
  • Patent number: 6399441
    Abstract: Provided in the present invention are a high speed and low program voltage nonvolatile memory cell, a programming method for same and a nonvolatile memory array. A nonvolatile memory cell comprises a first gate insulator formed on a surface of a first channel forming semiconductor region adjacent to a source region; a second gate insulator formed on a surface of a second channel forming semiconductor region adjacent to a drain region; a first gate electrode formed on said first gate insulator; and a second gate electrode formed on said second gate insulator wherein the second gate insulator includes a first layer forming a potential barrier at the interface with the second channel forming region; a third layer forming a potential barrier at the interface with the second gate electrode and the second layer between the first and third layers forming a carrier trapping level.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: June 4, 2002
    Assignee: Halo LSI Device & Design Technology, Inc.
    Inventors: Seiki Ogura, Yutaka Hayashi
  • Patent number: 6399522
    Abstract: A method of forming a PE-silane oxide layer with a greatly reduced particle count is described. A semiconductor substrate is provided over which a silicon oxide film is to be formed. The silicon oxide film is formed by the steps of: 1) pre-flowing a non-silane gas into a deposition chamber for at least two seconds whereby the pre-flowing step prevents formation of particles on the silicon oxide film, and 2) thereafter depositing a silicon oxide film by chemical vapor deposition by flowing a silane gas into the deposition chamber to complete formation of a silicon oxide film using plasma-enhanced chemical vapor deposition in the fabrication of an integrated circuit.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: June 4, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chun-Ching Tsan, Hung-Ju Chien, Chun-Chang Chen, Ying-Lang Wang
  • Patent number: 6399471
    Abstract: A method of manufacturing conductive lines that are thicker (not wider) in the critical paths areas. We form a plurality of first level conductive lines over a first dielectric layer. The first conductive lines run in a first direction. The first level conductive lines are comprised of a first level first conductive line and a second first level conductive line. We form a second dielectric layer over the first level conductive lines and the first dielectric layer. Next, we form a via opening in the second dielectric layer over a portion of the first level first conductive line. A plug is formed filling the via opening. We form a trench pattern in the second dielectric layer. The trench pattern is comprised of trenches that are approximately orthogonal to the first level conductive lines. We fill the trenches with a conductive material to form supplemental second lines. We form second level conductive lines over the supplemental second lines and the plug.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: June 4, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Wang Ling Goh, Victor Seng Keong Lim
  • Patent number: 6399431
    Abstract: A method for forming an electrostatic discharge device using silicon-on-insulator technology is described. A silicon-on-insulator substrate is provided comprising a semiconductor substrate underlying an oxide layer underlying a silicon layer. The silicon layer and oxide layer are patterned to form a gate electrode wherein the semiconductor substrate is exposed. Ions are implanted into the exposed semiconductor substrate to form source and drain regions adjacent to the gate electrode. Spacers are formed on sidewalls of the gate electrode. An interlevel dielectric layer is deposited overlying the gate electrode. Openings are formed through the interlevel dielectric layer to the source and drain regions and filled with a conducting layer. The conducting layer is patterned to form conducting lines to complete formation of an electrostatic discharge device using SOI technology in the fabrication of integrated circuits.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: June 4, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Song, Ting Cheong Ang, Shyue Fong Quek, Sang Yee Loong
  • Patent number: 6395631
    Abstract: A method for forming, within a low dielectric constant dielectric layer formed upon a substrate employed within a microelectronics fabrication, a conductor pattern employing a hard mask cap layer. There is first provided a substrate having conductor regions formed therein upon which is formed a low dielectric constant dielectric layer. There is then formed over the substrate a silicon containing hard mask cap layer. There is then formed over the hard mask cap layer a patterned photoresist etch mask layer. There is then subtractively etched employing the patterned photoresist etch mask layer and a first subtractive etching environment the pattern into the hard mask layer. There is then subtractively etched employing the patterned hard mask layer and a second etching environment the pattern into the low dielectric constant dielectric layer, simultaneously stripping the photoresist etch mask layer.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: May 28, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yi Xu, Jian Xun Li
  • Patent number: 6395086
    Abstract: An improved shield for preventing the contamination of a wafer back from resist is combined with process steps that further prevent this contamination. The shield is located where vortex like air currents could otherwise deposit the resist vapor on the wafer back. The shield has the general shape of a cylinder that is open at the top and closed at the bottom. The bottom provides an attachment to a conventional part of the wafer coater and also forms part of the shield. The sides are arranged to extend close to the wafer back at a radius just less than the radius of the wafer. In the improved process, the spindle of the wafer chuck is not rotated at more than 1200 revolutions per minute in any of the wafer spinning operations, and the conventional step of washing the wafer back with a solvent is performed only at the end of the other operations.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: May 28, 2002
    Assignee: Chartered Semiconductor Manufacturing Pte Ltd
    Inventor: Soon Ee Neoh
  • Patent number: 6394114
    Abstract: An inexpensive and safe copper removal method in the fabrication of integrated circuits is described. Copper is stripped or removed by a chemical mixture comprising an ammonium salt, an amine, and water. The rate of copper stripping can be controlled by varying the concentration of the ammonium salt component and the amount of water in the mixture. Also a novel chemical mixture for stripping copper and removing copper contamination is provided. The novel chemical mixture for removing or stripping copper comprises an ammonium salt, an amine, and water. For example, the novel chemical mixture may comprise ammonium fluoride, water, and ethylenediamine in a ratio of 1:1:1.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: May 28, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Subhash Gupta, Simon Chooi, Paul Ho, Mei Sheng Zhou
  • Patent number: 6394104
    Abstract: A new method for improving particle level, stability of etch rate, and better etch uniformity by using a dry plasma clean to remove polymer buildup from the upper electrode and walls of an etch chamber after spin-on-glass etchback is described. An etching chamber having a lower electrode, upper electrode, and interior walls is provided. Spin-on-glass etchback is performed within the etching chamber whereby a polymer buildup forms on surfaces of chamber. A dummy wafer is placed into the etching chamber and the polymer buildup within the chamber is removed using a dry plasma cleaning process.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: May 28, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Sen-Fu Chen, Ming-Chieh Yeh
  • Patent number: 6391731
    Abstract: A new method of forming MOS transistors with shallow source and drain extensions and deep source and drain junctions in the manufacture of an integrated circuit device has been achieved. Gates are provided overlying a semiconductor substrate. Temporary sidewall spacers are formed on the gates. Ions are implanted into the exposed semiconductor substrate to form a deep amorphous layer. Ions are implanted into the deep amorphous layer to form pre-annealed source and drain junctions. The temporary sidewall spacers are removed. Ions are implanted into the exposed semiconductor substrate to form a shallow amorphous layer. Ions are implanted into the shallow amorphous layer to form pre-annealed source and drain extensions. A capping layer may be deposited overlying the semiconductor substrate and the gates to protect the semiconductor substrate during irradiation.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: May 21, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yung Fu Chong, Kin Leong Pey, Alex See
  • Patent number: 6391720
    Abstract: A method for forming a self-aligned, recessed channel, MOSFET device that alleviates the problems due to short channel and hot carrier effects while reducing inter-electrode capacitance is described. A substrate with an active area encompassed by a shallow trench isolation (STI) region is provided. A mask oxide layer is then patterned and etched to expose the substrate and a portion of the STI region. The surface is etched and the mask oxide layer is eroded away while creating a gate recess in the unmasked area. A thin pad oxide layer is then grown overlying the surface followed by a deposition of a thick silicon nitride layer covering the surface and filling the gate recess. The top surface is planarized exposing the pad oxide layer. An additional oxide layer is grown causing the pad oxide layer to thicken. A portion of the silicon nitride layer is etched away and additional oxide layer is again grown causing the pad oxide layer to further thicken.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: May 21, 2002
    Assignees: Chartered Semiconductor Manufacturing Ltd., National University of Singapore
    Inventors: Sneedharan Pillai Sneelal, Francis Youg Wee Poh, James Yong Meng Lee, Alex See, C. K. Lau, Ganesh Shankar Samudra
  • Patent number: 6391761
    Abstract: A method to form dual damascene structures is described. A substrate layer is provided. An anti-diffusion layer is deposited. A first dielectric layer is deposited. An etch stopping layer is deposited. A second dielectric layer is deposited. The second dielectric layer, the etch stopping layer, and the first dielectric layer are patterned to form the vias. A liner layer is deposited overlying the second dielectric layer and internal surfaces of the lower trenches. The liner layer and the second dielectric layer are patterned to form the upper trenches. The liner layer and the anti-diffusion layer are etched through to complete the formation of the dual damascene structure, and the integrated circuit device is completed.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: May 21, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Lawrence Lui
  • Patent number: 6391783
    Abstract: A method of forming a metal plug, comprising the following steps. An etched dielectric layer, over a conductive layer, over a semiconductor structure are provided. The etched dielectric layer having a via hole and an exposed periphery. The etched dielectric layer is treated with at least one alkaline earth element source to form an in-situ metal barrier layer within the dielectric layer exposed periphery. A metal plug is formed within the via hole wherein the in-situ metal barrier layer prevents diffusion of the metal from the metal plug into the dielectric oxide layer.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: May 21, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: John Sudijono, Yakub Aliyu, Mei Sheng Zhou, Simon Chooi, Subhash Gupta, Sudipto Roy, Paul Ho, Yi Xu
  • Patent number: 6391732
    Abstract: A new method of forming silicon nitride sidewall spacers has been achieved. In addition, a new device profile for a silicon nitride sidewall spacer has been achieved. An isolation region is provided overlying a semiconductor substrate. Polysilicon traces are provided. A liner oxide layer is formed overlying the polysilicon traces and the insulator layer. A silicon nitride layer is formed overlying the liner oxide layer. A polysilicon or amorphous silicon layer is deposited overlying the silicon nitride layer. The polysilicon or amorphous silicon layer is completely oxidized to form a temporary silicon dioxide layer. The temporary silicon dioxide layer is rounded in the corners due to volume expansion during the oxidation step. The temporary silicon dioxide layer is anisotropically etched through to expose horizontal surfaces of the silicon nitride layer while leaving vertical sidewalls of the temporary silicon dioxide layer.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: May 21, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Subhash Gupta, Yelehanka Ramachandramurthy, Vijai Kumar Chhagan
  • Patent number: 6387784
    Abstract: A method is provided to reduce poly depletion in MOS transistors. Conventionally, after a polysilicon electrode has been doped, an anneal step is usually performed to activate the dopants. However, the anneal step may be insufficient to drive the implanted impurities down the entire depth of the polysilicon electrode. Consequently, a portion of the polysilicon gate nearest to the gate oxide will be depleted of dopants. This poly depletion will have a detrimental effect on the control of the threshold voltage, and hence on the performance of the device. It is disclosed in the present invention a method of forming polysilicon gates where dopant depletion at the interface near the gate oxide layer is alleviated substantially by using laser annealing; however, by first pre-amorphizing the polycrystalline silicon prior to ion (implantation to a desired depth such that during laser annealing the dopants will diffuse uniformly to a melt depth.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: May 14, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yung Fu Chong, Randall Cher Liang Cha, Lap Chan, Kin Leong Pey
  • Patent number: 6387765
    Abstract: A method for forming an extended metal gate without poly wrap around effects. A semiconductor structure is provided having a gate structure thereon. The gate structure comprising a gate dielectric layer, a gate silicon layer, a doped silicon oxide layer, and a disposable gate layer stacked sequentially. Spacers are formed on the sidewalls of the gate structure. A dielectric gapfill layer is formed over the semiconductor structure and the gate structure and planarized, stopping on the disposable gate layer. A first silicon nitride layer is formed over the disposable gate layer, and a dielectric layer is formed over the first silicon nitride layer. The dielectric layer is patterned to form a trench over the gate structure; therein the trench has a width greater than the width of the gate structure. The first silicon nitride layer in the bottom of the trench and the disposable gate layer are removed using one or more selective etching processes.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: May 14, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Vijai Kumar Chhagan, Yelehanka Ramachandramurthy Pradeep, Mei Sheng Zhou, Henry Gerung, Simon Chooi